# # Unit tests for the multiprocessing package # import unittest import unittest.mock import queue as pyqueue import textwrap import time import io import itertools import sys import os import gc import errno import functools import signal import array import socket import random import logging import subprocess import struct import operator import pathlib import pickle import weakref import warnings import test.support import test.support.script_helper from test import support from test.support import hashlib_helper from test.support import import_helper from test.support import os_helper from test.support import script_helper from test.support import socket_helper from test.support import threading_helper from test.support import warnings_helper # Skip tests if _multiprocessing wasn't built. _multiprocessing = import_helper.import_module('_multiprocessing') # Skip tests if sem_open implementation is broken. support.skip_if_broken_multiprocessing_synchronize() import threading import multiprocessing.connection import multiprocessing.dummy import multiprocessing.heap import multiprocessing.managers import multiprocessing.pool import multiprocessing.queues from multiprocessing.connection import wait from multiprocessing import util try: from multiprocessing import reduction HAS_REDUCTION = reduction.HAVE_SEND_HANDLE except ImportError: HAS_REDUCTION = False try: from multiprocessing.sharedctypes import Value, copy HAS_SHAREDCTYPES = True except ImportError: HAS_SHAREDCTYPES = False try: from multiprocessing import shared_memory HAS_SHMEM = True except ImportError: HAS_SHMEM = False try: import msvcrt except ImportError: msvcrt = None if support.HAVE_ASAN_FORK_BUG: # gh-89363: Skip multiprocessing tests if Python is built with ASAN to # work around a libasan race condition: dead lock in pthread_create(). raise unittest.SkipTest("libasan has a pthread_create() dead lock related to thread+fork") # gh-110666: Tolerate a difference of 100 ms when comparing timings # (clock resolution) CLOCK_RES = 0.100 def latin(s): return s.encode('latin') def close_queue(queue): if isinstance(queue, multiprocessing.queues.Queue): queue.close() queue.join_thread() def join_process(process): # Since multiprocessing.Process has the same API than threading.Thread # (join() and is_alive(), the support function can be reused threading_helper.join_thread(process) if os.name == "posix": from multiprocessing import resource_tracker def _resource_unlink(name, rtype): resource_tracker._CLEANUP_FUNCS[rtype](name) # # Constants # LOG_LEVEL = util.SUBWARNING #LOG_LEVEL = logging.DEBUG DELTA = 0.1 CHECK_TIMINGS = False # making true makes tests take a lot longer # and can sometimes cause some non-serious # failures because some calls block a bit # longer than expected if CHECK_TIMINGS: TIMEOUT1, TIMEOUT2, TIMEOUT3 = 0.82, 0.35, 1.4 else: TIMEOUT1, TIMEOUT2, TIMEOUT3 = 0.1, 0.1, 0.1 # BaseManager.shutdown_timeout SHUTDOWN_TIMEOUT = support.SHORT_TIMEOUT WAIT_ACTIVE_CHILDREN_TIMEOUT = 5.0 HAVE_GETVALUE = not getattr(_multiprocessing, 'HAVE_BROKEN_SEM_GETVALUE', False) WIN32 = (sys.platform == "win32") def wait_for_handle(handle, timeout): if timeout is not None and timeout < 0.0: timeout = None return wait([handle], timeout) try: MAXFD = os.sysconf("SC_OPEN_MAX") except: MAXFD = 256 # To speed up tests when using the forkserver, we can preload these: PRELOAD = ['__main__', 'test.test_multiprocessing_forkserver'] # # Some tests require ctypes # try: from ctypes import Structure, c_int, c_double, c_longlong except ImportError: Structure = object c_int = c_double = c_longlong = None def check_enough_semaphores(): """Check that the system supports enough semaphores to run the test.""" # minimum number of semaphores available according to POSIX nsems_min = 256 try: nsems = os.sysconf("SC_SEM_NSEMS_MAX") except (AttributeError, ValueError): # sysconf not available or setting not available return if nsems == -1 or nsems >= nsems_min: return raise unittest.SkipTest("The OS doesn't support enough semaphores " "to run the test (required: %d)." % nsems_min) def only_run_in_spawn_testsuite(reason): """Returns a decorator: raises SkipTest when SM != spawn at test time. This can be useful to save overall Python test suite execution time. "spawn" is the universal mode available on all platforms so this limits the decorated test to only execute within test_multiprocessing_spawn. This would not be necessary if we refactored our test suite to split things into other test files when they are not start method specific to be rerun under all start methods. """ def decorator(test_item): @functools.wraps(test_item) def spawn_check_wrapper(*args, **kwargs): if (start_method := multiprocessing.get_start_method()) != "spawn": raise unittest.SkipTest(f"{start_method=}, not 'spawn'; {reason}") return test_item(*args, **kwargs) return spawn_check_wrapper return decorator class TestInternalDecorators(unittest.TestCase): """Logic within a test suite that could errantly skip tests? Test it!""" @unittest.skipIf(sys.platform == "win32", "test requires that fork exists.") def test_only_run_in_spawn_testsuite(self): if multiprocessing.get_start_method() != "spawn": raise unittest.SkipTest("only run in test_multiprocessing_spawn.") try: @only_run_in_spawn_testsuite("testing this decorator") def return_four_if_spawn(): return 4 except Exception as err: self.fail(f"expected decorated `def` not to raise; caught {err}") orig_start_method = multiprocessing.get_start_method(allow_none=True) try: multiprocessing.set_start_method("spawn", force=True) self.assertEqual(return_four_if_spawn(), 4) multiprocessing.set_start_method("fork", force=True) with self.assertRaises(unittest.SkipTest) as ctx: return_four_if_spawn() self.assertIn("testing this decorator", str(ctx.exception)) self.assertIn("start_method=", str(ctx.exception)) finally: multiprocessing.set_start_method(orig_start_method, force=True) # # Creates a wrapper for a function which records the time it takes to finish # class TimingWrapper(object): def __init__(self, func): self.func = func self.elapsed = None def __call__(self, *args, **kwds): t = time.monotonic() try: return self.func(*args, **kwds) finally: self.elapsed = time.monotonic() - t # # Base class for test cases # class BaseTestCase(object): ALLOWED_TYPES = ('processes', 'manager', 'threads') def assertTimingAlmostEqual(self, a, b): if CHECK_TIMINGS: self.assertAlmostEqual(a, b, 1) def assertReturnsIfImplemented(self, value, func, *args): try: res = func(*args) except NotImplementedError: pass else: return self.assertEqual(value, res) # For the sanity of Windows users, rather than crashing or freezing in # multiple ways. def __reduce__(self, *args): raise NotImplementedError("shouldn't try to pickle a test case") __reduce_ex__ = __reduce__ # # Return the value of a semaphore # def get_value(self): try: return self.get_value() except AttributeError: try: return self._Semaphore__value except AttributeError: try: return self._value except AttributeError: raise NotImplementedError # # Testcases # class DummyCallable: def __call__(self, q, c): assert isinstance(c, DummyCallable) q.put(5) class _TestProcess(BaseTestCase): ALLOWED_TYPES = ('processes', 'threads') def test_current(self): if self.TYPE == 'threads': self.skipTest('test not appropriate for {}'.format(self.TYPE)) current = self.current_process() authkey = current.authkey self.assertTrue(current.is_alive()) self.assertTrue(not current.daemon) self.assertIsInstance(authkey, bytes) self.assertTrue(len(authkey) > 0) self.assertEqual(current.ident, os.getpid()) self.assertEqual(current.exitcode, None) def test_set_executable(self): if self.TYPE == 'threads': self.skipTest(f'test not appropriate for {self.TYPE}') paths = [ sys.executable, # str sys.executable.encode(), # bytes pathlib.Path(sys.executable) # os.PathLike ] for path in paths: self.set_executable(path) p = self.Process() p.start() p.join() self.assertEqual(p.exitcode, 0) @support.requires_resource('cpu') def test_args_argument(self): # bpo-45735: Using list or tuple as *args* in constructor could # achieve the same effect. args_cases = (1, "str", [1], (1,)) args_types = (list, tuple) test_cases = itertools.product(args_cases, args_types) for args, args_type in test_cases: with self.subTest(args=args, args_type=args_type): q = self.Queue(1) # pass a tuple or list as args p = self.Process(target=self._test_args, args=args_type((q, args))) p.daemon = True p.start() child_args = q.get() self.assertEqual(child_args, args) p.join() close_queue(q) @classmethod def _test_args(cls, q, arg): q.put(arg) def test_daemon_argument(self): if self.TYPE == "threads": self.skipTest('test not appropriate for {}'.format(self.TYPE)) # By default uses the current process's daemon flag. proc0 = self.Process(target=self._test) self.assertEqual(proc0.daemon, self.current_process().daemon) proc1 = self.Process(target=self._test, daemon=True) self.assertTrue(proc1.daemon) proc2 = self.Process(target=self._test, daemon=False) self.assertFalse(proc2.daemon) @classmethod def _test(cls, q, *args, **kwds): current = cls.current_process() q.put(args) q.put(kwds) q.put(current.name) if cls.TYPE != 'threads': q.put(bytes(current.authkey)) q.put(current.pid) def test_parent_process_attributes(self): if self.TYPE == "threads": self.skipTest('test not appropriate for {}'.format(self.TYPE)) self.assertIsNone(self.parent_process()) rconn, wconn = self.Pipe(duplex=False) p = self.Process(target=self._test_send_parent_process, args=(wconn,)) p.start() p.join() parent_pid, parent_name = rconn.recv() self.assertEqual(parent_pid, self.current_process().pid) self.assertEqual(parent_pid, os.getpid()) self.assertEqual(parent_name, self.current_process().name) @classmethod def _test_send_parent_process(cls, wconn): from multiprocessing.process import parent_process wconn.send([parent_process().pid, parent_process().name]) def test_parent_process(self): if self.TYPE == "threads": self.skipTest('test not appropriate for {}'.format(self.TYPE)) # Launch a child process. Make it launch a grandchild process. Kill the # child process and make sure that the grandchild notices the death of # its parent (a.k.a the child process). rconn, wconn = self.Pipe(duplex=False) p = self.Process( target=self._test_create_grandchild_process, args=(wconn, )) p.start() if not rconn.poll(timeout=support.LONG_TIMEOUT): raise AssertionError("Could not communicate with child process") parent_process_status = rconn.recv() self.assertEqual(parent_process_status, "alive") p.terminate() p.join() if not rconn.poll(timeout=support.LONG_TIMEOUT): raise AssertionError("Could not communicate with child process") parent_process_status = rconn.recv() self.assertEqual(parent_process_status, "not alive") @classmethod def _test_create_grandchild_process(cls, wconn): p = cls.Process(target=cls._test_report_parent_status, args=(wconn, )) p.start() time.sleep(300) @classmethod def _test_report_parent_status(cls, wconn): from multiprocessing.process import parent_process wconn.send("alive" if parent_process().is_alive() else "not alive") parent_process().join(timeout=support.SHORT_TIMEOUT) wconn.send("alive" if parent_process().is_alive() else "not alive") def test_process(self): q = self.Queue(1) e = self.Event() args = (q, 1, 2) kwargs = {'hello':23, 'bye':2.54} name = 'SomeProcess' p = self.Process( target=self._test, args=args, kwargs=kwargs, name=name ) p.daemon = True current = self.current_process() if self.TYPE != 'threads': self.assertEqual(p.authkey, current.authkey) self.assertEqual(p.is_alive(), False) self.assertEqual(p.daemon, True) self.assertNotIn(p, self.active_children()) self.assertTrue(type(self.active_children()) is list) self.assertEqual(p.exitcode, None) p.start() self.assertEqual(p.exitcode, None) self.assertEqual(p.is_alive(), True) self.assertIn(p, self.active_children()) self.assertEqual(q.get(), args[1:]) self.assertEqual(q.get(), kwargs) self.assertEqual(q.get(), p.name) if self.TYPE != 'threads': self.assertEqual(q.get(), current.authkey) self.assertEqual(q.get(), p.pid) p.join() self.assertEqual(p.exitcode, 0) self.assertEqual(p.is_alive(), False) self.assertNotIn(p, self.active_children()) close_queue(q) @unittest.skipUnless(threading._HAVE_THREAD_NATIVE_ID, "needs native_id") def test_process_mainthread_native_id(self): if self.TYPE == 'threads': self.skipTest('test not appropriate for {}'.format(self.TYPE)) current_mainthread_native_id = threading.main_thread().native_id q = self.Queue(1) p = self.Process(target=self._test_process_mainthread_native_id, args=(q,)) p.start() child_mainthread_native_id = q.get() p.join() close_queue(q) self.assertNotEqual(current_mainthread_native_id, child_mainthread_native_id) @classmethod