# Original Algorithm: # By Steve Hanov, 2011. Released to the public domain. # Please see http://stevehanov.ca/blog/index.php?id=115 for the accompanying article. # # Adapted for PyPy/CPython by Carl Friedrich Bolz-Tereick # # Based on Daciuk, Jan, et al. "Incremental construction of minimal acyclic finite-state automata." # Computational linguistics 26.1 (2000): 3-16. # # Updated 2014 to use DAWG as a mapping; see # Kowaltowski, T.; CL. Lucchesi (1993), "Applications of finite automata representing large vocabularies", # Software-Practice and Experience 1993 from collections import defaultdict from functools import cached_property # This class represents a node in the directed acyclic word graph (DAWG). It # has a list of edges to other nodes. It has functions for testing whether it # is equivalent to another node. Nodes are equivalent if they have identical # edges, and each identical edge leads to identical states. The __hash__ and # __eq__ functions allow it to be used as a key in a python dictionary. class DawgNode: def __init__(self, dawg): self.id = dawg.next_id dawg.next_id += 1 self.final = False self.edges = {} self.linear_edges = None # later: list of (string, next_state) def __str__(self): if self.final: arr = ["1"] else: arr = ["0"] for (label, node) in sorted(self.edges.items()): arr.append(label) arr.append(str(node.id)) return "_".join(arr) __repr__ = __str__ def _as_tuple(self): edges = sorted(self.edges.items()) edge_tuple = tuple((label, node.id) for label, node in edges) return (self.final, edge_tuple) def __hash__(self): return hash(self._as_tuple()) def __eq__(self, other): return self._as_tuple() == other._as_tuple() @cached_property def num_reachable_linear(self): # returns the number of different paths to final nodes reachable from # this one count = 0 # staying at self counts as a path if self is final if self.final: count += 1 for label, node in self.linear_edges: count += node.num_reachable_linear return count class Dawg: def __init__(self): self.previous_word = "" self.next_id = 0 self.root = DawgNode(self) # Here is a list of nodes that have not been checked for duplication. self.unchecked_nodes = [] # To deduplicate, maintain a dictionary with # minimized_nodes[canonical_node] is canonical_node. # Based on __hash__ and __eq__, minimized_nodes[n] is the # canonical node equal to n. # In other words, self.minimized_nodes[x] == x for all nodes found in # the dict. self.minimized_nodes = {} # word: value mapping self.data = {} # value: word mapping self.inverse = {} def insert(self, word, value): if not all(0 <= ord(c) < 128 for c in word): raise ValueError("Use 7-bit ASCII characters only") if word <= self.previous_word: raise ValueError("Error: Words must be inserted in alphabetical order.") if value in self.inverse: raise ValueError(f"value {value} is duplicate, got it for word {self.inverse[value]} and now {word}") # find common prefix between word and previous word common_prefix = 0 for i in range(min(len(word), len(self.previous_word))): if word[i] != self.previous_word[i]: break common_prefix += 1 # Check the unchecked_nodes for redundant nodes, proceeding from last # one down to the common prefix size. Then truncate the list at that # point. self._minimize(common_prefix) self.data[word] = value self.inverse[value] = word # add the suffix, starting from the correct node mid-way through the # graph if len(self.unchecked_nodes) == 0: node = self.root else: node = self.unchecked_nodes[-1][2] for letter in word[common_prefix:]: next_node = DawgNode(self) node.edges[letter] = next_node self.unchecked_nodes.append((node, letter, next_node)) node = next_node node.final = True self.previous_word = word def finish(self): if not self.data: raise ValueError("need at least one word in the dawg") # minimize all unchecked_nodes self._minimize(0) self._linearize_edges() topoorder, linear_data, inverse = self._topological_order() return self.compute_packed(topoorder), linear_data, inverse def _minimize(self, down_to): # proceed from the leaf up to a certain point for i in range(len(self.unchecked_nodes) - 1, down_to - 1, -1): (parent, letter, child) = self.unchecked_nodes[i] if child in self.minimized_nodes: # replace the child with the previously encountered one parent.edges[letter] = self.minimized_nodes[child] else: # add the state to the minimized nodes. self.minimized_nodes[child] = child self.unchecked_nodes.pop() def _lookup(self, word): """ Return an integer 0 <= k < number of strings in dawg where word is the kth successful traversal of the dawg. """ node = self.root skipped = 0 # keep track of number of final nodes that we skipped index = 0 while index < len(word): for label, child in node.linear_edges: if word[index] == label[0]: if word[index:index + len(label)] == label: if node.final: skipped += 1 index += len(label) node = child break else: return None skipped += child.num_reachable_linear else: return None return skipped def enum_all_nodes(self): stack = [self.root] done = set() while stack: node = stack.pop() if node.id in done: continue yield node done.add(node.id) for label, child in sorted(node.edges.items()): stack.append(child) def