/* MIT License * * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation * Copyright (c) 2022-2023 HACL* Contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "internal/Hacl_Hash_Blake2b_Simd256.h" #include "internal/Hacl_Impl_Blake2_Constants.h" #include "internal/Hacl_Hash_Blake2b.h" #include "lib_memzero0.h" static inline void update_block( Lib_IntVector_Intrinsics_vec256 *wv, Lib_IntVector_Intrinsics_vec256 *hash, bool flag, bool last_node, FStar_UInt128_uint128 totlen, uint8_t *d ) { uint64_t m_w[16U] = { 0U }; KRML_MAYBE_FOR16(i, 0U, 16U, 1U, uint64_t *os = m_w; uint8_t *bj = d + i * 8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); Lib_IntVector_Intrinsics_vec256 mask = Lib_IntVector_Intrinsics_vec256_zero; uint64_t wv_14; if (flag) { wv_14 = 0xFFFFFFFFFFFFFFFFULL; } else { wv_14 = 0ULL; } uint64_t wv_15; if (last_node) { wv_15 = 0xFFFFFFFFFFFFFFFFULL; } else { wv_15 = 0ULL; } mask = Lib_IntVector_Intrinsics_vec256_load64s(FStar_UInt128_uint128_to_uint64(totlen), FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(totlen, 64U)), wv_14, wv_15); memcpy(wv, hash, 4U * sizeof (Lib_IntVector_Intrinsics_vec256)); Lib_IntVector_Intrinsics_vec256 *wv3 = wv + 3U; wv3[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv3[0U], mask); KRML_MAYBE_FOR12(i, 0U, 12U, 1U, uint32_t start_idx = i % 10U * 16U; KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 m_st[4U] KRML_POST_ALIGN(32) = { 0U }; Lib_IntVector_Intrinsics_vec256 *r0 = m_st; Lib_IntVector_Intrinsics_vec256 *r1 = m_st + 1U; Lib_IntVector_Intrinsics_vec256 *r20 = m_st + 2U; Lib_IntVector_Intrinsics_vec256 *r30 = m_st + 3U; uint32_t s0 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 0U]; uint32_t s1 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 1U]; uint32_t s2 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 2U]; uint32_t s3 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 3U]; uint32_t s4 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 4U]; uint32_t s5 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 5U]; uint32_t s6 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 6U]; uint32_t s7 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 7U]; uint32_t s8 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 8U]; uint32_t s9 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 9U]; uint32_t s10 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 10U]; uint32_t s11 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 11U]; uint32_t s12 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 12U]; uint32_t s13 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 13U]; uint32_t s14 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 14U]; uint32_t s15 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 15U]; r0[0U] = Lib_IntVector_Intrinsics_vec256_load64s(m_w[s0], m_w[s2], m_w[s4], m_w[s6]); r1[0U] = Lib_IntVector_Intrinsics_vec256_load64s(m_w[s1], m_w[s3], m_w[s5], m_w[s7]); r20[0U] = Lib_IntVector_Intrinsics_vec256_load64s(m_w[s8], m_w[s10], m_w[s12], m_w[s14]); r30[0U] = Lib_IntVector_Intrinsics_vec256_load64s(m_w[s9], m_w[s11], m_w[s13], m_w[s15]); Lib_IntVector_Intrinsics_vec256 *x = m_st; Lib_IntVector_Intrinsics_vec256 *y = m_st + 1U; Lib_IntVector_Intrinsics_vec256 *z = m_st + 2U; Lib_IntVector_Intrinsics_vec256 *w = m_st + 3U; uint32_t a = 0U; uint32_t b0 = 1U; uint32_t c0 = 2U; uint32_t d10 = 3U; Lib_IntVector_Intrinsics_vec256 *wv_a0 = wv + a * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b0 = wv + b0 * 1U; wv_a0[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a0[0U], wv_b0[0U]); wv_a0[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a0[0U], x[0U]); Lib_IntVector_Intrinsics_vec256 *wv_a1 = wv + d10 * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b1 = wv + a * 1U; wv_a1[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a1[0U], wv_b1[0U]); wv_a1[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a1[0U], 32U); Lib_IntVector_Intrinsics_vec256 *wv_a2 = wv + c0 * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b2 = wv + d10 * 1U; wv_a2[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a2[0U], wv_b2[0U]); Lib_IntVector_Intrinsics_vec256 *wv_a3 = wv + b0 * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b3 = wv + c0 * 1U; wv_a3[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a3[0U], wv_b3[0U]); wv_a3[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a3[0U], 24U); Lib_IntVector_Intrinsics_vec256 *wv_a4 = wv + a * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b4 = wv + b0 * 1U; wv_a4[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a4[0U], wv_b4[0U]); wv_a4[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a4[0U], y[0U]); Lib_IntVector_Intrinsics_vec256 *wv_a5 = wv + d10 * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b5 = wv + a * 1U; wv_a5[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a5[0U], wv_b5[0U]); wv_a5[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a5[0U], 16U); Lib_IntVector_Intrinsics_vec256 *wv_a6 = wv + c0 * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b6 = wv + d10 * 1U; wv_a6[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a6[0U], wv_b6[0U]); Lib_IntVector_Intrinsics_vec256 *wv_a7 = wv + b0 * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b7 = wv + c0 * 1U; wv_a7[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a7[0U], wv_b7[0U]); wv_a7[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a7[0U], 63U); Lib_IntVector_Intrinsics_vec256 *r10 = wv + 1U; Lib_IntVector_Intrinsics_vec256 *r21 = wv + 2U; Lib_IntVector_Intrinsics_vec256 *r31 = wv + 3U; Lib_IntVector_Intrinsics_vec256 v00 = r10[0U]; Lib_IntVector_Intrinsics_vec256 v1 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v00, 1U); r10[0U] = v1; Lib_IntVector_Intrinsics_vec256 v01 = r21[0U]; Lib_IntVector_Intrinsics_vec256 v10 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v01, 2U); r21[0U] = v10; Lib_IntVector_Intrinsics_vec256 v02 = r31[0U]; Lib_IntVector_Intrinsics_vec256 v11 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v02, 3U); r31[0U] = v11; uint32_t a0 = 0U; uint32_t b = 1U; uint32_t c = 2U; uint32_t d1 = 3U; Lib_IntVector_Intrinsics_vec256 *wv_a = wv + a0 * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b8 = wv + b * 1U; wv_a[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a[0U], wv_b8[0U]); wv_a[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a[0U], z[0U]); Lib_IntVector_Intrinsics_vec256 *wv_a8 = wv + d1 * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b9 = wv + a0 * 1U; wv_a8[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a8[0U], wv_b9[0U]); wv_a8[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a8[0U], 32U); Lib_IntVector_Intrinsics_vec256 *wv_a9 = wv + c * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b10 = wv + d1 * 1U; wv_a9[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a9[0U], wv_b10[0U]); Lib_IntVector_Intrinsics_vec256 *wv_a10 = wv + b * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b11 = wv + c * 1U; wv_a10[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a10[0U], wv_b11[0U]); wv_a10[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a10[0U], 24U); Lib_IntVector_Intrinsics_vec256 *wv_a11 = wv + a0 * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b12 = wv + b * 1U; wv_a11[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a11[0U], wv_b12[0U]); wv_a11[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a11[0U], w[0U]); Lib_IntVector_Intrinsics_vec256 *wv_a12 = wv + d1 * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b13 = wv + a0 * 1U; wv_a12[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a12[0U], wv_b13[0U]); wv_a12[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a12[0U], 16U); Lib_IntVector_Intrinsics_vec256 *wv_a13 = wv + c * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b14 = wv + d1 * 1U; wv_a13[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a13[0U], wv_b14[0U]); Lib_IntVector_Intrinsics_vec256 *wv_a14 = wv + b * 1U; Lib_IntVector_Intrinsics_vec256 *wv_b = wv + c * 1U; wv_a14[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a14[0U], wv_b[0U]); wv_a14[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a14[0U], 63U); Lib_IntVector_Intrinsics_vec256 *r11 = wv + 1U; Lib_IntVector_Intrinsics_vec256 *r2 = wv + 2U; Lib_IntVector_Intrinsics_vec256 *r3 = wv + 3U; Lib_IntVector_Intrinsics_vec256 v0 = r11[0U]; Lib_IntVector_Intrinsics_vec256 v12 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v0, 3U); r11[0U] = v12; Lib_IntVector_Intrinsics_vec256 v03 = r2[0U]; Lib_IntVector_Intrinsics_vec256 v13 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v03, 2U); r2[0U] = v13; Lib_IntVector_Intrinsics_vec256 v04 = r3[0U]; Lib_IntVector_Intrinsics_vec256 v14 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v04, 1U); r3[0U] = v14;); Lib_IntVector_Intrinsics_vec256 *s0 = hash; Lib_IntVector_Intrinsics_vec256 *s1 = hash + 1U; Lib_IntVector_Intrinsics_vec256 *r0 = wv; Lib_IntVector_Intrinsics_vec256 *r1 = wv + 1U; Lib_IntVector_Intrinsics_vec256 *r2 = wv + 2U; Lib_IntVector_Intrinsics_vec256 *r3 = wv + 3U; s0[0U] = Lib_IntVector_Intrinsics_vec256_xor(s0[0U], r0[0U]); s0[0U] = Lib_IntVector_Intrinsics_vec256_xor(s0[0U], r2[0U]); s1[0U] = Lib_IntVector_Intrinsics_vec256_xor(s1[0U], r1[0U]); s1[0U] = Lib_IntVector_Intrinsics_vec256_xor(s1[0U], r3[0U]); } void Hacl_Hash_Blake2b_Simd256_init(Lib_IntVector_Intrinsics_vec256 *hash, uint32_t kk, uint32_t nn) { uint8_t salt[16U] = { 0U }; uint8_t personal[16U] = { 0U }; Hacl_Hash_Blake2b_blake2_params p = { .digest_length = 64U, .key_length = 0U, .fanout = 1U, .depth = 1U, .leaf_length = 0U, .node_offset = 0ULL, .node_depth = 0U, .inner_length = 0U, .salt = salt, .personal = personal }; uint64_t tmp[8U] = { 0U }; Lib_IntVector_Intrinsics_vec256 *r0 = hash; Lib_IntVector_Intrinsics_vec256 *r1 = hash + 1U; Lib_IntVector_Intrinsics_vec256 *r2 = hash + 2U; Lib_IntVector_Intrinsics_vec256 *r3 = hash + 3U; uint64_t iv0 = Hacl_Hash_Blake2b_ivTable_B[0U]; uint64_t iv1 = Hacl_Hash_Blake2b_ivTable_B[1U]; uint64_t iv2 = Hacl_Hash_Blake2b_ivTable_B[2U]; uint64_t iv3 = Hacl_Hash_Blake2b_ivTable_B[3U]; uint64_t iv4 = Hacl_Hash_Blake2b_ivTable_B[4U]; uint64_t iv5 = Hacl_Hash_Blake2b_ivTable_B[5U]; uint64_t iv6 = Hacl_Hash_Blake2b_ivTable_B[6U]; uint64_t iv7 = Hacl_Hash_Blake2b_ivTable_B[7U]; r2[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0, iv1, iv2, iv3); r3[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4, iv5, iv6, iv7); uint8_t