def _test_process_mainthread_native_id(cls, q): mainthread_native_id = threading.main_thread().native_id q.put(mainthread_native_id) @classmethod def _sleep_some(cls): time.sleep(100) @classmethod def _test_sleep(cls, delay): time.sleep(delay) def _kill_process(self, meth): if self.TYPE == 'threads': self.skipTest('test not appropriate for {}'.format(self.TYPE)) p = self.Process(target=self._sleep_some) p.daemon = True p.start() self.assertEqual(p.is_alive(), True) self.assertIn(p, self.active_children()) self.assertEqual(p.exitcode, None) join = TimingWrapper(p.join) self.assertEqual(join(0), None) self.assertTimingAlmostEqual(join.elapsed, 0.0) self.assertEqual(p.is_alive(), True) self.assertEqual(join(-1), None) self.assertTimingAlmostEqual(join.elapsed, 0.0) self.assertEqual(p.is_alive(), True) # XXX maybe terminating too soon causes the problems on Gentoo... time.sleep(1) meth(p) if hasattr(signal, 'alarm'): # On the Gentoo buildbot waitpid() often seems to block forever. # We use alarm() to interrupt it if it blocks for too long. def handler(*args): raise RuntimeError('join took too long: %s' % p) old_handler = signal.signal(signal.SIGALRM, handler) try: signal.alarm(10) self.assertEqual(join(), None) finally: signal.alarm(0) signal.signal(signal.SIGALRM, old_handler) else: self.assertEqual(join(), None) self.assertTimingAlmostEqual(join.elapsed, 0.0) self.assertEqual(p.is_alive(), False) self.assertNotIn(p, self.active_children()) p.join() return p.exitcode def test_terminate(self): exitcode = self._kill_process(multiprocessing.Process.terminate) self.assertEqual(exitcode, -signal.SIGTERM) def test_kill(self): exitcode = self._kill_process(multiprocessing.Process.kill) if os.name != 'nt': self.assertEqual(exitcode, -signal.SIGKILL) else: self.assertEqual(exitcode, -signal.SIGTERM) def test_cpu_count(self): try: cpus = multiprocessing.cpu_count() except NotImplementedError: cpus = 1 self.assertTrue(type(cpus) is int) self.assertTrue(cpus >= 1) def test_active_children(self): self.assertEqual(type(self.active_children()), list) p = self.Process(target=time.sleep, args=(DELTA,)) self.assertNotIn(p, self.active_children()) p.daemon = True p.start() self.assertIn(p, self.active_children()) p.join() self.assertNotIn(p, self.active_children()) @classmethod def _test_recursion(cls, wconn, id): wconn.send(id) if len(id) < 2: for i in range(2): p = cls.Process( target=cls._test_recursion, args=(wconn, id+[i]) ) p.start() p.join() def test_recursion(self): rconn, wconn = self.Pipe(duplex=False) self._test_recursion(wconn, []) time.sleep(DELTA) result = [] while rconn.poll(): result.append(rconn.recv()) expected = [ [], [0], [0, 0], [0, 1], [1], [1, 0], [1, 1] ] self.assertEqual(result, expected) @classmethod def _test_sentinel(cls, event): event.wait(10.0) def test_sentinel(self): if self.TYPE == "threads": self.skipTest('test not appropriate for {}'.format(self.TYPE)) event = self.Event() p = self.Process(target=self._test_sentinel, args=(event,)) with self.assertRaises(ValueError): p.sentinel p.start() self.addCleanup(p.join) sentinel = p.sentinel self.assertIsInstance(sentinel, int) self.assertFalse(wait_for_handle(sentinel, timeout=0.0)) event.set() p.join() self.assertTrue(wait_for_handle(sentinel, timeout=1)) @classmethod def _test_close(cls, rc=0, q=None): if q is not None: q.get() sys.exit(rc) def test_close(self): if self.TYPE == "threads": self.skipTest('test not appropriate for {}'.format(self.TYPE)) q = self.Queue() p = self.Process(target=self._test_close, kwargs={'q': q}) p.daemon = True p.start() self.assertEqual(p.is_alive(), True) # Child is still alive, cannot close with self.assertRaises(ValueError): p.close() q.put(None) p.join() self.assertEqual(p.is_alive(), False) self.assertEqual(p.exitcode, 0) p.close() with self.assertRaises(ValueError): p.is_alive() with self.assertRaises(ValueError): p.join() with self.assertRaises(ValueError): p.terminate() p.close() wr = weakref.ref(p) del p gc.collect() self.assertIs(wr(), None) close_queue(q) @support.requires_resource('walltime') def test_many_processes(self): if self.TYPE == 'threads': self.skipTest('test not appropriate for {}'.format(self.TYPE)) sm = multiprocessing.get_start_method() N = 5 if sm == 'spawn' else 100 # Try to overwhelm the forkserver loop with events procs = [self.Process(target=self._test_sleep, args=(0.01,)) for i in range(N)] for p in procs: p.start() for p in procs: join_process(p) for p in procs: self.assertEqual(p.exitcode, 0) procs = [self.Process(target=self._sleep_some) for i in range(N)] for p in procs: p.start() time.sleep(0.001) # let the children start... for p in procs: p.terminate() for p in procs: join_process(p) if os.name != 'nt': exitcodes = [-signal.SIGTERM] if sys.platform == 'darwin': # bpo-31510: On macOS, killing a freshly started process with # SIGTERM sometimes kills the process with SIGKILL. exitcodes.append(-signal.SIGKILL) for p in procs: self.assertIn(p.exitcode, exitcodes) def test_lose_target_ref(self): c = DummyCallable() wr = weakref.ref(c) q = self.Queue() p = self.Process(target=c, args=(q, c)) del c p.start() p.join() gc.collect() # For PyPy or other GCs. self.assertIs(wr(), None) self.assertEqual(q.get(), 5) close_queue(q) @classmethod def _test_child_fd_inflation(self, evt, q): q.put(os_helper.fd_count()) evt.wait() def test_child_fd_inflation(self): # Number of fds in child processes should not grow with the # number of running children. if self.TYPE == 'threads': self.skipTest('test not appropriate for {}'.format(self.TYPE)) sm = multiprocessing.get_start_method() if sm == 'fork': # The fork method by design inherits all fds from the parent, # trying to go against it is a lost battle self.skipTest('test not appropriate for {}'.format(sm)) N = 5 evt = self.Event() q = self.Queue() procs = [self.Process(target=self._test_child_fd_inflation, args=(evt, q)) for i in range(N)] for p in procs: p.start() try: fd_counts = [q.get() for i in range(N)] self.assertEqual(len(set(fd_counts)), 1, fd_counts) finally: evt.set() for p in procs: p.join() close_queue(q) @classmethod def _test_wait_for_threads(self, evt): def func1(): time.sleep(0.5) evt.set() def func2(): time.sleep(20) evt.clear() threading.Thread(target=func1).start() threading.Thread(target=func2, daemon=True).start() def test_wait_for_threads(self): # A child process should wait for non-daemonic threads to end # before exiting if self.TYPE == 'threads': self.skipTest('test not appropriate for {}'.format(self.TYPE)) evt = self.Event() proc = self.Process(target=self._test_wait_for_threads, args=(evt,)) proc.start() proc.join() self.assertTrue(evt.is_set()) @classmethod def _test_error_on_stdio_flush(self, evt, break_std_streams={}): for stream_name, action in break_std_streams.items(): if action == 'close': stream = io.StringIO() stream.close() else: assert action == 'remove' stream = None setattr(sys, stream_name, None) evt.set() def test_error_on_stdio_flush_1(self): # Check that Process works with broken standard streams streams = [io.StringIO(), None] streams[0].close() for stream_name in ('stdout', 'stderr'): for stream in streams: old_stream = getattr(sys, stream_name) setattr(sys, stream_name, stream) try: evt = self.Event() proc = self.Process(target=self._test_error_on_stdio_flush, args=(evt,)) proc.start() proc.join() self.assertTrue(evt.is_set()) self.assertEqual(proc.exitcode, 0) finally: setattr(sys, stream_name, old_stream) def test_error_on_stdio_flush_2(self): # Same as test_error_on_stdio_flush_1(), but standard streams are # broken by the child process for stream_name in ('stdout', 'stderr'): for action in ('close', 'remove'): old_stream = getattr(sys, stream_name) try: evt = self.Event() proc = self.Process(target=self._test_error_on_stdio_flush, args=(evt, {stream_name: action})) proc.start() proc.join() self.assertTrue(evt.is_set()) self.assertEqual(proc.exitcode, 0) finally: setattr(sys, stream_name, old_stream) @classmethod def _sleep_and_set_event(self, evt, delay=0.0): time.sleep(delay) evt.set() def check_forkserver_death(self, signum): # bpo-31308: if the forkserver process has died, we should still # be able to create and run new Process instances (the forkserver # is implicitly restarted). if self.TYPE == 'threads': self.skipTest('test not appropriate for {}'.format(self.TYPE)) sm = multiprocessing.get_start_method() if sm != 'forkserver': # The fork method by design inherits all fds from the parent, # trying to go against it is a lost battle self.skipTest('test not appropriate for {}'.format(sm)) from multiprocessing.forkserver import _forkserver _forkserver.ensure_running() # First process sleeps 500 ms delay = 0.5 evt = self.Event() proc = self.Process(target=self._sleep_and_set_event, args=(evt, delay)) proc.start() pid = _forkserver._forkserver_pid os.kill(pid, signum) # give time to the fork server to die and time to proc to complete time.sleep(delay * 2.0) evt2 = self.Event() proc2 = self.Process(target=self._sleep_and_set_event, args=(evt2,)) proc2.start() proc2.join() self.assertTrue(evt2.is_set()) self.assertEqual(proc2.exitcode, 0) proc.join() self.assertTrue(evt.is_set()) self.assertIn(proc.exitcode, (0, 255)) def test_forkserver_sigint(self): # Catchable signal self.check_forkserver_death(signal.SIGINT) def test_forkserver_sigkill(self): # Uncatchable signal if os.name != 'nt': self.check_forkserver_death(signal.SIGKILL) # # # class _UpperCaser(multiprocessing.Process): def __init__(self): multiprocessing.Process.__init__(self) self.child_conn, self.parent_conn = multiprocessing.Pipe() def run(self): self.parent_conn.close() for s in iter(self.child_conn.recv, None): self.child_conn.send(s.upper()) self.child_conn.close() def submit(self, s): assert type(s) is str self.parent_conn.send(s) return self.parent_conn.recv() def stop(self): self.parent_conn.send(None) self.parent_conn.close() self.child_conn.close() class _TestSubclassingProcess(BaseTestCase): ALLOWED_TYPES = ('processes',) def test_subclassing(self): uppercaser = _UpperCaser() uppercaser.daemon = True uppercaser.start() self.assertEqual(uppercaser.submit('hello'), 'HELLO') self.assertEqual(uppercaser.submit('world'), 'WORLD') uppercaser.stop() uppercaser.join() def test_stderr_flush(self): # sys.stderr is flushed at process shutdown (issue #13812) if self.TYPE == "threads": self.skipTest('test not appropriate for {}'.format(self.TYPE)) testfn = os_helper.TESTFN self.addCleanup(os_helper.unlink, testfn) proc = self.Process(target=self._test_stderr_flush, args=(testfn,)) proc.start() proc.join() with open(testfn, encoding="utf-8") as f: err = f.read() # The whole traceback was printed self.assertIn("ZeroDivisionError", err) self.assertIn("test_multiprocessing.py", err) self.assertIn("1/0 # MARKER", err) @classmethod def _test_stderr_flush(cls, testfn): fd = os.open(testfn, os.O_WRONLY | os.O_CREAT | os.O_EXCL) sys.stderr = open(fd, 'w', encoding="utf-8", closefd=False) 1/0 # MARKER @classmethod def _test_sys_exit(cls, reason, testfn): fd = os.open(testfn, os.O_WRONLY | os.O_CREAT | os.O_EXCL) sys.stderr = open(fd, 'w', encoding="utf-8", closefd=False) sys.exit(reason) def test_sys_exit(self): # See Issue 13854 if self.TYPE == 'threads': self.skipTest('test not appropriate for {}'.format(self.TYPE)) testfn = os_helper.TESTFN self.addCleanup(os_helper.unlink, testfn) for reason in ( [1, 2, 3], 'ignore this', ): p = self.Process(target=self._test_sys_exit, args=(reason, testfn)) p.daemon = True p.start() join_process(p) self.assertEqual(p.exitcode, 1) with open(testfn, encoding="utf-8") as f: content = f.read() self.assertEqual(content.rstrip(), str(reason)) os.unlink(testfn) cases = [ ((True,), 1), ((False,), 0), ((8,), 8), ((None,), 0), ((), 0), ] for args, expected in cases: with self.subTest(args=args): p = self.Process(target=sys.exit, args=args) p.daemon = True p.start() join_process(p) self.assertEqual(p.exitcode, expected) # # # def queue_empty(q): if hasattr(q, 'empty'): return q.empty() else: return q.qsize() == 0 def queue_full(q, maxsize): if hasattr(q, 'full'): return q.full() else: return q.qsize() == maxsize class _TestQueue(BaseTestCase): @classmethod def _test_put(cls, queue, child_can_start, parent_can_continue): child_can_start.wait() for i in range(6): queue.get() parent_can_continue.set() def test_put(self): MAXSIZE = 6 queue = self.Queue(maxsize=MAXSIZE) child_can_start = self.Event() parent_can_continue = self.Event() proc = self.Process( target=self._test_put, args=(queue, child_can_start, parent_can_continue) ) proc.daemon = True proc.start() self.assertEqual(queue_empty(queue), True) self.assertEqual(queue_full(queue, MAXSIZE), False) queue.put(1) queue.put(2, True) queue.put(3, True, None) queue.put(4, False) queue.put(5, False, None) queue.put_nowait(6) # the