prettyprint(self): for node in sorted(self.enum_all_nodes(), key=lambda e: e.id): s_final = " final" if node.final else "" print(f"{node.id}: ({node}) {s_final}") for label, child in sorted(node.edges.items()): print(f" {label} goto {child.id}") def _inverse_lookup(self, number): assert 0, "not working in the current form, but keep it as the pure python version of compact lookup" result = [] node = self.root while 1: if node.final: if pos == 0: return "".join(result) pos -= 1 for label, child in sorted(node.edges.items()): nextpos = pos - child.num_reachable_linear if nextpos < 0: result.append(label) node = child break else: pos = nextpos else: assert 0 def _linearize_edges(self): # compute "linear" edges. the idea is that long chains of edges without # any of the intermediate states being final or any extra incoming or # outgoing edges can be represented by having removing them, and # instead using longer strings as edge labels (instead of single # characters) incoming = defaultdict(list) nodes = sorted(self.enum_all_nodes(), key=lambda e: e.id) for node in nodes: for label, child in sorted(node.edges.items()): incoming[child].append(node) for node in nodes: node.linear_edges = [] for label, child in sorted(node.edges.items()): s = [label] while len(child.edges) == 1 and len(incoming[child]) == 1 and not child.final: (c, child), = child.edges.items() s.append(c) node.linear_edges.append((''.join(s), child)) def _topological_order(self): # compute reachable linear nodes, and the set of incoming edges for each node order = [] stack = [self.root] seen = set() while stack: # depth first traversal node = stack.pop() if node.id in seen: continue seen.add(node.id) order.append(node) for label, child in node.linear_edges: stack.append(child) # do a (slightly bad) topological sort incoming = defaultdict(set) for node in order: for label, child in node.linear_edges: incoming[child].add((label, node)) no_incoming = [order[0]] topoorder = [] positions = {} while no_incoming: node = no_incoming.pop() topoorder.append(node) positions[node] = len(topoorder) # use "reversed" to make sure that the linear_edges get reorderd # from their alphabetical order as little as necessary (no_incoming # is LIFO) for label, child in reversed(node.linear_edges): incoming[child].discard((label, node)) if not incoming[child]: no_incoming.append(child) del incoming[child] # check result assert set(topoorder) == set(order) assert len(set(topoorder)) == len(topoorder) for node in order: node.linear_edges.sort(key=lambda element: positions[element[1]]) for node in order: for label, child in node.linear_edges: assert positions[child] > positions[node] # number the nodes. afterwards every input string in the set has a # unique number in the 0 <= number < len(data). We then put the data in # self.data into a linear list using these numbers as indexes. topoorder[0].num_reachable_linear linear_data = [None] * len(self.data) inverse = {} # maps value back to index for word, value in self.data.items(): index = self._lookup(word) linear_data[index] = value inverse[value] = index return topoorder, linear_data, inverse def compute_packed(self, order): def compute_chunk(node, offsets): """ compute the packed node/edge data for a node. result is a list of bytes as long as order. the jump distance calculations use the offsets dictionary to know where in the final big output bytestring the individual nodes will end up. """ result = bytearray() offset = offsets[node] encode_varint_unsigned(number_add_bits(node.num_reachable_linear, node.final), result) if len(node.linear_edges) == 0: assert node.final encode_varint_unsigned(0, result) # add a 0 saying "done" prev_child_offset = offset + len(result) for edgeindex, (label, targetnode) in enumerate(node.linear_edges): label = label.encode('ascii') child_offset = offsets[targetnode] child_offset_difference = child_offset - prev_child_offset info = number_add_bits(child_offset_difference, len(label) == 1, edgeindex == len(node.linear_edges) - 1) if edgeindex == 0: assert info != 0 encode_varint_unsigned(info, result) prev_child_offset = child_offset if len(label) > 1: encode_varint_unsigned(len(label), result) result.extend(label) return result def compute_new_offsets(chunks, offsets): """ Given a list of chunks, compute the new offsets (by adding the chunk lengths together). Also check if we cannot shrink the output further because none of the node offsets are smaller now. if that's the case return None. """ new_offsets = {} curr_offset = 0 should_continue = False for node, result in zip(order, chunks): if curr_offset < offsets[node]: # the new offset is below the current assumption, this # means we can shrink the output more should_continue = True new_offsets[node] = curr_offset curr_offset += len(result) if not should_continue: return None return new_offsets # assign initial offsets to every node offsets = {} for i, node in enumerate(order): # we don't know position of the edge yet, just use something big as # the starting position. we'll have to do further iterations anyway, # but the size is at least a lower limit then offsets[node] = i * 2 ** 30 # due to