kk1 = (uint8_t)kk; uint8_t nn1 = (uint8_t)nn; KRML_MAYBE_FOR2(i, 0U, 2U, 1U, uint64_t *os = tmp + 4U; uint8_t *bj = p.salt + i * 8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); KRML_MAYBE_FOR2(i, 0U, 2U, 1U, uint64_t *os = tmp + 6U; uint8_t *bj = p.personal + i * 8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); tmp[0U] = (uint64_t)nn1 ^ ((uint64_t)kk1 << 8U ^ ((uint64_t)p.fanout << 16U ^ ((uint64_t)p.depth << 24U ^ (uint64_t)p.leaf_length << 32U))); tmp[1U] = p.node_offset; tmp[2U] = (uint64_t)p.node_depth ^ (uint64_t)p.inner_length << 8U; tmp[3U] = 0ULL; uint64_t tmp0 = tmp[0U]; uint64_t tmp1 = tmp[1U]; uint64_t tmp2 = tmp[2U]; uint64_t tmp3 = tmp[3U]; uint64_t tmp4 = tmp[4U]; uint64_t tmp5 = tmp[5U]; uint64_t tmp6 = tmp[6U]; uint64_t tmp7 = tmp[7U]; uint64_t iv0_ = iv0 ^ tmp0; uint64_t iv1_ = iv1 ^ tmp1; uint64_t iv2_ = iv2 ^ tmp2; uint64_t iv3_ = iv3 ^ tmp3; uint64_t iv4_ = iv4 ^ tmp4; uint64_t iv5_ = iv5 ^ tmp5; uint64_t iv6_ = iv6 ^ tmp6; uint64_t iv7_ = iv7 ^ tmp7; r0[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0_, iv1_, iv2_, iv3_); r1[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4_, iv5_, iv6_, iv7_); } static void init_with_params(Lib_IntVector_Intrinsics_vec256 *hash, Hacl_Hash_Blake2b_blake2_params p) { uint64_t tmp[8U] = { 0U }; Lib_IntVector_Intrinsics_vec256 *r0 = hash; Lib_IntVector_Intrinsics_vec256 *r1 = hash + 1U; Lib_IntVector_Intrinsics_vec256 *r2 = hash + 2U; Lib_IntVector_Intrinsics_vec256 *r3 = hash + 3U; uint64_t iv0 = Hacl_Hash_Blake2b_ivTable_B[0U]; uint64_t iv1 = Hacl_Hash_Blake2b_ivTable_B[1U]; uint64_t iv2 = Hacl_Hash_Blake2b_ivTable_B[2U]; uint64_t iv3 = Hacl_Hash_Blake2b_ivTable_B[3U]; uint64_t iv4 = Hacl_Hash_Blake2b_ivTable_B[4U]; uint64_t iv5 = Hacl_Hash_Blake2b_ivTable_B[5U]; uint64_t iv6 = Hacl_Hash_Blake2b_ivTable_B[6U]; uint64_t iv7 = Hacl_Hash_Blake2b_ivTable_B[7U]; r2[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0, iv1, iv2, iv3); r3[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4, iv5, iv6, iv7); uint8_t kk = p.key_length; uint8_t nn = p.digest_length; KRML_MAYBE_FOR2(i, 0U, 2U, 1U, uint64_t *os = tmp + 4U; uint8_t *bj = p.salt + i * 8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); KRML_MAYBE_FOR2(i, 0U, 2U, 1U, uint64_t *os = tmp + 6U; uint8_t *bj = p.personal + i * 8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); tmp[0U] = (uint64_t)nn ^ ((uint64_t)kk << 8U ^ ((uint64_t)p.fanout << 16U ^ ((uint64_t)p.depth << 24U ^ (uint64_t)p.leaf_length << 32U))); tmp[1U] = p.node_offset; tmp[2U] = (uint64_t)p.node_depth ^ (uint64_t)p.inner_length << 8U; tmp[3U] = 0ULL; uint64_t tmp0 = tmp[0U]; uint64_t tmp1 = tmp[1U]; uint64_t tmp2 = tmp[2U]; uint64_t tmp3 = tmp[3U]; uint64_t tmp4 = tmp[4U]; uint64_t tmp5 = tmp[5U]; uint64_t tmp6 = tmp[6U]; uint64_t tmp7 = tmp[7U]; uint64_t iv0_ = iv0 ^ tmp0; uint64_t iv1_ = iv1 ^ tmp1; uint64_t iv2_ = iv2 ^ tmp2; uint64_t iv3_ = iv3 ^ tmp3; uint64_t iv4_ = iv4 ^ tmp4; uint64_t iv5_ = iv5 ^ tmp5; uint64_t iv6_ = iv6 ^ tmp6; uint64_t iv7_ = iv7 ^ tmp7; r0[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0_, iv1_, iv2_, iv3_); r1[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4_, iv5_, iv6_, iv7_); } static void update_key( Lib_IntVector_Intrinsics_vec256 *wv, Lib_IntVector_Intrinsics_vec256 *hash, uint32_t kk, uint8_t *k, uint32_t ll ) { FStar_UInt128_uint128 lb = FStar_UInt128_uint64_to_uint128((uint64_t)128U); uint8_t b[128U] = { 0U }; memcpy(b, k, kk * sizeof (uint8_t)); if (ll == 0U) { update_block(wv, hash, true, false, lb, b); } else { update_block(wv, hash, false, false, lb, b); } Lib_Memzero0_memzero(b, 128U, uint8_t, void *); } void Hacl_Hash_Blake2b_Simd256_update_multi( uint32_t len, Lib_IntVector_Intrinsics_vec256 *wv, Lib_IntVector_Intrinsics_vec256 *hash, FStar_UInt128_uint128 prev, uint8_t *blocks, uint32_t nb ) { KRML_MAYBE_UNUSED_VAR(len); for (uint32_t i = 0U; i < nb; i++) { FStar_UInt128_uint128 totlen = FStar_UInt128_add_mod(prev, FStar_UInt128_uint64_to_uint128((uint64_t)((i + 1U) * 128U))); uint8_t *b = blocks + i * 128U; update_block(wv, hash, false, false, totlen, b); } } void Hacl_Hash_Blake2b_Simd256_update_last( uint32_t len, Lib_IntVector_Intrinsics_vec256 *wv, Lib_IntVector_Intrinsics_vec256 *hash, bool last_node, FStar_UInt128_uint128 prev, uint32_t rem, uint8_t *d ) { uint8_t b[128U] = { 0U }; uint8_t *last = d + len - rem; memcpy(b, last, rem * sizeof (uint8_t)); FStar_UInt128_uint128 totlen = FStar_UInt128_add_mod(prev, FStar_UInt128_uint64_to_uint128((uint64_t)len)); update_block(wv, hash, true, last_node, totlen, b); Lib_Memzero0_memzero(b, 128U, uint8_t, void *); } static inline void update_blocks( uint32_t len, Lib_IntVector_Intrinsics_vec256 *wv, Lib_IntVector_Intrinsics_vec256 *hash, FStar_UInt128_uint128 prev, uint8_t *blocks ) { uint32_t nb0 = len / 128U; uint32_t rem0 = len % 128U; uint32_t nb; if (rem0 == 0U && nb0 > 0U) { nb = nb0 - 1U; } else { nb = nb0; } uint32_t rem; if (rem0 == 0U && nb0 > 0U) { rem = 128U; } else { rem = rem0; } Hacl_Hash_Blake2b_Simd256_update_multi(len, wv, hash, prev, blocks, nb); Hacl_Hash_Blake2b_Simd256_update_last(len, wv, hash, false, prev, rem, blocks); } static inline void update( Lib_IntVector_Intrinsics_vec256 *wv, Lib_IntVector_Intrinsics_vec256 *hash, uint32_t kk, uint8_t *k, uint32_t ll, uint8_t *d ) { FStar_UInt128_uint128 lb = FStar_UInt128_uint64_to_uint128((uint64_t)128U); if (kk > 0U) { update_key(wv, hash, kk, k, ll); if (!