values may be in buffer but not yet in pipe so sleep a bit time.sleep(DELTA) self.assertEqual(queue_empty(queue), False) self.assertEqual(queue_full(queue, MAXSIZE), True) put = TimingWrapper(queue.put) put_nowait = TimingWrapper(queue.put_nowait) self.assertRaises(pyqueue.Full, put, 7, False) self.assertTimingAlmostEqual(put.elapsed, 0) self.assertRaises(pyqueue.Full, put, 7, False, None) self.assertTimingAlmostEqual(put.elapsed, 0) self.assertRaises(pyqueue.Full, put_nowait, 7) self.assertTimingAlmostEqual(put_nowait.elapsed, 0) self.assertRaises(pyqueue.Full, put, 7, True, TIMEOUT1) self.assertTimingAlmostEqual(put.elapsed, TIMEOUT1) self.assertRaises(pyqueue.Full, put, 7, False, TIMEOUT2) self.assertTimingAlmostEqual(put.elapsed, 0) self.assertRaises(pyqueue.Full, put, 7, True, timeout=TIMEOUT3) self.assertTimingAlmostEqual(put.elapsed, TIMEOUT3) child_can_start.set() parent_can_continue.wait() self.assertEqual(queue_empty(queue), True) self.assertEqual(queue_full(queue, MAXSIZE), False) proc.join() close_queue(queue) @classmethod def _test_get(cls, queue, child_can_start, parent_can_continue): child_can_start.wait() #queue.put(1) queue.put(2) queue.put(3) queue.put(4) queue.put(5) parent_can_continue.set() def test_get(self): queue = self.Queue() child_can_start = self.Event() parent_can_continue = self.Event() proc = self.Process( target=self._test_get, args=(queue, child_can_start, parent_can_continue) ) proc.daemon = True proc.start() self.assertEqual(queue_empty(queue), True) child_can_start.set() parent_can_continue.wait() time.sleep(DELTA) self.assertEqual(queue_empty(queue), False) # Hangs unexpectedly, remove for now #self.assertEqual(queue.get(), 1) self.assertEqual(queue.get(True, None), 2) self.assertEqual(queue.get(True), 3) self.assertEqual(queue.get(timeout=1), 4) self.assertEqual(queue.get_nowait(), 5) self.assertEqual(queue_empty(queue), True) get = TimingWrapper(queue.get) get_nowait = TimingWrapper(queue.get_nowait) self.assertRaises(pyqueue.Empty, get, False) self.assertTimingAlmostEqual(get.elapsed, 0) self.assertRaises(pyqueue.Empty, get, False, None) self.assertTimingAlmostEqual(get.elapsed, 0) self.assertRaises(pyqueue.Empty, get_nowait) self.assertTimingAlmostEqual(get_nowait.elapsed, 0) self.assertRaises(pyqueue.Empty, get, True, TIMEOUT1) self.assertTimingAlmostEqual(get.elapsed, TIMEOUT1) self.assertRaises(pyqueue.Empty, get, False, TIMEOUT2) self.assertTimingAlmostEqual(get.elapsed, 0) self.assertRaises(pyqueue.Empty, get, timeout=TIMEOUT3) self.assertTimingAlmostEqual(get.elapsed, TIMEOUT3) proc.join() close_queue(queue) @classmethod def _test_fork(cls, queue): for i in range(10, 20): queue.put(i) # note that at this point the items may only be buffered, so the # process cannot shutdown until the feeder thread has finished # pushing items onto the pipe. def test_fork(self): # Old versions of Queue would fail to create a new feeder # thread for a forked process if the original process had its # own feeder thread. This test checks that this no longer # happens. queue = self.Queue() # put items on queue so that main process starts a feeder thread for i in range(10): queue.put(i) # wait to make sure thread starts before we fork a new process time.sleep(DELTA) # fork process p = self.Process(target=self._test_fork, args=(queue,)) p.daemon = True p.start() # check that all expected items are in the queue for i in range(20): self.assertEqual(queue.get(), i) self.assertRaises(pyqueue.Empty, queue.get, False) p.join() close_queue(queue) def test_qsize(self): q = self.Queue() try: self.assertEqual(q.qsize(), 0) except NotImplementedError: self.skipTest('qsize method not implemented') q.put(1) self.assertEqual(q.qsize(), 1) q.put(5) self.assertEqual(q.qsize(), 2) q.get() self.assertEqual(q.qsize(), 1) q.get() self.assertEqual(q.qsize(), 0) close_queue(q) @classmethod def _test_task_done(cls, q): for obj in iter(q.get, None): time.sleep(DELTA) q.task_done() def test_task_done(self): queue = self.JoinableQueue() workers = [self.Process(target=self._test_task_done, args=(queue,)) for i in range(4)] for p in workers: p.daemon = True p.start() for i in range(10): queue.put(i) queue.join() for p in workers: queue.put(None) for p in workers: p.join() close_queue(queue) def test_no_import_lock_contention(self): with os_helper.temp_cwd(): module_name = 'imported_by_an_imported_module' with open(module_name + '.py', 'w', encoding="utf-8") as f: f.write("""if 1: import multiprocessing q = multiprocessing.Queue() q.put('knock knock') q.get(timeout=3) q.close() del q """) with import_helper.DirsOnSysPath(os.getcwd()): try: __import__(module_name) except pyqueue.Empty: self.fail("Probable regression on import lock contention;" " see Issue #22853") def test_timeout(self): q = multiprocessing.Queue() start = time.monotonic() self.assertRaises(pyqueue.Empty, q.get, True, 0.200) delta = time.monotonic() - start # bpo-30317: Tolerate a delta of 100 ms because of the bad clock # resolution on Windows (usually 15.6 ms). x86 Windows7 3.x once # failed because the delta was only 135.8 ms. self.assertGreaterEqual(delta, 0.100) close_queue(q) def test_queue_feeder_donot_stop_onexc(self): # bpo-30414: verify feeder handles exceptions correctly if self.TYPE != 'processes': self.skipTest('test not appropriate for {}'.format(self.TYPE)) class NotSerializable(object): def __reduce__(self): raise AttributeError with test.support.captured_stderr(): q = self.Queue() q.put(NotSerializable()) q.put(True) self.assertTrue(q.get(timeout=support.SHORT_TIMEOUT)) close_queue(q) with test.support.captured_stderr(): # bpo-33078: verify that the queue size is correctly handled # on errors. q = self.Queue(maxsize=1) q.put(NotSerializable()) q.put(True) try: self.assertEqual(q.qsize(), 1) except NotImplementedError: # qsize is not available on all platform as it # relies on sem_getvalue pass self.assertTrue(q.get(timeout=support.SHORT_TIMEOUT)) # Check that the size of the queue is correct self.assertTrue(q.empty()) close_queue(q) def test_queue_feeder_on_queue_feeder_error(self): # bpo-30006: verify feeder handles exceptions using the # _on_queue_feeder_error hook. if self.TYPE != 'processes': self.skipTest('test not appropriate for {}'.format(self.TYPE)) class NotSerializable(object): """Mock unserializable object""" def __init__(self): self.reduce_was_called = False self.on_queue_feeder_error_was_called = False def __reduce__(self): self.reduce_was_called = True raise AttributeError class SafeQueue(multiprocessing.queues.Queue): """Queue with overloaded _on_queue_feeder_error hook""" @staticmethod def _on_queue_feeder_error(e, obj): if (isinstance(e, AttributeError) and isinstance(obj, NotSerializable)): obj.on_queue_feeder_error_was_called = True not_serializable_obj = NotSerializable() # The captured_stderr reduces the noise in the test report with test.support.captured_stderr(): q = SafeQueue(ctx=multiprocessing.get_context()) q.put(not_serializable_obj) # Verify that q is still functioning correctly q.put(True) self.assertTrue(q.get(timeout=support.SHORT_TIMEOUT)) # Assert that the serialization and the hook have been called correctly self.assertTrue(not_serializable_obj.reduce_was_called) self.assertTrue(not_serializable_obj.on_queue_feeder_error_was_called) def test_closed_queue_put_get_exceptions(self): for q in multiprocessing.Queue(), multiprocessing.JoinableQueue(): q.close() with self.assertRaisesRegex(ValueError, 'is closed'): q.put('foo') with self.assertRaisesRegex(ValueError, 'is closed'): q.get() # # # class _TestLock(BaseTestCase): def test_lock(self): lock = self.Lock() self.assertEqual(lock.acquire(), True) self.assertEqual(lock.acquire(False), False) self.assertEqual(lock.release(), None) self.assertRaises((ValueError, threading.ThreadError), lock.release) def test_rlock(self): lock = self.RLock() self.assertEqual(lock.acquire(), True) self.assertEqual(lock.acquire(), True) self.assertEqual(lock.acquire(), True) self.assertEqual(lock.release(), None) self.assertEqual(lock.release(), None) self.assertEqual(lock.release(), None) self.assertRaises((AssertionError, RuntimeError), lock.release) def test_lock_context(self): with self.Lock(): pass class _TestSemaphore(BaseTestCase): def _test_semaphore(self, sem): self.assertReturnsIfImplemented(2, get_value, sem) self.assertEqual(sem.acquire(), True) self.assertReturnsIfImplemented(1, get_value, sem) self.assertEqual(sem.acquire(), True) self.assertReturnsIfImplemented(0, get_value, sem) self.assertEqual(sem.acquire(False), False) self.assertReturnsIfImplemented(0, get_value, sem) self.assertEqual(sem.release(), None) self.assertReturnsIfImplemented(1, get_value, sem) self.assertEqual(sem.release(), None) self.assertReturnsIfImplemented(2, get_value, sem) def test_semaphore(self): sem = self.Semaphore(2) self._test_semaphore(sem) self.assertEqual(sem.release(), None) self.assertReturnsIfImplemented(3, get_value, sem) self.assertEqual(sem.release(), None) self.assertReturnsIfImplemented(4, get_value, sem) def test_bounded_semaphore(self): sem = self.BoundedSemaphore(2) self._test_semaphore(sem) # Currently fails on OS/X #if HAVE_GETVALUE: # self.assertRaises(ValueError, sem.release) # self.assertReturnsIfImplemented(2, get_value, sem) def test_timeout(self): if self.TYPE != 'processes': self.skipTest('test not appropriate for {}'.format(self.TYPE)) sem = self.Semaphore(0) acquire = TimingWrapper(sem.acquire) self.assertEqual(acquire(False), False) self.assertTimingAlmostEqual(acquire.elapsed, 0.0) self.assertEqual(acquire(False, None), False) self.assertTimingAlmostEqual(acquire.elapsed, 0.0) self.assertEqual(acquire(False, TIMEOUT1), False) self.assertTimingAlmostEqual(acquire.elapsed, 0) self.assertEqual(acquire(True, TIMEOUT2), False) self.assertTimingAlmostEqual(acquire.elapsed, TIMEOUT2) self.assertEqual(acquire(timeout=TIMEOUT3), False) self.assertTimingAlmostEqual(acquire.elapsed, TIMEOUT3) class _TestCondition(BaseTestCase): @classmethod def f(cls, cond, sleeping, woken, timeout=None): cond.acquire() sleeping.release() cond.wait(timeout) woken.release() cond.release() def assertReachesEventually(self, func, value): for i in range(10): try: if func() == value: break except NotImplementedError: break time.sleep(DELTA) time.sleep(DELTA) self.assertReturnsIfImplemented(value, func) def check_invariant(self, cond): # this is only supposed to succeed when there are no sleepers if self.TYPE == 'processes': try: sleepers = (cond._sleeping_count.get_value() - cond._woken_count.get_value()) self.assertEqual(sleepers, 0) self.assertEqual(cond._wait_semaphore.get_value(), 0) except NotImplementedError: pass def test_notify(self): cond = self.Condition() sleeping = self.Semaphore(0) woken = self.Semaphore(0) p = self.Process(target=self.f, args=(cond, sleeping, woken)) p.daemon = True p.start() self.addCleanup(p.join) p = threading.Thread(target=self.f, args=(cond, sleeping, woken)) p.daemon = True p.start() self.addCleanup(p.join) # wait for both children to start sleeping sleeping.acquire() sleeping.acquire() # check no process/thread has woken up time.sleep(DELTA) self.assertReturnsIfImplemented(0, get_value, woken) # wake up one process/thread cond.acquire() cond.notify() cond.release() # check one process/thread has woken up time.sleep(DELTA) self.assertReturnsIfImplemented(1, get_value, woken) # wake up another cond.acquire() cond.notify() cond.release() # check other has woken up time.sleep(DELTA) self.assertReturnsIfImplemented(2, get_value, woken) # check state is not mucked up self.check_invariant(cond) p.join() def test_notify_all(self): cond = self.Condition() sleeping = self.Semaphore(0) woken = self.Semaphore(0) # start some threads/processes which will timeout for i in range(3): p = self.Process(target=self.f, args=(cond, sleeping, woken, TIMEOUT1)) p.daemon = True p.start() self.addCleanup(p.join) t = threading.Thread(target=self.f, args=(cond, sleeping, woken, TIMEOUT1)) t.daemon = True t.start() self.addCleanup(t.join) # wait for them all to sleep for i in range(6): sleeping.acquire() # check they have all timed out for i in range(6): woken.acquire() self.assertReturnsIfImplemented(0, get_value, woken) # check state is not mucked up self.check_invariant(cond) # start some more threads/processes for i in range(3): p = self.Process(target=self.f, args=(cond, sleeping, woken)) p.daemon = True p.start() self.addCleanup(p.join) t = threading.Thread(target=self.f, args=(cond, sleeping, woken)) t.daemon = True t.start() self.addCleanup(t.join) # wait for them to all sleep for i in range(6): sleeping.acquire() # check no process/thread has woken up