the variable integer width encoding of edge targets we need to # run this to fixpoint. in the process we shrink the output more and # more until we can't any more. at any point we can stop and use the # output, but we might need padding zero bytes when joining the chunks # to have the correct jump distances last_offsets = None while 1: chunks = [compute_chunk(node, offsets) for node in order] last_offsets = offsets offsets = compute_new_offsets(chunks, offsets) if offsets is None: # couldn't shrink break # build the final packed string total_result = bytearray() for node, result in zip(order, chunks): node_offset = last_offsets[node] if node_offset > len(total_result): # need to pad to get the offsets correct padding = b"\x00" * (node_offset - len(total_result)) total_result.extend(padding) assert node_offset == len(total_result) total_result.extend(result) return bytes(total_result) # ______________________________________________________________________ # the following functions operate on the packed representation def number_add_bits(x, *bits): for bit in bits: assert bit == 0 or bit == 1 x = (x << 1) | bit return x def encode_varint_unsigned(i, res): # https://en.wikipedia.org/wiki/LEB128 unsigned variant more = True startlen = len(res) if i < 0: raise ValueError("only positive numbers supported", i) while more: lowest7bits = i & 0b1111111 i >>= 7 if i == 0: more = False else: lowest7bits |= 0b10000000 res.append(lowest7bits) return len(res) - startlen def number_split_bits(x, n, acc=()): if n == 1: return x >> 1, x & 1 if n == 2: return x >> 2, (x >> 1) & 1, x & 1 assert 0, "implement me!" def decode_varint_unsigned(b, index=0): res = 0 shift = 0 while True: byte = b[index] res = res | ((byte & 0b1111111) << shift) index += 1 shift += 7 if not (byte & 0b10000000): return res, index def decode_node(packed, node): x, node = decode_varint_unsigned(packed, node) node_count, final = number_split_bits(x, 1) return node_count, final, node def decode_edge(packed, edgeindex, prev_child_offset, offset): x, offset = decode_varint_unsigned(packed, offset) if x == 0 and edgeindex == 0: raise KeyError # trying to decode past a final node child_offset_difference, len1, last_edge = number_split_bits(x, 2) child_offset = prev_child_offset + child_offset_difference if len1: size = 1 else: size, offset = decode_varint_unsigned(packed, offset) return child_offset, last_edge, size, offset def _match_edge(packed, s, size, node_offset, stringpos): if size > 1 and stringpos + size > len(s): # past the end of the string, can't match return False for i in range(size): if packed[node_offset + i] != s[stringpos + i]: # if a subsequent char of an edge doesn't match, the word isn't in # the dawg if i > 0: raise KeyError return False return True def lookup(packed, data, s): return data[_lookup(packed, s)] def _lookup(packed, s): stringpos = 0 node_offset = 0 skipped = 0 # keep track of number of final nodes that we skipped false = False while stringpos < len(s): #print(f"{node_offset=} {stringpos=}") _, final, edge_offset = decode_node(packed, node_offset) prev_child_offset = edge_offset edgeindex = 0 while 1: child_offset, last_edge, size, edgelabel_chars_offset = decode_edge(packed, edgeindex, prev_child_offset, edge_offset) #print(f" {edge_offset=} {child_offset=} {last_edge=} {size=} {edgelabel_chars_offset=}") edgeindex += 1 prev_child_offset = child_offset if _match_edge(packed, s, size, edgelabel_chars_offset, stringpos): # match if final: skipped += 1 stringpos += size node_offset = child_offset break if last_edge: raise KeyError descendant_count, _, _ = decode_node(packed, child_offset) skipped += descendant_count edge_offset = edgelabel_chars_offset + size _, final, _ = decode_node(packed, node_offset) if final: return skipped raise KeyError def inverse_lookup(packed, inverse, x): pos = inverse[x] return _inverse_lookup(packed, pos) def _inverse_lookup(packed, pos): result = bytearray() node_offset = 0 while 1: node_count, final, edge_offset = decode_node(packed, node_offset) if final: if pos == 0: return bytes(result) pos -= 1 prev_child_offset = edge_offset edgeindex = 0 while 1: child_offset, last_edge, size, edgelabel_chars_offset = decode_edge(packed, edgeindex, prev_child_offset, edge_offset) edgeindex += 1 prev_child_offset = child_offset descendant_count, _, _ = decode_node(packed, child_offset) nextpos = pos - descendant_count if nextpos < 0: assert edgelabel_chars_offset >= 0 result.extend(packed[edgelabel_chars_offset: edgelabel_chars_offset + size]) node_offset = child_offset break elif not last_edge: pos = nextpos edge_offset = edgelabel_chars_offset + size else: raise KeyError else: raise KeyError def build_compression_dawg(ucdata): d = Dawg() ucdata.sort() for name, value in ucdata: d.insert(name, value) packed, pos_to_code, reversedict = d.finish() print("size of dawg [KiB]", round(len(packed) / 1024, 2)) # check that lookup and inverse_lookup work correctly on the input data for name, value in ucdata: assert lookup(packed, pos_to_code, name.encode('ascii')) == value assert inverse_lookup(packed, reversedict, value) == name.encode('ascii') return packed, pos_to_code