(ll == 0U)) { update_blocks(ll, wv, hash, lb, d); return; } return; } update_blocks(ll, wv, hash, FStar_UInt128_uint64_to_uint128((uint64_t)0U), d); } void Hacl_Hash_Blake2b_Simd256_finish( uint32_t nn, uint8_t *output, Lib_IntVector_Intrinsics_vec256 *hash ) { uint8_t b[64U] = { 0U }; uint8_t *first = b; uint8_t *second = b + 32U; Lib_IntVector_Intrinsics_vec256 *row0 = hash; Lib_IntVector_Intrinsics_vec256 *row1 = hash + 1U; Lib_IntVector_Intrinsics_vec256_store64_le(first, row0[0U]); Lib_IntVector_Intrinsics_vec256_store64_le(second, row1[0U]); uint8_t *final = b; memcpy(output, final, nn * sizeof (uint8_t)); Lib_Memzero0_memzero(b, 64U, uint8_t, void *); } void Hacl_Hash_Blake2b_Simd256_load_state256b_from_state32( Lib_IntVector_Intrinsics_vec256 *st, uint64_t *st32 ) { Lib_IntVector_Intrinsics_vec256 *r0 = st; Lib_IntVector_Intrinsics_vec256 *r1 = st + 1U; Lib_IntVector_Intrinsics_vec256 *r2 = st + 2U; Lib_IntVector_Intrinsics_vec256 *r3 = st + 3U; uint64_t *b0 = st32; uint64_t *b1 = st32 + 4U; uint64_t *b2 = st32 + 8U; uint64_t *b3 = st32 + 12U; r0[0U] = Lib_IntVector_Intrinsics_vec256_load64s(b0[0U], b0[1U], b0[2U], b0[3U]); r1[0U] = Lib_IntVector_Intrinsics_vec256_load64s(b1[0U], b1[1U], b1[2U], b1[3U]); r2[0U] = Lib_IntVector_Intrinsics_vec256_load64s(b2[0U], b2[1U], b2[2U], b2[3U]); r3[0U] = Lib_IntVector_Intrinsics_vec256_load64s(b3[0U], b3[1U], b3[2U], b3[3U]); } void Hacl_Hash_Blake2b_Simd256_store_state256b_to_state32( uint64_t *st32, Lib_IntVector_Intrinsics_vec256 *st ) { Lib_IntVector_Intrinsics_vec256 *r0 = st; Lib_IntVector_Intrinsics_vec256 *r1 = st + 1U; Lib_IntVector_Intrinsics_vec256 *r2 = st + 2U; Lib_IntVector_Intrinsics_vec256 *r3 = st + 3U; uint64_t *b0 = st32; uint64_t *b1 = st32 + 4U; uint64_t *b2 = st32 + 8U; uint64_t *b3 = st32 + 12U; uint8_t b8[32U] = { 0U }; Lib_IntVector_Intrinsics_vec256_store64_le(b8, r0[0U]); KRML_MAYBE_FOR4(i, 0U, 4U, 1U, uint64_t *os = b0; uint8_t *bj = b8 + i * 8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); uint8_t b80[32U] = { 0U }; Lib_IntVector_Intrinsics_vec256_store64_le(b80, r1[0U]); KRML_MAYBE_FOR4(i, 0U, 4U, 1U, uint64_t *os = b1; uint8_t *bj = b80 + i * 8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); uint8_t b81[32U] = { 0U }; Lib_IntVector_Intrinsics_vec256_store64_le(b81, r2[0U]); KRML_MAYBE_FOR4(i, 0U, 4U, 1U, uint64_t *os = b2; uint8_t *bj = b81 + i * 8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); uint8_t b82[32U] = { 0U }; Lib_IntVector_Intrinsics_vec256_store64_le(b82, r3[0U]); KRML_MAYBE_FOR4(i, 0U, 4U, 1U, uint64_t *os = b3; uint8_t *bj = b82 + i * 8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); } Lib_IntVector_Intrinsics_vec256 *Hacl_Hash_Blake2b_Simd256_malloc_with_key(void) { Lib_IntVector_Intrinsics_vec256 *buf = (Lib_IntVector_Intrinsics_vec256 *)KRML_ALIGNED_MALLOC(32, sizeof (Lib_IntVector_Intrinsics_vec256) * 4U); memset(buf, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec256)); return buf; } static Hacl_Hash_Blake2b_Simd256_state_t *malloc_raw(Hacl_Hash_Blake2b_index kk, Hacl_Hash_Blake2b_params_and_key key) { uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(128U, sizeof (uint8_t)); Lib_IntVector_Intrinsics_vec256 *wv = (Lib_IntVector_Intrinsics_vec256 *)KRML_ALIGNED_MALLOC(32, sizeof (Lib_IntVector_Intrinsics_vec256) * 4U); memset(wv, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec256)); Lib_IntVector_Intrinsics_vec256 *b = (Lib_IntVector_Intrinsics_vec256 *)KRML_ALIGNED_MALLOC(32, sizeof (Lib_IntVector_Intrinsics_vec256) * 4U); memset(b, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec256)); Hacl_Hash_Blake2b_Simd256_block_state_t block_state = { .fst = kk.key_length, .snd = kk.digest_length, .thd = kk.last_node, .f3 = { .fst = wv, .snd = b } }; uint8_t kk10 = kk.key_length; uint32_t ite; if (kk10 != 0U) { ite = 128U; } else { ite = 0U; } Hacl_Hash_Blake2b_Simd256_state_t s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)ite }; Hacl_Hash_Blake2b_Simd256_state_t *p = (Hacl_Hash_Blake2b_Simd256_state_t *)KRML_HOST_MALLOC(sizeof ( Hacl_Hash_Blake2b_Simd256_state_t )); p[0U] = s; Hacl_Hash_Blake2b_blake2_params *p1 = key.fst; uint8_t kk1 = p1->key_length; uint8_t nn = p1->digest_length; bool last_node = block_state.thd; Hacl_Hash_Blake2b_index i = { .key_length = kk1, .digest_length = nn, .last_node = last_node }; uint32_t kk2 = (uint32_t)i.key_length; uint8_t *k_1 = key.snd; if (!