time.sleep(DELTA) self.assertReturnsIfImplemented(0, get_value, woken) # wake them all up cond.acquire() cond.notify_all() cond.release() # check they have all woken self.assertReachesEventually(lambda: get_value(woken), 6) # check state is not mucked up self.check_invariant(cond) def test_notify_n(self): cond = self.Condition() sleeping = self.Semaphore(0) woken = self.Semaphore(0) # start some threads/processes for i in range(3): p = self.Process(target=self.f, args=(cond, sleeping, woken)) p.daemon = True p.start() self.addCleanup(p.join) t = threading.Thread(target=self.f, args=(cond, sleeping, woken)) t.daemon = True t.start() self.addCleanup(t.join) # wait for them to all sleep for i in range(6): sleeping.acquire() # check no process/thread has woken up time.sleep(DELTA) self.assertReturnsIfImplemented(0, get_value, woken) # wake some of them up cond.acquire() cond.notify(n=2) cond.release() # check 2 have woken self.assertReachesEventually(lambda: get_value(woken), 2) # wake the rest of them cond.acquire() cond.notify(n=4) cond.release() self.assertReachesEventually(lambda: get_value(woken), 6) # doesn't do anything more cond.acquire() cond.notify(n=3) cond.release() self.assertReturnsIfImplemented(6, get_value, woken) # check state is not mucked up self.check_invariant(cond) def test_timeout(self): cond = self.Condition() wait = TimingWrapper(cond.wait) cond.acquire() res = wait(TIMEOUT1) cond.release() self.assertEqual(res, False) self.assertTimingAlmostEqual(wait.elapsed, TIMEOUT1) @classmethod def _test_waitfor_f(cls, cond, state): with cond: state.value = 0 cond.notify() result = cond.wait_for(lambda : state.value==4) if not result or state.value != 4: sys.exit(1) @unittest.skipUnless(HAS_SHAREDCTYPES, 'needs sharedctypes') def test_waitfor(self): # based on test in test/lock_tests.py cond = self.Condition() state = self.Value('i', -1) p = self.Process(target=self._test_waitfor_f, args=(cond, state)) p.daemon = True p.start() with cond: result = cond.wait_for(lambda : state.value==0) self.assertTrue(result) self.assertEqual(state.value, 0) for i in range(4): time.sleep(0.01) with cond: state.value += 1 cond.notify() join_process(p) self.assertEqual(p.exitcode, 0) @classmethod def _test_waitfor_timeout_f(cls, cond, state, success, sem): sem.release() with cond: expected = 0.100 dt = time.monotonic() result = cond.wait_for(lambda : state.value==4, timeout=expected) dt = time.monotonic() - dt if not result and (expected - CLOCK_RES) <= dt: success.value = True @unittest.skipUnless(HAS_SHAREDCTYPES, 'needs sharedctypes') def test_waitfor_timeout(self): # based on test in test/lock_tests.py cond = self.Condition() state = self.Value('i', 0) success = self.Value('i', False) sem = self.Semaphore(0) p = self.Process(target=self._test_waitfor_timeout_f, args=(cond, state, success, sem)) p.daemon = True p.start() self.assertTrue(sem.acquire(timeout=support.LONG_TIMEOUT)) # Only increment 3 times, so state == 4 is never reached. for i in range(3): time.sleep(0.010) with cond: state.value += 1 cond.notify() join_process(p) self.assertTrue(success.value) @classmethod def _test_wait_result(cls, c, pid): with c: c.notify() time.sleep(1) if pid is not None: os.kill(pid, signal.SIGINT) def test_wait_result(self): if isinstance(self, ProcessesMixin) and sys.platform != 'win32': pid = os.getpid() else: pid = None c = self.Condition() with c: self.assertFalse(c.wait(0)) self.assertFalse(c.wait(0.1)) p = self.Process(target=self._test_wait_result, args=(c, pid)) p.start() self.assertTrue(c.wait(60)) if pid is not None: self.assertRaises(KeyboardInterrupt, c.wait, 60) p.join() class _TestEvent(BaseTestCase): @classmethod def _test_event(cls, event): time.sleep(TIMEOUT2) event.set() def test_event(self): event = self.Event() wait = TimingWrapper(event.wait) # Removed temporarily, due to API shear, this does not # work with threading._Event objects. is_set == isSet self.assertEqual(event.is_set(), False) # Removed, threading.Event.wait() will return the value of the __flag # instead of None. API Shear with the semaphore backed mp.Event self.assertEqual(wait(0.0), False) self.assertTimingAlmostEqual(wait.elapsed, 0.0) self.assertEqual(wait(TIMEOUT1), False) self.assertTimingAlmostEqual(wait.elapsed, TIMEOUT1) event.set() # See note above on the API differences self.assertEqual(event.is_set(), True) self.assertEqual(wait(), True) self.assertTimingAlmostEqual(wait.elapsed, 0.0) self.assertEqual(wait(TIMEOUT1), True) self.assertTimingAlmostEqual(wait.elapsed, 0.0) # self.assertEqual(event.is_set(), True) event.clear() #self.assertEqual(event.is_set(), False) p = self.Process(target=self._test_event, args=(event,)) p.daemon = True p.start() self.assertEqual(wait(), True) p.join() def test_repr(self) -> None: event = self.Event() if self.TYPE == 'processes': self.assertRegex(repr(event), r"") event.set() self.assertRegex(repr(event), r"") event.clear() self.assertRegex(repr(event), r"") elif self.TYPE == 'manager': self.assertRegex(repr(event), r" 256 (issue #11657) if self.TYPE != 'processes': self.skipTest("only makes sense with processes") conn, child_conn = self.Pipe(duplex=True) p = self.Process(target=self._writefd, args=(child_conn, b"bar", True)) p.daemon = True p.start() self.addCleanup(os_helper.unlink, os_helper.TESTFN) with open(os_helper.TESTFN, "wb") as f: fd = f.fileno() for newfd in range(256, MAXFD): if not self._is_fd_assigned(newfd): break else: self.fail("could not find an unassigned large file descriptor") os.dup2(fd, newfd) try: reduction.send_handle(conn, newfd, p.pid) finally: os.close(newfd) p.join() with open(os_helper.TESTFN, "rb") as f: self.assertEqual(f.read(), b"bar") @classmethod def _send_data_without_fd(self, conn): os.write(conn.fileno(), b"\0") @unittest.skipUnless(HAS_REDUCTION, "test needs multiprocessing.reduction") @unittest.skipIf(sys.platform == "win32", "doesn't make sense on Windows") def test_missing_fd_transfer(self): # Check that exception is raised when received data is not # accompanied by a file descriptor in ancillary data. if self.TYPE != 'processes': self.skipTest("only makes sense with processes") conn, child_conn = self.Pipe(duplex=True) p = self.Process(target=self._send_data_without_fd, args=(child_conn,)) p.daemon = True p.start() self.assertRaises(RuntimeError, reduction.recv_handle, conn) p.join() def test_context(self): a, b = self.Pipe() with a, b: a.send(1729) self.assertEqual(b.recv(), 1729) if self.TYPE == 'processes': self.assertFalse(a.closed) self.assertFalse(b.closed) if self.TYPE == 'processes': self.assertTrue(a.closed) self.assertTrue(b.closed) self.assertRaises(OSError, a.recv) self.assertRaises(OSError, b.recv) class _TestListener(BaseTestCase): ALLOWED_TYPES = ('processes',) def test_multiple_bind(self): for family in self.connection.families: l = self.connection.Listener(family=family) self.addCleanup(l.close) self.assertRaises(OSError, self.connection.Listener, l.address, family) def test_context(self): with self.connection.Listener() as l: with self.connection.Client(l.address) as c: with l.accept() as d: c.send(1729) self.assertEqual(d.recv(), 1729) if self.TYPE == 'processes': self.assertRaises(OSError, l.accept) @unittest.skipUnless(util.abstract_sockets_supported, "test needs abstract socket support") def test_abstract_socket(self): with self.connection.Listener("\0something") as listener: with self.connection.Client(listener.address) as client: with listener.accept() as d: client.send(1729) self.assertEqual(d.recv(), 1729) if self.TYPE == 'processes': self.assertRaises(OSError, listener.accept) class _TestListenerClient(BaseTestCase): ALLOWED_TYPES = ('processes', 'threads') @classmethod def _test(cls, address): conn = cls.connection.Client(address) conn.send('hello') conn.close() def test_listener_client(self): for family in self.connection.families: l = self.connection.Listener(family=family) p = self.Process(target=self._test, args=(l.address,)) p.daemon = True p.start() conn = l.accept() self.assertEqual(conn.recv(), 'hello') p.join() l.close() def test_issue14725(self): l = self.connection.Listener() p = self.Process(target=self._test, args=(l.address,)) p.daemon = True p.start() time.sleep(1) # On Windows the client process should by now have connected, # written data and closed the pipe handle by now. This causes # ConnectNamdedPipe() to fail with ERROR_NO_DATA. See Issue # 14725. conn = l.accept() self.assertEqual(conn.recv(), 'hello') conn.close() p.join() l.close() def test_issue16955(self): for fam in self.connection.families: l = self.connection.Listener(family=fam) c = self.connection.Client(l.address) a = l.accept() a.send_bytes(b"hello") self.assertTrue(c.poll(1)) a.close() c.close() l.close() class _TestPoll(BaseTestCase): ALLOWED_TYPES = ('processes', 'threads') def test_empty_string(self): a, b = self.Pipe() self.assertEqual(a.poll(), False) b.send_bytes(b'') self.assertEqual(a.poll(), True) self.assertEqual(a.poll(), True) @classmethod def _child_strings(cls, conn, strings): for s in strings: time.sleep(0.1) conn.send_bytes(s) conn.close() def test_strings(self): strings = (b'hello', b'', b'a', b'b', b'', b'bye', b'', b'lop') a, b = self.Pipe() p = self.Process(target=self._child_strings, args=(b, strings)) p.start() for s in strings: for i in range(200): if a.poll(0.01): break x = a.recv_bytes() self.assertEqual(s, x) p.join() @classmethod def _child_boundaries(cls, r): # Polling may "pull" a message in to the child process, but we # don't want it to pull only part of a message, as that would # corrupt the pipe for any other processes which might later # read from it. r.poll(5) def test_boundaries(self): r, w = self.Pipe(False) p = self.Process(target=self._child_boundaries, args=(r,)) p.start() time.sleep(2) L = [b"first", b"second"] for obj in L: w.send_bytes(obj) w.close() p.join() self.assertIn(r.recv_bytes(), L) @classmethod def _child_dont_merge(cls, b): b.send_bytes(b'a') b.send_bytes(b'b') b.send_bytes(b'cd') def test_dont_merge(self): a, b = self.Pipe() self.assertEqual(a.poll(0.0), False) self.assertEqual(a.poll(0.1), False) p = self.Process(target=self._child_dont_merge, args=(b,)) p.start() self.assertEqual(a.recv_bytes(), b'a') self.assertEqual(a.poll(1.0), True) self.assertEqual(a.poll(1.0), True) self.assertEqual(a.recv_bytes(), b'b') self.assertEqual(a.poll(1.0), True) self.assertEqual(a.poll(1.0), True) self.assertEqual(a.poll(0.0), True) self.assertEqual(a.recv_bytes(), b'cd') p.join() # # Test of sending connection and socket objects between processes # @unittest.skipUnless(HAS_REDUCTION, "test needs multiprocessing.reduction") @hashlib_helper.requires_hashdigest('sha256') class _TestPicklingConnections(BaseTestCase): ALLOWED_TYPES = ('processes',) @classmethod def tearDownClass(cls): from multiprocessing import resource_sharer resource_sharer.stop(timeout=support.LONG_TIMEOUT) @classmethod def _listener(cls, conn, families): for fam in families: l = cls.connection.Listener(family=fam) conn.send(l.address) new_conn = l.accept() conn.send(new_conn) new_conn.close() l.close() l = socket.create_server((socket_helper.HOST, 0)) conn.send(l.getsockname()) new_conn, addr = l.accept() conn.send(new_conn) new_conn.close() l.close() conn.recv() @classmethod def _remote(cls, conn): for (address, msg) in iter(conn.recv, None): client = cls.connection.Client(address) client.send(msg.upper()) client.close() address, msg = conn.recv() client = socket.socket() client.connect(address) client.sendall(msg.upper()) client.close() conn.close() def test_pickling(self): families = self.connection.families lconn, lconn0 = self.Pipe() lp = self.Process(target=self._listener, args=(lconn0, families)) lp.daemon = True lp.start() lconn0.close() rconn, rconn0 = self.Pipe() rp = self.Process(target=self._remote, args=(rconn0,)) rp.daemon = True rp.start() rconn0.close() for fam in families: msg = ('This connection uses family %s' % fam).encode('ascii') address = lconn.recv() rconn.send((address, msg)) new_conn = lconn.recv() self.assertEqual(new_conn.recv(), msg.upper()) rconn.send(None) msg = latin('This connection uses a normal socket') address = lconn.recv() rconn.send((address, msg)) new_conn = lconn.recv() buf = [] while True: s = new_conn.recv(100) if not s: break buf.append(s) buf = b''.join(buf) self.assertEqual(buf, msg.upper()) new_conn.close() lconn.send(None) rconn.close() lconn.close() lp.join() rp.join() @classmethod def child_access(cls, conn): w = conn.recv() w.send('all is well') w.close() r = conn.recv() msg = r.recv() conn.send(msg*2) conn.close() def test_access(self): # On Windows, if we do not specify a destination pid when # using DupHandle then we need to be careful to use the # correct access flags for DuplicateHandle(), or else # DupHandle.detach() will raise PermissionError. For example, # for a read only pipe handle we should use # access=FILE_GENERIC_READ. (Unfortunately # DUPLICATE_SAME_ACCESS does not work.) conn, child_conn = self.Pipe() p = self.Process(target=self.child_access, args=(child_conn,)) p.daemon = True p.start() child_conn.close() r, w = self.Pipe(duplex=False) conn.send(w) w.close() self.assertEqual(r.recv(), 'all is well') r.close() r, w = self.Pipe(duplex=False) conn.send(r) r.close() w.send('foobar') w.close() self.assertEqual(conn.recv(), 'foobar'*2) p.join() # # # class _TestHeap(BaseTestCase): ALLOWED_TYPES = ('processes',) def setUp(self): super().setUp() # Make pristine heap for these tests self.old_heap = multiprocessing.heap.BufferWrapper._heap multiprocessing.heap.BufferWrapper._heap = multiprocessing.heap.Heap() def tearDown(self): multiprocessing.heap.BufferWrapper._heap = self.old_heap super().tearDown() def test_heap(self): iterations = 5000 maxblocks = 50 blocks = [] # get the heap object heap = multiprocessing.heap.BufferWrapper._heap heap._DISCARD_FREE_SPACE_LARGER_THAN = 0 # create and destroy lots of blocks of different sizes for i in range(iterations): size = int(random.lognormvariate(0, 1) * 1000) b = multiprocessing.heap.BufferWrapper(size) blocks.append(b) if len(blocks) > maxblocks: i = random.randrange(maxblocks) del blocks[i] del b # verify the state of the heap with heap._lock: all = [] free = 0 occupied = 0 for L in list(heap._len_to_seq.values()): # count all free blocks in arenas for arena, start, stop in L: all.append((heap._arenas.index(arena), start, stop, stop-start, 'free')) free += (stop-start) for arena, arena_blocks in heap._allocated_blocks.items(): # count all allocated blocks in arenas for start, stop in arena_blocks: all.append((heap._arenas.index(arena), start, stop, stop-start, 'occupied')) occupied += (stop-start) self.assertEqual(free + occupied, sum(arena.size for arena in heap._arenas)) all.sort() for i in range(len(all)-1): (arena, start, stop) = all[i][:3] (narena, nstart, nstop) = all[i+1][:3] if arena != narena: # Two different arenas self.assertEqual(stop, heap._arenas[arena].size) # last block self.assertEqual(nstart, 0) # first block else: # Same arena: two adjacent blocks self.assertEqual(stop, nstart) # test free'ing all blocks random.shuffle(blocks) while blocks: blocks.pop() self.assertEqual(heap._n_frees, heap._n_mallocs) self.assertEqual(len(heap._pending_free_blocks), 0) self.assertEqual(len(heap._arenas), 0) self.assertEqual(len(heap._allocated_blocks), 0, heap._allocated_blocks) self.assertEqual(len(heap._len_to_seq), 0) def test_free_from_gc(self): # Check that freeing of blocks by the garbage collector doesn't deadlock # (issue #12352). # Make sure the GC is enabled, and set lower collection thresholds to # make collections more frequent (and increase the probability of # deadlock). if not gc.isenabled(): gc.enable() self.addCleanup(gc.disable) thresholds = gc.get_threshold() self.addCleanup(gc.set_threshold, *thresholds) gc.set_threshold(10) # perform numerous block allocations, with cyclic references to make # sure objects are collected asynchronously by the gc for i in range(5000): a = multiprocessing.heap.BufferWrapper(1) b = multiprocessing.heap.BufferWrapper(1) # circular references a.buddy = b b.buddy = a # # # class _Foo(Structure): _fields_ = [ ('x', c_int), ('y', c_double), ('z', c_longlong,) ] class _TestSharedCTypes(BaseTestCase): ALLOWED_TYPES = ('processes',) def setUp(self): if not HAS_SHAREDCTYPES: self.skipTest("requires multiprocessing.sharedctypes") @classmethod def _double(cls, x, y, z, foo, arr, string): x.value *= 2 y.value *= 2 z.value *= 2 foo.x *= 2 foo.y *= 2 string.value *= 2 for i in range(len(arr)): arr[i] *= 2 def test_sharedctypes(self, lock=False): x = Value('i', 7, lock=lock) y = Value(c_double, 1.0/3.0, lock=lock) z = Value(c_longlong, 2 ** 33, lock=lock) foo = Value(_Foo, 3, 2, lock=lock) arr = self.Array('d', list(range(10)), lock=lock) string = self.Array('c', 20, lock=lock) string.value = latin('hello') p = self.Process(target=self._double, args=(x, y, z, foo, arr, string)) p.daemon = True p.start() p.join() self.assertEqual(x.value, 14) self.assertAlmostEqual(y.value, 2.0/3.0) self.assertEqual(z.value, 2 ** 34) self.assertEqual(foo.x, 6) self.assertAlmostEqual(foo.y, 4.0) for i in range(10): self.assertAlmostEqual(arr[i], i*2) self.assertEqual(string.value, latin('hellohello')) def test_synchronize(self): self.test_sharedctypes(lock=True) def test_copy(self): foo = _Foo(2, 5.0, 2 ** 33) bar = copy(foo) foo.x = 0 foo.y = 0 foo.z = 0 self.assertEqual(bar.x, 2) self.assertAlmostEqual(bar.y, 5.0) self.assertEqual(bar.z, 2 ** 33) @unittest.skipUnless(HAS_SHMEM, "requires multiprocessing.shared_memory") @hashlib_helper.requires_hashdigest('sha256') class _TestSharedMemory(BaseTestCase): ALLOWED_TYPES = ('processes',) @staticmethod def _attach_existing_shmem_then_write(shmem_name_or_obj, binary_data): if isinstance(shmem_name_or_obj, str): local_sms = shared_memory.SharedMemory(shmem_name_or_obj) else: local_sms = shmem_name_or_obj local_sms.buf[:len(binary_data)] = binary_data local_sms.close() def _new_shm_name(self, prefix): # Add a PID to the name of a POSIX shared memory object to allow # running multiprocessing tests (test_multiprocessing_fork, # test_multiprocessing_spawn, etc) in parallel. return prefix + str(os.getpid()) def test_shared_memory_basics(self): name_tsmb = self._new_shm_name('test01_tsmb') sms = shared_memory.SharedMemory(name_tsmb, create=True, size=512) self.addCleanup(sms.unlink) # Verify attributes are readable. self.assertEqual(sms.name, name_tsmb) self.assertGreaterEqual(sms.size, 512) self.assertGreaterEqual(len(sms.buf), sms.size) # Verify __repr__ self.assertIn(sms.name, str(sms)) self.assertIn(str(sms.size), str(sms)) # Modify contents of shared memory segment through memoryview. sms.buf[0] = 42 self.assertEqual(sms.buf[0], 42) # Attach to existing shared memory segment. also_sms = shared_memory.SharedMemory(name_tsmb) self.assertEqual(also_sms.buf[0], 42) also_sms.close() # Attach to existing shared memory segment but specify a new size. same_sms = shared_memory.SharedMemory(name_tsmb, size=20*sms.size) self.assertLess(same_sms.size, 20*sms.size) # Size was ignored. same_sms.close() # Creating Shared Memory Segment with -ve size with self.assertRaises(ValueError): shared_memory.SharedMemory(create=True, size=-2) # Attaching Shared Memory Segment without a name with self.assertRaises(ValueError): shared_memory.SharedMemory(create=False) # Test if shared memory segment is created properly, # when _make_filename returns an existing shared memory segment name with unittest.mock.patch( 'multiprocessing.shared_memory._make_filename') as mock_make_filename: NAME_PREFIX = shared_memory._SHM_NAME_PREFIX names = [self._new_shm_name('test01_fn'), self._new_shm_name('test02_fn')] # Prepend NAME_PREFIX which can be '/psm_' or 'wnsm_', necessary # because some POSIX compliant systems require name to start with / names = [NAME_PREFIX + name for name in names] mock_make_filename.side_effect = names shm1 = shared_memory.SharedMemory(create=True, size=1) self.addCleanup(shm1.unlink) self.assertEqual(shm1._name, names[0]) mock_make_filename.side_effect = names shm2 = shared_memory.SharedMemory(create=True, size=1) self.addCleanup(shm2.unlink) self.assertEqual(shm2._name, names[1]) if shared_memory._USE_POSIX: # Posix Shared Memory can only be unlinked once. Here we # test an implementation detail that is not observed across # all supported platforms (since WindowsNamedSharedMemory # manages unlinking on its own and unlink() does nothing). # True release of shared memory segment does not necessarily # happen until process exits, depending on the OS platform. name_dblunlink = self._new_shm_name('test01_dblunlink') sms_uno = shared_memory.SharedMemory( name_dblunlink, create=True, size=5000 ) with self.assertRaises(FileNotFoundError): try: self.assertGreaterEqual(sms_uno.size, 5000) sms_duo = shared_memory.SharedMemory(name_dblunlink) sms_duo.unlink() # First shm_unlink() call. sms_duo.close() sms_uno.close() finally: sms_uno.unlink() # A second shm_unlink() call is bad. with self.assertRaises(FileExistsError): # Attempting to create a new shared memory segment with a # name that is already in use triggers an exception. there_can_only_be_one_sms = shared_memory.SharedMemory( name_tsmb, create=True, size=512 ) if shared_memory._USE_POSIX: # Requesting creation of a shared memory segment with the option # to attach to an existing segment, if that name is currently in # use, should not trigger an exception. # Note: Using a smaller size could possibly cause truncation of # the existing segment but is OS platform dependent. In the # case of MacOS/darwin, requesting a smaller size is disallowed. class OptionalAttachSharedMemory(shared_memory.SharedMemory): _flags = os.O_CREAT | os.O_RDWR ok_if_exists_sms = OptionalAttachSharedMemory(name_tsmb) self.assertEqual(ok_if_exists_sms.size, sms.size) ok_if_exists_sms.close() # Attempting to attach to an existing shared memory segment when # no segment exists with the supplied name triggers an exception. with self.assertRaises(FileNotFoundError): nonexisting_sms = shared_memory.SharedMemory('test01_notthere') nonexisting_sms.unlink() # Error should occur on prior line. sms.close() def test_shared_memory_recreate(self): # Test if shared memory segment is created properly, # when _make_filename returns an existing shared memory segment name with unittest.mock.patch( 'multiprocessing.shared_memory._make_filename') as mock_make_filename: NAME_PREFIX = shared_memory._SHM_NAME_PREFIX names = [self._new_shm_name('test03_fn'), self._new_shm_name('test04_fn')] # Prepend NAME_PREFIX which can be '/psm_' or 'wnsm_', necessary # because some POSIX compliant systems require name to start with / names = [NAME_PREFIX + name for name in names] mock_make_filename.side_effect = names shm1 = shared_memory.SharedMemory(create=True, size=1) self.addCleanup(shm1.unlink) self.assertEqual(shm1._name, names[0]) mock_make_filename.side_effect = names shm2 = shared_memory.SharedMemory(create=True, size=1) self.addCleanup(shm2.unlink) self.assertEqual(shm2._name, names[1]) def test_invalid_shared_memory_cration(self): # Test creating a shared memory segment with negative size with self.assertRaises(ValueError): sms_invalid = shared_memory.SharedMemory(create=True, size=-1) # Test creating a shared memory segment with size 0 with self.assertRaises(ValueError): sms_invalid = shared_memory.SharedMemory(create=True, size=0) # Test creating a shared memory segment without size argument with self.assertRaises(ValueError): sms_invalid = shared_memory.SharedMemory(create=True) def test_shared_memory_pickle_unpickle(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(proto=proto): sms = shared_memory.SharedMemory(create=True, size=512) self.addCleanup(sms.unlink) sms.buf[0:6] = b'pickle' # Test pickling pickled_sms = pickle.dumps(sms, protocol=proto) # Test unpickling sms2 = pickle.loads(pickled_sms) self.assertIsInstance(sms2, shared_memory.SharedMemory) self.assertEqual(sms.name, sms2.name) self.assertEqual(bytes(sms.buf[0:6]), b'pickle') self.assertEqual(bytes(sms2.buf[0:6]), b'pickle') # Test that unpickled version is still the same SharedMemory sms.buf[0:6] = b'newval' self.assertEqual(bytes(sms.buf[0:6]), b'newval') self.assertEqual(bytes(sms2.buf[0:6]), b'newval') sms2.buf[0:6] = b'oldval' self.assertEqual(bytes(sms.buf[0:6]), b'oldval') self.assertEqual(bytes(sms2.buf[0:6]), b'oldval') def test_shared_memory_pickle_unpickle_dead_object(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(proto=proto): sms = shared_memory.SharedMemory(create=True, size=512) sms.buf[0:6] = b'pickle' pickled_sms = pickle.dumps(sms, protocol=proto) # Now, we are going to kill the original object. # So, unpickled one won't be able to attach to it. sms.close() sms.unlink() with self.assertRaises(FileNotFoundError): pickle.loads(pickled_sms) def test_shared_memory_across_processes(self): # bpo-40135: don't define shared memory block's name in case of # the failure when we run multiprocessing tests in parallel. sms = shared_memory.SharedMemory(create=True, size=512) self.addCleanup(sms.unlink) # Verify remote attachment to existing block by name is working. p = self.Process( target=self._attach_existing_shmem_then_write, args=(sms.name, b'howdy') ) p.daemon = True p.start() p.join() self.assertEqual(bytes(sms.buf[:5]), b'howdy') # Verify pickling of SharedMemory instance also works. p = self.Process( target=self._attach_existing_shmem_then_write, args=(sms, b'HELLO') ) p.daemon = True