(kk2 == 0U)) { uint8_t *sub_b = buf + kk2; memset(sub_b, 0U, (128U - kk2) * sizeof (uint8_t)); memcpy(buf, k_1, kk2 * sizeof (uint8_t)); } Hacl_Hash_Blake2b_blake2_params pv = p1[0U]; init_with_params(block_state.f3.snd, pv); return p; } /** General-purpose allocation function that gives control over all Blake2 parameters, including the key. Further resettings of the state SHALL be done with `reset_with_params_and_key`, and SHALL feature the exact same values for the `key_length` and `digest_length` fields as passed here. In other words, once you commit to a digest and key length, the only way to change these parameters is to allocate a new object. The caller must satisfy the following requirements. - The length of the key k MUST match the value of the field key_length in the parameters. - The key_length must not exceed 256 for S, 64 for B. - The digest_length must not exceed 256 for S, 64 for B. */ Hacl_Hash_Blake2b_Simd256_state_t *Hacl_Hash_Blake2b_Simd256_malloc_with_params_and_key( Hacl_Hash_Blake2b_blake2_params *p, bool last_node, uint8_t *k ) { Hacl_Hash_Blake2b_blake2_params pv = p[0U]; Hacl_Hash_Blake2b_index i1 = { .key_length = pv.key_length, .digest_length = pv.digest_length, .last_node = last_node }; return malloc_raw(i1, ((Hacl_Hash_Blake2b_params_and_key){ .fst = p, .snd = k })); } /** Specialized allocation function that picks default values for all parameters, except for the key_length. Further resettings of the state SHALL be done with `reset_with_key`, and SHALL feature the exact same key length `kk` as passed here. In other words, once you commit to a key length, the only way to change this parameter is to allocate a new object. The caller must satisfy the following requirements. - The key_length must not exceed 256 for S, 64 for B. */ Hacl_Hash_Blake2b_Simd256_state_t *Hacl_Hash_Blake2b_Simd256_malloc_with_key0(uint8_t *k, uint8_t kk) { uint8_t nn = 64U; Hacl_Hash_Blake2b_index i = { .key_length = kk, .digest_length = nn, .last_node = false }; uint8_t salt[16U] = { 0U }; uint8_t personal[16U] = { 0U }; Hacl_Hash_Blake2b_blake2_params p = { .digest_length = i.digest_length, .key_length = i.key_length, .fanout = 1U, .depth = 1U, .leaf_length = 0U, .node_offset = 0ULL, .node_depth = 0U, .inner_length = 0U, .salt = salt, .personal = personal }; Hacl_Hash_Blake2b_blake2_params p0 = p; Hacl_Hash_Blake2b_Simd256_state_t *s = Hacl_Hash_Blake2b_Simd256_malloc_with_params_and_key(&p0, false, k); return s; } /** Specialized allocation function that picks default values for all parameters, and has no key. Effectively, this is what you want if you intend to use Blake2 as a hash function. Further resettings of the state SHALL be done with `reset`. */ Hacl_Hash_Blake2b_Simd256_state_t *Hacl_Hash_Blake2b_Simd256_malloc(void) { return Hacl_Hash_Blake2b_Simd256_malloc_with_key0(NULL, 0U); } static Hacl_Hash_Blake2b_index index_of_state(Hacl_Hash_Blake2b_Simd256_state_t *s) { Hacl_Hash_Blake2b_Simd256_block_state_t block_state = (*s).block_state; bool last_node = block_state.thd; uint8_t nn = block_state.snd; uint8_t kk1 = block_state.fst; return ((Hacl_Hash_Blake2b_index){ .key_length = kk1, .digest_length = nn, .last_node = last_node }); } static void reset_raw(Hacl_Hash_Blake2b_Simd256_state_t *state, Hacl_Hash_Blake2b_params_and_key key) { Hacl_Hash_Blake2b_Simd256_state_t scrut = *state; uint8_t *buf = scrut.buf; Hacl_Hash_Blake2b_Simd256_block_state_t block_state = scrut.block_state; bool last_node0 = block_state.thd; uint8_t nn0 = block_state.snd; uint8_t kk10 = block_state.fst; Hacl_Hash_Blake2b_index i = { .key_length = kk10, .digest_length = nn0, .last_node = last_node0 }; KRML_MAYBE_UNUSED_VAR(i); Hacl_Hash_Blake2b_blake2_params *p = key.fst; uint8_t kk1 = p->key_length; uint8_t nn = p->digest_length; bool last_node = block_state.thd; Hacl_Hash_Blake2b_index i1 = { .key_length = kk1, .digest_length = nn, .last_node = last_node }; uint32_t kk2 = (uint32_t)i1.key_length; uint8_t *k_1 = key.snd; if (!(kk2 == 0U)) { uint8_t *sub_b = buf + kk2; memset(sub_b, 0U, (128U - kk2) * sizeof (uint8_t)); memcpy(buf, k_1, kk2 * sizeof (uint8_t)); } Hacl_Hash_Blake2b_blake2_params pv = p[0U]; init_with_params(block_state.f3.snd, pv); uint8_t kk11 = i.key_length; uint32_t ite; if (kk11 != 0U) { ite = 128U; } else { ite = 0U; } Hacl_Hash_Blake2b_Simd256_state_t tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)ite }; state[0U] = tmp; } /** General-purpose re-initialization function with parameters and key. You cannot change digest_length, key_length, or last_node, meaning those values in the parameters object must be the same as originally decided via one of the malloc functions. All other values of the parameter can be changed. The behavior is unspecified if you violate this precondition. */ void Hacl_Hash_Blake2b_Simd256_reset_with_key_and_params( Hacl_Hash_Blake2b_Simd256_state_t *s, Hacl_Hash_Blake2b_blake2_params *p, uint8_t *k ) { index_of_state(s); reset_raw(s, ((Hacl_Hash_Blake2b_params_and_key){ .fst = p, .snd = k })); } /** Specialized-purpose re-initialization function with no parameters, and a key. The key length must be the same as originally decided via your choice of malloc function. All other parameters are reset to their default values. The original call to malloc MUST have set digest_length to the default value. The behavior is unspecified if you violate this precondition. */ void Hacl_Hash_Blake2b_Simd256_reset_with_key(Hacl_Hash_Blake2b_Simd256_state_t *s, uint8_t *k) { Hacl_Hash_Blake2b_index idx = index_of_state(s); uint8_t salt[16U] = { 0U }; uint8_t personal[16U] = { 0U }; Hacl_Hash_Blake2b_blake2_params