p.start() p.join() self.assertEqual(bytes(sms.buf[:5]), b'HELLO') sms.close() @unittest.skipIf(os.name != "posix", "not feasible in non-posix platforms") def test_shared_memory_SharedMemoryServer_ignores_sigint(self): # bpo-36368: protect SharedMemoryManager server process from # KeyboardInterrupt signals. smm = multiprocessing.managers.SharedMemoryManager() smm.start() # make sure the manager works properly at the beginning sl = smm.ShareableList(range(10)) # the manager's server should ignore KeyboardInterrupt signals, and # maintain its connection with the current process, and success when # asked to deliver memory segments. os.kill(smm._process.pid, signal.SIGINT) sl2 = smm.ShareableList(range(10)) # test that the custom signal handler registered in the Manager does # not affect signal handling in the parent process. with self.assertRaises(KeyboardInterrupt): os.kill(os.getpid(), signal.SIGINT) smm.shutdown() @unittest.skipIf(os.name != "posix", "resource_tracker is posix only") def test_shared_memory_SharedMemoryManager_reuses_resource_tracker(self): # bpo-36867: test that a SharedMemoryManager uses the # same resource_tracker process as its parent. cmd = '''if 1: from multiprocessing.managers import SharedMemoryManager smm = SharedMemoryManager() smm.start() sl = smm.ShareableList(range(10)) smm.shutdown() ''' rc, out, err = test.support.script_helper.assert_python_ok('-c', cmd) # Before bpo-36867 was fixed, a SharedMemoryManager not using the same # resource_tracker process as its parent would make the parent's # tracker complain about sl being leaked even though smm.shutdown() # properly released sl. self.assertFalse(err) def test_shared_memory_SharedMemoryManager_basics(self): smm1 = multiprocessing.managers.SharedMemoryManager() with self.assertRaises(ValueError): smm1.SharedMemory(size=9) # Fails if SharedMemoryServer not started smm1.start() lol = [ smm1.ShareableList(range(i)) for i in range(5, 10) ] lom = [ smm1.SharedMemory(size=j) for j in range(32, 128, 16) ] doppleganger_list0 = shared_memory.ShareableList(name=lol[0].shm.name) self.assertEqual(len(doppleganger_list0), 5) doppleganger_shm0 = shared_memory.SharedMemory(name=lom[0].name) self.assertGreaterEqual(len(doppleganger_shm0.buf), 32) held_name = lom[0].name smm1.shutdown() if sys.platform != "win32": # Calls to unlink() have no effect on Windows platform; shared # memory will only be released once final process exits. with self.assertRaises(FileNotFoundError): # No longer there to be attached to again. absent_shm = shared_memory.SharedMemory(name=held_name) with multiprocessing.managers.SharedMemoryManager() as smm2: sl = smm2.ShareableList("howdy") shm = smm2.SharedMemory(size=128) held_name = sl.shm.name if sys.platform != "win32": with self.assertRaises(FileNotFoundError): # No longer there to be attached to again. absent_sl = shared_memory.ShareableList(name=held_name) def test_shared_memory_ShareableList_basics(self): sl = shared_memory.ShareableList( ['howdy', b'HoWdY', -273.154, 100, None, True, 42] ) self.addCleanup(sl.shm.unlink) # Verify __repr__ self.assertIn(sl.shm.name, str(sl)) self.assertIn(str(list(sl)), str(sl)) # Index Out of Range (get) with self.assertRaises(IndexError): sl[7] # Index Out of Range (set) with self.assertRaises(IndexError): sl[7] = 2 # Assign value without format change (str -> str) current_format = sl._get_packing_format(0) sl[0] = 'howdy' self.assertEqual(current_format, sl._get_packing_format(0)) # Verify attributes are readable. self.assertEqual(sl.format, '8s8sdqxxxxxx?xxxxxxxx?q') # Exercise len(). self.assertEqual(len(sl), 7) # Exercise index(). with warnings.catch_warnings(): # Suppress BytesWarning when comparing against b'HoWdY'. warnings.simplefilter('ignore') with self.assertRaises(ValueError): sl.index('100') self.assertEqual(sl.index(100), 3) # Exercise retrieving individual values. self.assertEqual(sl[0], 'howdy') self.assertEqual(sl[-2], True) # Exercise iterability. self.assertEqual( tuple(sl), ('howdy', b'HoWdY', -273.154, 100, None, True, 42) ) # Exercise modifying individual values. sl[3] = 42 self.assertEqual(sl[3], 42) sl[4] = 'some' # Change type at a given position. self.assertEqual(sl[4], 'some') self.assertEqual(sl.format, '8s8sdq8sxxxxxxx?q') with self.assertRaisesRegex(ValueError, "exceeds available storage"): sl[4] = 'far too many' self.assertEqual(sl[4], 'some') sl[0] = 'encodés' # Exactly 8 bytes of UTF-8 data self.assertEqual(sl[0], 'encodés') self.assertEqual(sl[1], b'HoWdY') # no spillage with self.assertRaisesRegex(ValueError, "exceeds available storage"): sl[0] = 'encodées' # Exactly 9 bytes of UTF-8 data self.assertEqual(sl[1], b'HoWdY') with self.assertRaisesRegex(ValueError, "exceeds available storage"): sl[1] = b'123456789' self.assertEqual(sl[1], b'HoWdY') # Exercise count(). with warnings.catch_warnings(): # Suppress BytesWarning when comparing against b'HoWdY'. warnings.simplefilter('ignore') self.assertEqual(sl.count(42), 2) self.assertEqual(sl.count(b'HoWdY'), 1) self.assertEqual(sl.count(b'adios'), 0) # Exercise creating a duplicate. name_duplicate = self._new_shm_name('test03_duplicate') sl_copy = shared_memory.ShareableList(sl, name=name_duplicate) try: self.assertNotEqual(sl.shm.name, sl_copy.shm.name) self.assertEqual(name_duplicate, sl_copy.shm.name) self.assertEqual(list(sl), list(sl_copy)) self.assertEqual(sl.format, sl_copy.format) sl_copy[-1] = 77 self.assertEqual(sl_copy[-1], 77) self.assertNotEqual(sl[-1], 77) sl_copy.shm.close() finally: sl_copy.shm.unlink() # Obtain a second handle on the same ShareableList. sl_tethered = shared_memory.ShareableList(name=sl.shm.name) self.assertEqual(sl.shm.name, sl_tethered.shm.name) sl_tethered[-1] = 880 self.assertEqual(sl[-1], 880) sl_tethered.shm.close() sl.shm.close() # Exercise creating an empty ShareableList. empty_sl = shared_memory.ShareableList() try: self.assertEqual(len(empty_sl), 0) self.assertEqual(empty_sl.format, '') self.assertEqual(empty_sl.count('any'), 0) with self.assertRaises(ValueError): empty_sl.index(None) empty_sl.shm.close() finally: empty_sl.shm.unlink() def test_shared_memory_ShareableList_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(proto=proto): sl = shared_memory.ShareableList(range(10)) self.addCleanup(sl.shm.unlink) serialized_sl = pickle.dumps(sl, protocol=proto) deserialized_sl = pickle.loads(serialized_sl) self.assertIsInstance( deserialized_sl, shared_memory.ShareableList) self.assertEqual(deserialized_sl[-1], 9) self.assertIsNot(sl, deserialized_sl) deserialized_sl[4] = "changed" self.assertEqual(sl[4], "changed") sl[3] = "newvalue" self.assertEqual(deserialized_sl[3], "newvalue") larger_sl = shared_memory.ShareableList(range(400)) self.addCleanup(larger_sl.shm.unlink) serialized_larger_sl = pickle.dumps(larger_sl, protocol=proto) self.assertEqual(len(serialized_sl), len(serialized_larger_sl)) larger_sl.shm.close() deserialized_sl.shm.close() sl.shm.close() def test_shared_memory_ShareableList_pickling_dead_object(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(proto=proto): sl = shared_memory.ShareableList(range(10)) serialized_sl = pickle.dumps(sl, protocol=proto) # Now, we are going to kill the original object. # So, unpickled one won't be able to attach to it. sl.shm.close() sl.shm.unlink() with self.assertRaises(FileNotFoundError): pickle.loads(serialized_sl) def test_shared_memory_cleaned_after_process_termination(self): cmd = '''if 1: import os, time, sys from multiprocessing import shared_memory # Create a shared_memory segment, and send the segment name sm = shared_memory.SharedMemory(create=True, size=10) sys.stdout.write(sm.name + '\\n') sys.stdout.flush() time.sleep(100) ''' with subprocess.Popen([sys.executable, '-E', '-c', cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE) as p: name = p.stdout.readline().strip().decode() # killing abruptly processes holding reference to a shared memory # segment should not leak the given memory segment. p.terminate() p.wait() err_msg = ("A SharedMemory segment was leaked after " "a process was abruptly terminated") for _ in support.sleeping_retry(support.LONG_TIMEOUT, err_msg): try: smm = shared_memory.SharedMemory(name, create=False) except FileNotFoundError: break if os.name == 'posix': # Without this line it was raising warnings like: # UserWarning: resource_tracker: # There appear to be 1 leaked shared_memory # objects to clean up at shutdown # See: https://bugs.python.org/issue45209 resource_tracker.unregister(f"/{name}", "shared_memory") # A warning was emitted by the subprocess' own # resource_tracker (on Windows, shared memory segments # are released automatically by the OS). err = p.stderr.read().decode() self.assertIn( "resource_tracker: There appear to be 1 leaked " "shared_memory objects to clean up at shutdown", err) # # Test to verify that `Finalize` works. # class _TestFinalize(BaseTestCase): ALLOWED_TYPES = ('processes',) def setUp(self): self.registry_backup = util._finalizer_registry.copy() util._finalizer_registry.clear() def tearDown(self): gc.collect() # For PyPy or other GCs. self.assertFalse(util._finalizer_registry) util._finalizer_registry.update(self.registry_backup) @classmethod def _test_finalize(cls, conn): class Foo(object): pass a = Foo() util.Finalize(a, conn.send, args=('a',)) del a # triggers callback for a gc.collect() # For PyPy or other GCs. b = Foo() close_b = util.Finalize(b, conn.send, args=('b',)) close_b() # triggers callback for b close_b() # does nothing because callback has already been called del b # does nothing because callback has already been called gc.collect() # For PyPy or other GCs. c = Foo() util.Finalize(c, conn.send, args=('c',)) d10 = Foo() util.Finalize(d10, conn.send, args=('d10',), exitpriority=1) d01 = Foo() util.Finalize(d01, conn.send, args=('d01',), exitpriority=0) d02 = Foo() util.Finalize(d02, conn.send, args=('d02',), exitpriority=0) d03 = Foo() util.Finalize(d03, conn.send, args=('d03',), exitpriority=0) util.Finalize(None, conn.send, args=('e',), exitpriority=-10) util.Finalize(None, conn.send, args=('STOP',), exitpriority=-100) # call multiprocessing's cleanup function then exit process without # garbage collecting locals util._exit_function() conn.close() os._exit(0) def test_finalize(self): conn, child_conn = self.Pipe() p = self.Process(target=self._test_finalize, args=(child_conn,)) p.daemon = True p.start() p.join() result = [obj for obj in iter(conn.recv, 'STOP')] self.assertEqual(result, ['a', 'b', 'd10', 'd03', 'd02', 'd01', 'e']) @support.requires_resource('cpu') def test_thread_safety(self): # bpo-24484: _run_finalizers() should be thread-safe def cb(): pass class Foo(object): def __init__(self): self.ref = self # create reference cycle # insert finalizer at random key util.Finalize(self, cb, exitpriority=random.randint(1, 100)) finish = False exc = None def run_finalizers(): nonlocal exc while not finish: time.sleep(random.random() * 1e-1) try: # A GC run will eventually happen during this, # collecting stale Foo's and mutating the registry util._run_finalizers() except Exception as e: exc = e def make_finalizers(): nonlocal exc d = {} while not finish: try: # Old Foo's get gradually replaced and later # collected by the GC (because of the cyclic ref) d[random.getrandbits(5)] = {Foo() for i in range(10)} except Exception as e: exc = e d.clear() old_interval = sys.getswitchinterval() old_threshold = gc.get_threshold() try: sys.setswitchinterval(1e-6) gc.set_threshold(5, 5, 5) threads = [threading.Thread(target=run_finalizers), threading.Thread(target=make_finalizers)] with threading_helper.start_threads(threads): time.sleep(4.0) # Wait a bit to trigger race condition finish = True if exc is not None: raise exc finally: sys.setswitchinterval(old_interval) gc.set_threshold(*old_threshold) gc.collect() # Collect remaining Foo's # # Test that from ... import * works for each module # class _TestImportStar(unittest.TestCase): def get_module_names(self): import glob folder = os.path.dirname(multiprocessing.__file__) pattern = os.path.join(glob.escape(folder), '*.py') files = glob.glob(pattern) modules = [os.path.splitext(os.path.split(f)[1])[0] for f in files] modules = ['multiprocessing.' + m for m in modules] modules.remove('multiprocessing.__init__') modules.append('multiprocessing') return modules def test_import(self): modules = self.get_module_names() if sys.platform == 'win32': modules.remove('multiprocessing.popen_fork') modules.remove('multiprocessing.popen_forkserver') modules.remove('multiprocessing.popen_spawn_posix') else: modules.remove('multiprocessing.popen_spawn_win32') if not HAS_REDUCTION: modules.remove('multiprocessing.popen_forkserver') if c_int is None: # This module requires _ctypes modules.remove('multiprocessing.sharedctypes') for name in modules: __import__(name) mod = sys.modules[name] self.assertTrue(hasattr(mod, '__all__'), name) for attr in mod.__all__: self.assertTrue( hasattr(mod, attr), '%r does not have attribute %r' % (mod, attr) ) # # Quick test that logging works -- does not test logging output # class _TestLogging(BaseTestCase): ALLOWED_TYPES = ('processes',) def test_enable_logging(self): logger = multiprocessing.get_logger() logger.setLevel(util.SUBWARNING) self.assertTrue(logger is not None) logger.debug('this will not be printed') logger.info('nor will this') logger.setLevel(LOG_LEVEL) @classmethod def _test_level(cls, conn): logger = multiprocessing.get_logger() conn.send(logger.getEffectiveLevel()) def test_level(self): LEVEL1 = 32 LEVEL2 = 37 logger = multiprocessing.get_logger() root_logger = logging.getLogger() root_level = root_logger.level reader, writer = multiprocessing.Pipe(duplex=False) logger.setLevel(LEVEL1) p = self.Process(target=self._test_level, args=(writer,)) p.start() self.assertEqual(LEVEL1, reader.recv()) p.join() p.close() logger.setLevel(logging.NOTSET) root_logger.setLevel(LEVEL2) p = self.Process(target=self._test_level, args=(writer,)) p.start() self.assertEqual(LEVEL2, reader.recv()) p.join() p.close() root_logger.setLevel(root_level) logger.setLevel(level=LOG_LEVEL) # class _TestLoggingProcessName(BaseTestCase): # # def handle(self, record): # assert record.processName == multiprocessing.current_process().name # self.__handled = True # # def test_logging(self): # handler = logging.Handler() # handler.handle = self.handle # self.__handled = False # # Bypass getLogger() and side-effects # logger = logging.getLoggerClass()( # 'multiprocessing.test.TestLoggingProcessName') # logger.addHandler(handler) # logger.propagate = False # # logger.warn('foo') # assert self.__handled # # Check that Process.join() retries if os.waitpid() fails with EINTR # class _TestPollEintr(BaseTestCase): ALLOWED_TYPES = ('processes',) @classmethod def _killer(cls, pid): time.sleep(0.1) os.kill(pid, signal.SIGUSR1) @unittest.skipUnless(hasattr(signal, 'SIGUSR1'), 'requires SIGUSR1') def test_poll_eintr(self): got_signal = [False] def record(*args): got_signal[0] = True pid = os.getpid() oldhandler = signal.signal(signal.SIGUSR1, record) try: killer = self.Process(target=self._killer, args=(pid,)) killer.start() try: p = self.Process(target=time.sleep, args=(2,)) p.start() p.join() finally: killer.join() self.assertTrue(got_signal[0]) self.assertEqual(p.exitcode, 0) finally: signal.signal(signal.SIGUSR1, oldhandler) # # Test to verify handle verification, see issue 3321 # class TestInvalidHandle(unittest.TestCase): @unittest.skipIf(WIN32, "skipped on Windows") def test_invalid_handles(self): conn = multiprocessing.connection.Connection(44977608) # check that poll() doesn't crash try: conn.poll() except (ValueError, OSError): pass finally: # Hack private attribute _handle to avoid printing an error # in conn.__del__ conn._handle = None self.assertRaises((ValueError, OSError), multiprocessing.connection.Connection, -1) @hashlib_helper.requires_hashdigest('sha256') class OtherTest(unittest.TestCase): # TODO: add more tests for deliver/answer challenge. def test_deliver_challenge_auth_failure(self): class _FakeConnection(object): def recv_bytes(self, size): return b'something bogus' def send_bytes(self, data): pass self.assertRaises(multiprocessing.AuthenticationError, multiprocessing.connection.deliver_challenge, _FakeConnection(), b'abc') def test_answer_challenge_auth_failure(self): class _FakeConnection(object): def __init__(self): self.count = 0 def recv_bytes(self, size): self.count += 1 if self.count == 1: return multiprocessing.connection._CHALLENGE elif self.count == 2: return b'something bogus' return b'' def send_bytes(self, data): pass self.assertRaises(multiprocessing.AuthenticationError, multiprocessing.connection.answer_challenge, _FakeConnection(), b'abc') @hashlib_helper.requires_hashdigest('md5') @hashlib_helper.requires_hashdigest('sha256') class ChallengeResponseTest(unittest.TestCase): authkey = b'supadupasecretkey' def create_response(self, message): return multiprocessing.connection._create_response( self.authkey, message ) def verify_challenge(self, message, response): return multiprocessing.connection._verify_challenge( self.authkey, message, response ) def test_challengeresponse(self): for algo in [None, "md5", "sha256"]: with self.subTest(f"{algo=}"): msg = b'is-twenty-bytes-long' # The length of a legacy message. if algo: prefix = b'{%s}' % algo.encode("ascii") else: prefix = b'' msg = prefix + msg response = self.create_response(msg) if not response.startswith(prefix): self.fail(response) self.verify_challenge(msg, response) # TODO(gpshead): We need integration tests for handshakes between modern # deliver_challenge() and verify_response() code and connections running a # test-local copy of the legacy Python <=3.11 implementations. # TODO(gpshead): properly annotate tests for requires_hashdigest rather than # only running these on a platform supporting everything. otherwise logic # issues preventing it from working on FIPS mode setups will be hidden. # # Test Manager.start()/Pool.__init__() initializer feature - see issue 5585 # def initializer(ns): ns.test += 1 @hashlib_helper.requires_hashdigest('sha256') class TestInitializers(unittest.TestCase): def setUp(self): self.mgr = multiprocessing.Manager() self.ns = self.mgr.Namespace() self.ns.test = 0 def tearDown(self): self.mgr.shutdown() self.mgr.join() def test_manager_initializer(self): m = multiprocessing.managers.SyncManager() self.assertRaises(TypeError, m.start, 1) m.start(initializer, (self.ns,)) self.assertEqual(self.ns.test, 1) m.shutdown() m.join() def test_pool_initializer(self): self.assertRaises(TypeError, multiprocessing.Pool, initializer=1) p = multiprocessing.Pool(1, initializer, (self.ns,)) p.close() p.join() self.assertEqual(self.ns.test, 1) # # Issue 5155, 5313, 5331: Test process in processes # Verifies os.close(sys.stdin.fileno) vs. sys.stdin.close() behavior # def _this_sub_process(q): try: item = q.get(block=False) except pyqueue.Empty: pass def _test_process(): queue = multiprocessing.Queue() subProc = multiprocessing.Process(target=_this_sub_process, args=(queue,)) subProc.daemon = True subProc.start() subProc.join() def _afunc(x): return x*x def pool_in_process(): pool = multiprocessing.Pool(processes=4) x = pool.map(_afunc, [1, 2, 3, 4, 5, 6, 7]) pool.close() pool.join() class _file_like(object): def __init__(self, delegate): self._delegate = delegate self._pid = None @property def cache(self): pid = os.getpid() # There are no race conditions since fork keeps only the running thread if pid != self._pid: self._pid = pid self._cache = [] return self._cache def write(self, data): self.cache.append(data) def flush(self): self._delegate.write(''.join(self.cache)) self._cache = [] class TestStdinBadfiledescriptor(unittest.TestCase): def test_queue_in_process(self): proc = multiprocessing.Process(target=_test_process) proc.start() proc.join() def test_pool_in_process(self): p = multiprocessing.Process(target=pool_in_process) p.start() p.join() def test_flushing(self): sio = io.StringIO() flike = _file_like(sio) flike.write('foo') proc = multiprocessing.Process(target=lambda: flike.flush()) flike.flush() assert sio.getvalue() == 'foo' class TestWait(unittest.TestCase): @classmethod def _child_test_wait(cls, w, slow): for i in range(10): if slow: time.sleep(random.random() * 0.100) w.send((i, os.getpid())) w.close() def test_wait(self, slow=False): from multiprocessing.connection import wait readers = [] procs = [] messages = [] for i in range(4): r, w = multiprocessing.Pipe(duplex=False) p = multiprocessing.Process(target=self._child_test_wait, args=(w, slow)) p.daemon = True p.start() w.close() readers.append(r) procs.append(p) self.addCleanup(p.join) while readers: for r in wait(readers): try: msg = r.recv() except EOFError: readers.remove(r) r.close() else: messages.append(msg) messages.sort() expected = sorted((i, p.pid) for i in range(10) for p in procs) self.assertEqual(messages, expected) @classmethod def _child_test_wait_socket(cls, address, slow): s = socket.socket() s.connect(address) for i in range(10): if slow: time.sleep(random.random() * 0.100) s.sendall(('%s\n' % i).encode('ascii')) s.close() def test_wait_socket(self, slow=False): from multiprocessing.connection import wait l = socket.create_server((socket_helper.HOST, 0)) addr = l.getsockname() readers = [] procs = [] dic = {} for i in range(4): p = multiprocessing.Process(target=self._child_test_wait_socket, args=(addr, slow)) p.daemon = True p.start() procs.append(p) self.addCleanup(p.join) for i in range(4): r, _ = l.accept() readers.append(r) dic[r] = [] l.close() while readers: for r in wait(readers): msg = r.recv(32) if not msg: readers.remove(r) r.close() else: dic[r].append(msg) expected = ''.join('%s\n' % i for i in range(10)).encode('ascii') for v in dic.values(): self.assertEqual(b''.join(v), expected) def test_wait_slow(self): self.test_wait(True) def test_wait_socket_slow(self): self.test_wait_socket(True) @support.requires_resource('walltime') def test_wait_timeout(self): from multiprocessing.connection import wait timeout = 5.0 # seconds a, b = multiprocessing.Pipe() start = time.monotonic() res = wait([a, b], timeout) delta = time.monotonic() - start self.assertEqual(res, []) self.assertGreater(delta, timeout - CLOCK_RES) b.send(None) res = wait([a, b], 20) self.assertEqual(res, [a]) @classmethod def signal_and_sleep(cls, sem, period): sem.release() time.sleep(period) @support.requires_resource('walltime') def test_wait_integer(self): from multiprocessing.connection import wait expected = 3 sorted_ = lambda l: sorted(l, key=lambda x: id(x)) sem = multiprocessing.Semaphore(0) a, b = multiprocessing.Pipe() p = multiprocessing.Process(target=self.signal_and_sleep, args=(sem, expected)) p.start() self.assertIsInstance(p.sentinel, int) self.assertTrue(sem.acquire(timeout=20)) start = time.monotonic() res = wait([a, p.sentinel, b], expected + 20) delta = time.monotonic() - start self.assertEqual(res, [p.sentinel]) self.assertLess(delta, expected + 2) self.assertGreater(delta, expected - 2) a.send(None) start = time.monotonic() res = wait([a, p.sentinel, b], 20) delta = time.monotonic() - start self.assertEqual(sorted_(res), sorted_([p.sentinel, b])) self.assertLess(delta, 0.4) b.send(None) start = time.monotonic() res = wait([a, p.sentinel, b], 20) delta = time.monotonic() - start self.assertEqual(sorted_(res), sorted_([a, p.sentinel, b])) self.assertLess(delta, 0.4) p.terminate() p.join() def test_neg_timeout(self): from multiprocessing.connection import wait a, b = multiprocessing.Pipe() t = time.monotonic() res = wait([a], timeout=-1) t = time.monotonic() - t self.assertEqual(res, []) self.assertLess(t, 1) a.close() b.close() # # Issue 14151: Test invalid family on invalid environment # class TestInvalidFamily(unittest.TestCase): @unittest.skipIf(WIN32, "skipped on Windows") def test_invalid_family(self): with self.assertRaises(ValueError): multiprocessing.connection.Listener(r'\\.