p = { .digest_length = idx.digest_length, .key_length = idx.key_length, .fanout = 1U, .depth = 1U, .leaf_length = 0U, .node_offset = 0ULL, .node_depth = 0U, .inner_length = 0U, .salt = salt, .personal = personal }; Hacl_Hash_Blake2b_blake2_params p0 = p; reset_raw(s, ((Hacl_Hash_Blake2b_params_and_key){ .fst = &p0, .snd = k })); } /** Specialized-purpose re-initialization function with no parameters and no key. This is what you want if you intend to use Blake2 as a hash function. The key length and digest length must have been set to their respective default values via your choice of malloc function (always true if you used `malloc`). All other parameters are reset to their default values. The behavior is unspecified if you violate this precondition. */ void Hacl_Hash_Blake2b_Simd256_reset(Hacl_Hash_Blake2b_Simd256_state_t *s) { Hacl_Hash_Blake2b_Simd256_reset_with_key(s, NULL); } /** Update function; 0 = success, 1 = max length exceeded */ Hacl_Streaming_Types_error_code Hacl_Hash_Blake2b_Simd256_update( Hacl_Hash_Blake2b_Simd256_state_t *state, uint8_t *chunk, uint32_t chunk_len ) { Hacl_Hash_Blake2b_Simd256_state_t s = *state; uint64_t total_len = s.total_len; if ((uint64_t)chunk_len > 0xffffffffffffffffULL - total_len) { return Hacl_Streaming_Types_MaximumLengthExceeded; } uint32_t sz; if (total_len % (uint64_t)128U == 0ULL && total_len > 0ULL) { sz = 128U; } else { sz = (uint32_t)(total_len % (uint64_t)128U); } if (chunk_len <= 128U - sz) { Hacl_Hash_Blake2b_Simd256_state_t s1 = *state; Hacl_Hash_Blake2b_Simd256_block_state_t block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)128U == 0ULL && total_len1 > 0ULL) { sz1 = 128U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)128U); } uint8_t *buf2 = buf + sz1; memcpy(buf2, chunk, chunk_len * sizeof (uint8_t)); uint64_t total_len2 = total_len1 + (uint64_t)chunk_len; *state = ( (Hacl_Hash_Blake2b_Simd256_state_t){ .block_state = block_state1, .buf = buf, .total_len = total_len2 } ); } else if (sz == 0U) { Hacl_Hash_Blake2b_Simd256_state_t s1 = *state; Hacl_Hash_Blake2b_Simd256_block_state_t block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)128U == 0ULL && total_len1 > 0ULL) { sz1 = 128U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)128U); } if (!(sz1 == 0U)) { uint64_t prevlen = total_len1 - (uint64_t)sz1; K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_ acc = block_state1.f3; Lib_IntVector_Intrinsics_vec256 *wv = acc.fst; Lib_IntVector_Intrinsics_vec256 *hash = acc.snd; uint32_t nb = 1U; Hacl_Hash_Blake2b_Simd256_update_multi(128U, wv, hash, FStar_UInt128_uint64_to_uint128(prevlen), buf, nb); } uint32_t ite; if ((uint64_t)chunk_len % (uint64_t)128U == 0ULL && (uint64_t)chunk_len > 0ULL) { ite = 128U; } else { ite = (uint32_t)((uint64_t)chunk_len % (uint64_t)128U); } uint32_t n_blocks = (chunk_len - ite) / 128U; uint32_t data1_len = n_blocks * 128U; uint32_t data2_len = chunk_len - data1_len; uint8_t *data1 = chunk; uint8_t *data2 = chunk + data1_len; K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_ acc = block_state1.f3; Lib_IntVector_Intrinsics_vec256 *wv = acc.fst; Lib_IntVector_Intrinsics_vec256 *hash = acc.snd; uint32_t nb = data1_len / 128U; Hacl_Hash_Blake2b_Simd256_update_multi(data1_len, wv, hash, FStar_UInt128_uint64_to_uint128(total_len1), data1, nb); uint8_t *dst = buf; memcpy(dst, data2, data2_len * sizeof (uint8_t)); *state = ( (Hacl_Hash_Blake2b_Simd256_state_t){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)chunk_len } ); } else { uint32_t diff = 128U - sz; uint8_t *chunk1 = chunk; uint8_t *chunk2 = chunk + diff; Hacl_Hash_Blake2b_Simd256_state_t s1 = *state; Hacl_Hash_Blake2b_Simd256_block_state_t block_state10 = s1.block_state; uint8_t *buf0 = s1.buf; uint64_t total_len10 = s1.total_len; uint32_t sz10; if (total_len10 % (uint64_t)128U == 0ULL && total_len10 > 0ULL) { sz10 = 128U; } else { sz10 = (uint32_t)(total_len10 % (uint64_t)128U); } uint8_t *buf2 = buf0 + sz10; memcpy(buf2, chunk1, diff * sizeof (uint8_t)); uint64_t total_len2 = total_len10 + (uint64_t)diff; *state = ( (Hacl_Hash_Blake2b_Simd256_state_t){ .block_state = block_state10, .buf = buf0, .total_len = total_len2 } ); Hacl_Hash_Blake2b_Simd256_state_t s10 = *state; Hacl_Hash_Blake2b_Simd256_block_state_t block_state1 = s10.block_state; uint8_t *buf = s10.buf; uint64_t total_len1 = s10.total_len; uint32_t sz1; if (total_len1 % (uint64_t)128U == 0ULL && total_len1 > 0ULL) { sz1 = 128U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)128U); } if (!(sz1 == 0U)) { uint64_t prevlen = total_len1 - (uint64_t)sz1; K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_ acc = block_state1.f3; Lib_IntVector_Intrinsics_vec256 *wv = acc.fst; Lib_IntVector_Intrinsics_vec256 *hash = acc.snd; uint32_t nb = 1U; Hacl_Hash_Blake2b_Simd256_update_multi(128U, wv, hash, FStar_UInt128_uint64_to_uint128(prevlen), buf, nb); } uint32_t ite; if ((uint64_t)(chunk_len - diff) % (uint64_t)128U == 0ULL && (uint64_t)(chunk_len - diff) > 0ULL) { ite = 128U; } else { ite = (uint32_t)((uint64_t)(chunk_len - diff) % (uint64_t)128U); } uint32_t n_blocks = (chunk_len - diff - ite) / 128U; uint32_t data1_len = n_blocks * 128U; uint32_t data2_len = chunk_len - diff - data1_len; uint8_t *data1 = chunk2; uint8_t *data2 = chunk2 + data1_len; K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_ acc = block_state1.f3; Lib_IntVector_Intrinsics_vec256 *wv = acc.fst; Lib_IntVector_Intrinsics_vec256 *hash = acc.snd; uint32_t nb = data1_len / 128U; Hacl_Hash_Blake2b_Simd256_update_multi(data1_len, wv, hash, FStar_UInt128_uint64_to_uint128(total_len1), data1, nb); uint8_t *dst = buf; memcpy(dst, data2, data2_len * sizeof (uint8_t)); *state = ( (Hacl_Hash_Blake2b_Simd256_state_t){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)(chunk_len - diff) } ); } return Hacl_Streaming_Types_Success; } /** Digest function. This function expects the `output` array to hold at least `digest_length` bytes, where `digest_length` was determined by your choice of `malloc` function. Concretely, if you used `malloc` or `malloc_with_key`, then the expected length is 256 for S, or 64 for B (default digest length). If you used `malloc_with_params_and_key`, then the expected length is whatever you chose for the `digest_length` field of your parameters. For convenience, this function returns `digest_length`. When in doubt, callers can pass an array of size HACL_BLAKE2B_256_OUT_BYTES, then use the return value to see how many bytes were actually written. */ uint8_t Hacl_Hash_Blake2b_Simd256_digest(Hacl_Hash_Blake2b_Simd256_state_t *s, uint8_t *dst) { Hacl_Hash_Blake2b_Simd256_block_state_t block_state0 = (*s).block_state; bool last_node0 = block_state0.thd; uint8_t nn0 = block_state0.snd; uint8_t kk0 = block_state0.fst; Hacl_Hash_Blake2b_index i1 = { .key_length = kk0, .digest_length = nn0, .last_node = last_node0 }; Hacl_Hash_Blake2b_Simd256_state_t scrut = *s; Hacl_Hash_Blake2b_Simd256_block_state_t block_state = scrut.block_state; uint8_t *buf_ = scrut.buf; uint64_t total_len = scrut.total_len; uint32_t r; if (total_len % (uint64_t)128U == 0ULL && total_len > 0ULL) { r = 128U; } else { r = (uint32_t)(total_len % (uint64_t)128U); } uint8_t *buf_1 = buf_; KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 wv0[4U] KRML_POST_ALIGN(32) = { 0U }; KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 b[4U] KRML_POST_ALIGN(32) = { 0U }; Hacl_Hash_Blake2b_Simd256_block_state_t tmp_block_state = { .fst = i1.key_length, .snd = i1.digest_length, .thd = i1.last_node, .f3 = { .fst = wv0, .snd = b } }; Lib_IntVector_Intrinsics_vec256 *src_b = block_state.f3.snd; Lib_IntVector_Intrinsics_vec256 *dst_b = tmp_block_state.f3.snd; memcpy(dst_b, src_b, 4U * sizeof (Lib_IntVector_Intrinsics_vec256)); uint64_t prev_len = total_len - (uint64_t)r; uint32_t ite; if (r % 128U == 0U && r > 0U) { ite = 128U; } else { ite = r % 128U; } uint8_t *buf_last = buf_1 + r - ite; uint8_t *buf_multi = buf_1; K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_ acc0 = tmp_block_state.f3; Lib_IntVector_Intrinsics_vec256 *wv1 = acc0.fst; Lib_IntVector_Intrinsics_vec256 *hash0 = acc0.snd; uint32_t nb = 0U; Hacl_Hash_Blake2b_Simd256_update_multi(0U, wv1, hash0, FStar_UInt128_uint64_to_uint128(prev_len), buf_multi, nb); uint64_t prev_len_last = total_len - (uint64_t)r; K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_ acc = tmp_block_state.f3; bool last_node1 = tmp_block_state.thd; Lib_IntVector_Intrinsics_vec256 *wv = acc.fst; Lib_IntVector_Intrinsics_vec256 *hash = acc.snd; Hacl_Hash_Blake2b_Simd256_update_last(r, wv, hash, last_node1, FStar_UInt128_uint64_to_uint128(prev_len_last), r, buf_last); uint8_t nn1 = tmp_block_state.snd; Hacl_Hash_Blake2b_Simd256_finish((uint32_t)nn1, dst, tmp_block_state.f3.snd); Hacl_Hash_Blake2b_Simd256_block_state_t block_state1 = (*s).block_state; bool last_node = block_state1.thd; uint8_t nn = block_state1.snd; uint8_t kk = block_state1.fst; return ((Hacl_Hash_Blake2b_index){ .key_length = kk, .digest_length = nn, .last_node = last_node }).digest_length; } Hacl_Hash_Blake2b_index Hacl_Hash_Blake2b_Simd256_info(Hacl_Hash_Blake2b_Simd256_state_t *s) { Hacl_Hash_Blake2b_Simd256_block_state_t block_state = (*s).block_state; bool last_node = block_state.thd; uint8_t nn = block_state.snd; uint8_t kk = block_state.fst; return ((Hacl_Hash_Blake2b_index){ .key_length = kk, .digest_length = nn, .last_node = last_node }); } /** Free state function when there is no key */ void Hacl_Hash_Blake2b_Simd256_free(Hacl_Hash_Blake2b_Simd256_state_t *state) { Hacl_Hash_Blake2b_Simd256_state_t scrut = *state; uint8_t *buf = scrut.buf; Hacl_Hash_Blake2b_Simd256_block_state_t block_state = scrut.block_state; Lib_IntVector_Intrinsics_vec256 *b = block_state.f3.snd; Lib_IntVector_Intrinsics_vec256 *wv = block_state.f3.fst; KRML_ALIGNED_FREE(wv); KRML_ALIGNED_FREE(b); KRML_HOST_FREE(buf); KRML_HOST_FREE(state); } /** Copying. This preserves all parameters. */ Hacl_Hash_Blake2b_Simd256_state_t *Hacl_Hash_Blake2b_Simd256_copy(Hacl_Hash_Blake2b_Simd256_state_t *state) { Hacl_Hash_Blake2b_Simd256_state_t scrut = *state; Hacl_Hash_Blake2b_Simd256_block_state_t block_state0 = scrut.block_state; uint8_t *buf0 = scrut.buf; uint64_t total_len0 = scrut.total_len; bool last_node = block_state0.thd; uint8_t nn = block_state0.snd; uint8_t kk1 = block_state0.fst; Hacl_Hash_Blake2b_index i = { .key_length = kk1, .digest_length = nn, .last_node = last_node }; uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(128U, sizeof (uint8_t)); memcpy(buf, buf0, 128U * sizeof (uint8_t)); Lib_IntVector_Intrinsics_vec256 *wv = (Lib_IntVector_Intrinsics_vec256 *)KRML_ALIGNED_MALLOC(32, sizeof (Lib_IntVector_Intrinsics_vec256) * 4U); memset(wv, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec256)); Lib_IntVector_Intrinsics_vec256 *b = (Lib_IntVector_Intrinsics_vec256 *)KRML_ALIGNED_MALLOC(32, sizeof (Lib_IntVector_Intrinsics_vec256) * 4U); memset(b, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec256)); Hacl_Hash_Blake2b_Simd256_block_state_t block_state = { .fst = i.key_length, .snd = i.digest_length, .thd = i.last_node, .f3 = { .fst = wv, .snd = b } }; Lib_IntVector_Intrinsics_vec256 *src_b = block_state0.f3.snd; Lib_IntVector_Intrinsics_vec256 *dst_b = block_state.f3.snd; memcpy(dst_b, src_b, 4U * sizeof (Lib_IntVector_Intrinsics_vec256)); Hacl_Hash_Blake2b_Simd256_state_t s = { .block_state = block_state, .buf = buf, .total_len = total_len0 }; Hacl_Hash_Blake2b_Simd256_state_t *p = (Hacl_Hash_Blake2b_Simd256_state_t *)KRML_HOST_MALLOC(sizeof ( Hacl_Hash_Blake2b_Simd256_state_t )); p[0U] = s; return p; } /** Write the BLAKE2b digest of message `input` using key `key` into `output`. @param output Pointer to `output_len` bytes of memory where the digest is written to. @param output_len Length of the to-be-generated digest with 1 <= `output_len` <= 64. @param input Pointer to `input_len` bytes of memory where the input message is read from. @param input_len Length of the input message. @param key Pointer to `key_len` bytes of memory where the key is read from. @param key_len Length of the key. Can be 0. */ void Hacl_Hash_Blake2b_Simd256_hash_with_key( uint8_t *output, uint32_t output_len, uint8_t *input, uint32_t input_len, uint8_t *key, uint32_t key_len ) { KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 b[4U] KRML_POST_ALIGN(32) = { 0U }; KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 b1[4U] KRML_POST_ALIGN(32) = { 0U }; Hacl_Hash_Blake2b_Simd256_init(b, key_len, output_len); update(b1, b, key_len, key, input_len, input); Hacl_Hash_Blake2b_Simd256_finish(output_len, output, b); Lib_Memzero0_memzero(b1, 4U, Lib_IntVector_Intrinsics_vec256, void *); Lib_Memzero0_memzero(b, 4U, Lib_IntVector_Intrinsics_vec256, void *); } /** Write the BLAKE2b digest of message `input` using key `key` and parameters `params` into `output`. The `key` array must be of length `params.key_length`. The `output` array must be of length `params.digest_length`. */ void Hacl_Hash_Blake2b_Simd256_hash_with_key_and_params( uint8_t *output, uint8_t *input, uint32_t input_len, Hacl_Hash_Blake2b_blake2_params params, uint8_t *key ) { KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 b[4U] KRML_POST_ALIGN(32) = { 0U }; KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 b1[4U] KRML_POST_ALIGN(32) = { 0U }; uint64_t tmp[8U] = { 0U }; Lib_IntVector_Intrinsics_vec256 *r0 = b; Lib_IntVector_Intrinsics_vec256 *r1 = b + 1U; Lib_IntVector_Intrinsics_vec256 *r2 = b + 2U; Lib_IntVector_Intrinsics_vec256 *r3 = b + 3U; uint64_t iv0 = Hacl_Hash_Blake2b_ivTable_B[0U]; uint64_t iv1 = Hacl_Hash_Blake2b_ivTable_B[1U]; uint64_t iv2 = Hacl_Hash_Blake2b_ivTable_B[2U]; uint64_t iv3 = Hacl_Hash_Blake2b_ivTable_B[3U]; uint64_t iv4 = Hacl_Hash_Blake2b_ivTable_B[4U]; uint64_t iv5 = Hacl_Hash_Blake2b_ivTable_B[5U]; uint64_t iv6 = Hacl_Hash_Blake2b_ivTable_B[6U]; uint64_t iv7 = Hacl_Hash_Blake2b_ivTable_B[7U]; r2[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0, iv1, iv2, iv3); r3[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4, iv5, iv6, iv7); uint8_t kk = params.key_length; uint8_t nn = params.digest_length; KRML_MAYBE_FOR2(i, 0U, 2U, 1U, uint64_t *os = tmp + 4U; uint8_t *bj = params.salt + i * 8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); KRML_MAYBE_FOR2(i, 0U, 2U, 1U, uint64_t *os = tmp + 6U; uint8_t *bj = params.personal + i * 8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); tmp[0U] = (uint64_t)nn ^ ((uint64_t)kk << 8U ^ ((uint64_t)params.fanout << 16U ^ ((uint64_t)params.depth << 24U ^ (uint64_t)params.leaf_length << 32U))); tmp[1U] = params.node_offset; tmp[2U] = (uint64_t)params.node_depth ^ (uint64_t)params.inner_length << 8U; tmp[3U] = 0ULL; uint64_t tmp0 = tmp[0U]; uint64_t tmp1 = tmp[1U]; uint64_t tmp2 = tmp[2U]; uint64_t tmp3 = tmp[3U]; uint64_t tmp4 = tmp[4U]; uint64_t tmp5 = tmp[5U]; uint64_t tmp6 = tmp[6U]; uint64_t tmp7 = tmp[7U]; uint64_t iv0_ = iv0 ^ tmp0; uint64_t iv1_ = iv1 ^ tmp1; uint64_t iv2_ = iv2 ^ tmp2; uint64_t iv3_ = iv3 ^ tmp3; uint64_t iv4_ = iv4 ^ tmp4; uint64_t iv5_ = iv5 ^ tmp5; uint64_t iv6_ = iv6 ^ tmp6; uint64_t iv7_ = iv7 ^ tmp7; r0[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0_, iv1_, iv2_, iv3_); r1[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4_, iv5_, iv6_, iv7_); update(b1, b, (uint32_t)params.key_length, key, input_len, input); Hacl_Hash_Blake2b_Simd256_finish((uint32_t)params.digest_length, output, b); Lib_Memzero0_memzero(b1, 4U, Lib_IntVector_Intrinsics_vec256, void *); Lib_Memzero0_memzero(b, 4U, Lib_IntVector_Intrinsics_vec256, void *); }