\test') @unittest.skipUnless(WIN32, "skipped on non-Windows platforms") def test_invalid_family_win32(self): with self.assertRaises(ValueError): multiprocessing.connection.Listener('/var/test.pipe') # # Issue 12098: check sys.flags of child matches that for parent # class TestFlags(unittest.TestCase): @classmethod def run_in_grandchild(cls, conn): conn.send(tuple(sys.flags)) @classmethod def run_in_child(cls, start_method): import json mp = multiprocessing.get_context(start_method) r, w = mp.Pipe(duplex=False) p = mp.Process(target=cls.run_in_grandchild, args=(w,)) with warnings.catch_warnings(category=DeprecationWarning): p.start() grandchild_flags = r.recv() p.join() r.close() w.close() flags = (tuple(sys.flags), grandchild_flags) print(json.dumps(flags)) def test_flags(self): import json # start child process using unusual flags prog = ( 'from test._test_multiprocessing import TestFlags; ' f'TestFlags.run_in_child({multiprocessing.get_start_method()!r})' ) data = subprocess.check_output( [sys.executable, '-E', '-S', '-O', '-c', prog]) child_flags, grandchild_flags = json.loads(data.decode('ascii')) self.assertEqual(child_flags, grandchild_flags) # # Test interaction with socket timeouts - see Issue #6056 # class TestTimeouts(unittest.TestCase): @classmethod def _test_timeout(cls, child, address): time.sleep(1) child.send(123) child.close() conn = multiprocessing.connection.Client(address) conn.send(456) conn.close() def test_timeout(self): old_timeout = socket.getdefaulttimeout() try: socket.setdefaulttimeout(0.1) parent, child = multiprocessing.Pipe(duplex=True) l = multiprocessing.connection.Listener(family='AF_INET') p = multiprocessing.Process(target=self._test_timeout, args=(child, l.address)) p.start() child.close() self.assertEqual(parent.recv(), 123) parent.close() conn = l.accept() self.assertEqual(conn.recv(), 456) conn.close() l.close() join_process(p) finally: socket.setdefaulttimeout(old_timeout) # # Test what happens with no "if __name__ == '__main__'" # class TestNoForkBomb(unittest.TestCase): def test_noforkbomb(self): sm = multiprocessing.get_start_method() name = os.path.join(os.path.dirname(__file__), 'mp_fork_bomb.py') if sm != 'fork': rc, out, err = test.support.script_helper.assert_python_failure(name, sm) self.assertEqual(out, b'') self.assertIn(b'RuntimeError', err) else: rc, out, err = test.support.script_helper.assert_python_ok(name, sm) self.assertEqual(out.rstrip(), b'123') self.assertEqual(err, b'') # # Issue #17555: ForkAwareThreadLock # class TestForkAwareThreadLock(unittest.TestCase): # We recursively start processes. Issue #17555 meant that the # after fork registry would get duplicate entries for the same # lock. The size of the registry at generation n was ~2**n. @classmethod def child(cls, n, conn): if n > 1: p = multiprocessing.Process(target=cls.child, args=(n-1, conn)) p.start() conn.close() join_process(p) else: conn.send(len(util._afterfork_registry)) conn.close() def test_lock(self): r, w = multiprocessing.Pipe(False) l = util.ForkAwareThreadLock() old_size = len(util._afterfork_registry) p = multiprocessing.Process(target=self.child, args=(5, w)) p.start() w.close() new_size = r.recv() join_process(p) self.assertLessEqual(new_size, old_size) # # Check that non-forked child processes do not inherit unneeded fds/handles # class TestCloseFds(unittest.TestCase): def get_high_socket_fd(self): if WIN32: # The child process will not have any socket handles, so # calling socket.fromfd() should produce WSAENOTSOCK even # if there is a handle of the same number. return socket.socket().detach() else: # We want to produce a socket with an fd high enough that a # freshly created child process will not have any fds as high. fd = socket.socket().detach() to_close = [] while fd < 50: to_close.append(fd) fd = os.dup(fd) for x in to_close: os.close(x) return fd def close(self, fd): if WIN32: socket.socket(socket.AF_INET, socket.SOCK_STREAM, fileno=fd).close() else: os.close(fd) @classmethod def _test_closefds(cls, conn, fd): try: s = socket.fromfd(fd, socket.AF_INET, socket.SOCK_STREAM) except Exception as e: conn.send(e) else: s.close() conn.send(None) def test_closefd(self): if not HAS_REDUCTION: raise unittest.SkipTest('requires fd pickling') reader, writer = multiprocessing.Pipe() fd = self.get_high_socket_fd() try: p = multiprocessing.Process(target=self._test_closefds, args=(writer, fd)) p.start() writer.close() e = reader.recv() join_process(p) finally: self.close(fd) writer.close() reader.close() if multiprocessing.get_start_method() == 'fork': self.assertIs(e, None) else: WSAENOTSOCK = 10038 self.assertIsInstance(e, OSError) self.assertTrue(e.errno == errno.EBADF or e.winerror == WSAENOTSOCK, e) # # Issue #17097: EINTR should be ignored by recv(), send(), accept() etc # class TestIgnoreEINTR(unittest.TestCase): # Sending CONN_MAX_SIZE bytes into a multiprocessing pipe must block CONN_MAX_SIZE = max(support.PIPE_MAX_SIZE, support.SOCK_MAX_SIZE) @classmethod def _test_ignore(cls, conn): def handler(signum, frame): pass signal.signal(signal.SIGUSR1, handler) conn.send('ready') x = conn.recv() conn.send(x) conn.send_bytes(b'x' * cls.CONN_MAX_SIZE) @unittest.skipUnless(hasattr(signal, 'SIGUSR1'), 'requires SIGUSR1') def test_ignore(self): conn, child_conn = multiprocessing.Pipe() try: p = multiprocessing.Process(target=self._test_ignore, args=(child_conn,)) p.daemon = True p.start() child_conn.close() self.assertEqual(conn.recv(), 'ready') time.sleep(0.1) os.kill(p.pid, signal.SIGUSR1) time.sleep(0.1) conn.send(1234) self.assertEqual(conn.recv(), 1234) time.sleep(0.1) os.kill(p.pid, signal.SIGUSR1) self.assertEqual(conn.recv_bytes(), b'x' * self.CONN_MAX_SIZE) time.sleep(0.1) p.join() finally: conn.close() @classmethod def _test_ignore_listener(cls, conn): def handler(signum, frame): pass signal.signal(signal.SIGUSR1, handler) with multiprocessing.connection.Listener() as l: conn.send(l.address) a = l.accept() a.send('welcome') @unittest.skipUnless(hasattr(signal, 'SIGUSR1'), 'requires SIGUSR1') def test_ignore_listener(self): conn, child_conn = multiprocessing.Pipe() try: p = multiprocessing.Process(target=self._test_ignore_listener, args=(child_conn,)) p.daemon = True p.start() child_conn.close() address = conn.recv() time.sleep(0.1) os.kill(p.pid, signal.SIGUSR1) time.sleep(0.1) client = multiprocessing.connection.Client(address) self.assertEqual(client.recv(), 'welcome') p.join() finally: conn.close() class TestStartMethod(unittest.TestCase): @classmethod def _check_context(cls, conn): conn.send(multiprocessing.get_start_method()) def check_context(self, ctx): r, w = ctx.Pipe(duplex=False) p = ctx.Process(target=self._check_context, args=(w,)) p.start() w.close() child_method = r.recv() r.close() p.join() self.assertEqual(child_method, ctx.get_start_method()) def test_context(self): for method in ('fork', 'spawn', 'forkserver'): try: ctx = multiprocessing.get_context(method) except ValueError: continue self.assertEqual(ctx.get_start_method(), method) self.assertIs(ctx.get_context(), ctx) self.assertRaises(ValueError, ctx.set_start_method, 'spawn') self.assertRaises(ValueError, ctx.set_start_method, None) self.check_context(ctx) def test_context_check_module_types(self): try: ctx = multiprocessing.get_context('forkserver') except ValueError: raise unittest.SkipTest('forkserver should be available') with self.assertRaisesRegex(TypeError, 'module_names must be a list of strings'): ctx.set_forkserver_preload([1, 2, 3]) def test_set_get(self): multiprocessing.set_forkserver_preload(PRELOAD) count = 0 old_method = multiprocessing.get_start_method() try: for method in ('fork', 'spawn', 'forkserver'): try: multiprocessing.set_start_method(method, force=True) except ValueError: continue self.assertEqual(multiprocessing.get_start_method(), method) ctx = multiprocessing.get_context() self.assertEqual(ctx.get_start_method(), method) self.assertTrue(type(ctx).__name__.lower().startswith(method)) self.assertTrue( ctx.Process.__name__.lower().startswith(method)) self.check_context(multiprocessing) count += 1 finally: multiprocessing.set_start_method(old_method, force=True) self.assertGreaterEqual(count, 1) def test_get_all(self): methods = multiprocessing.get_all_start_methods() if sys.platform == 'win32': self.assertEqual(methods, ['spawn']) else: self.assertTrue(methods == ['fork', 'spawn'] or methods == ['spawn', 'fork'] or methods == ['fork', 'spawn', 'forkserver'] or methods == ['spawn', 'fork', 'forkserver']) def test_preload_resources(self): if multiprocessing.get_start_method() != 'forkserver': self.skipTest("test only relevant for 'forkserver' method") name = os.path.join(os.path.dirname(__file__), 'mp_preload.py') rc, out, err = test.support.script_helper.assert_python_ok(name) out = out.decode() err = err.decode() if out.rstrip() != 'ok' or err != '': print(out) print(err) self.fail("failed spawning forkserver or grandchild") @unittest.skipIf(sys.platform == "win32", "Only Spawn on windows so no risk of mixing") @only_run_in_spawn_testsuite("avoids redundant testing.") def test_mixed_startmethod(self): # Fork-based locks cannot be used with spawned process for process_method in ["spawn", "forkserver"]: queue = multiprocessing.get_context("fork").Queue() process_ctx = multiprocessing.get_context(process_method) p = process_ctx.Process(target=close_queue, args=(queue,)) err_msg = "A SemLock created in a fork" with self.assertRaisesRegex(RuntimeError, err_msg): p.start() # non-fork-based locks can be used with all other start methods for queue_method in ["spawn", "forkserver"]: for process_method in multiprocessing.get_all_start_methods(): queue = multiprocessing.get_context(queue_method).Queue() process_ctx = multiprocessing.get_context(process_method) p = process_ctx.Process(target=close_queue, args=(queue,)) p.start() p.join() @classmethod def _put_one_in_queue(cls, queue): queue.put(1) @classmethod def _put_two_and_nest_once(cls, queue): queue.put(2) process = multiprocessing.Process(target=cls._put_one_in_queue, args=(queue,)) process.start() process.join() def test_nested_startmethod(self): # gh-108520: Regression test to ensure that child process can send its # arguments to another process queue = multiprocessing.Queue() process = multiprocessing.Process(target=self._put_two_and_nest_once, args=(queue,)) process.start() process.join() results = [] while not queue.empty(): results.append(queue.get()) # gh-109706: queue.put(1) can write into the queue before queue.put(2), # there is no synchronization in the test. self.assertSetEqual(set(results), set([2, 1])) @unittest.skipIf(sys.platform == "win32", "test semantics don't make sense on Windows") class TestResourceTracker(unittest.TestCase): def test_resource_tracker(self): # # Check that killing process does not leak named semaphores # cmd = '''if 1: import time, os import multiprocessing as mp from multiprocessing import resource_tracker from multiprocessing.shared_memory import SharedMemory mp.set_start_method("spawn") def create_and_register_resource(rtype): if rtype == "semaphore": lock = mp.Lock() return lock, lock._semlock.name elif rtype == "shared_memory": sm = SharedMemory(create=True, size=10) return sm, sm._name else: raise ValueError( "Resource type {{}} not understood".format(rtype)) resource1, rname1 = create_and_register_resource("{rtype}") resource2, rname2 = create_and_register_resource("{rtype}") os.write({w}, rname1.encode("ascii") + b"\\n") os.write({w}, rname2.encode("ascii") + b"\\n") time.sleep(10) ''' for rtype in resource_tracker._CLEANUP_FUNCS: with self.subTest(rtype=rtype): if rtype == "noop": # Artefact resource type used by the resource_tracker continue r, w = os.pipe() p = subprocess.Popen([sys.executable, '-E', '-c', cmd.format(w=w, rtype=rtype)], pass_fds=[w], stderr=subprocess.PIPE) os.close(w) with open(r, 'rb', closefd=True) as f: name1 = f.readline().rstrip().decode('ascii') name2 = f.readline().rstrip().decode('ascii') _resource_unlink(name1, rtype) p.terminate() p.wait() err_msg = (f"A {rtype} resource was leaked after a process was " f"abruptly terminated") for _ in support.sleeping_retry(support.SHORT_TIMEOUT, err_msg): try: _resource_unlink(name2, rtype) except OSError as e: # docs say it should be ENOENT, but OSX seems to give # EINVAL self.assertIn(e.errno, (errno.ENOENT, errno.EINVAL)) break err = p.stderr.read().decode('utf-8') p.stderr.close() expected = ('resource_tracker: There appear to be 2 leaked {} ' 'objects'.format( rtype)) self.assertRegex(err, expected) self.assertRegex(err, r'resource_tracker: %r: \[Errno' % name1) def check_resource_tracker_death(self, signum, should_die): # bpo-31310: if the semaphore tracker process has died, it should # be restarted implicitly. from multiprocessing.resource_tracker import _resource_tracker pid = _resource_tracker._pid if pid is not None: os.kill(pid, signal.SIGKILL) support.wait_process(pid, exitcode=-signal.SIGKILL) with warnings.catch_warnings(): warnings.simplefilter("ignore") _resource_tracker.ensure_running() pid = _resource_tracker._pid os.kill(pid, signum) time.sleep(1.0) # give it time to die ctx = multiprocessing.get_context("spawn") with warnings.catch_warnings(record=True) as all_warn: warnings.simplefilter("always") sem = ctx.Semaphore() sem.acquire() sem.release() wr = weakref.ref(sem) # ensure `sem` gets collected, which triggers communication with # the semaphore tracker del sem gc.collect() self.assertIsNone(wr()) if should_die: self.assertEqual(len(all_warn), 1) the_warn = all_warn[0] self.assertTrue(issubclass(the_warn.category, UserWarning)) self.assertTrue("resource_tracker: process died" in str(the_warn.message)) else: self.assertEqual(len(all_warn), 0) def test_resource_tracker_sigint(self): # Catchable signal (ignored by semaphore tracker) self.check_resource_tracker_death(signal.SIGINT, False) def test_resource_tracker_sigterm(self): # Catchable signal (ignored by semaphore tracker) self.check_resource_tracker_death(signal.SIGTERM, False) def test_resource_tracker_sigkill(self): # Uncatchable signal. self.check_resource_tracker_death(signal.SIGKILL, True) @staticmethod def _is_resource_tracker_reused(conn, pid): from multiprocessing.resource_tracker import _resource_tracker _resource_tracker.ensure_running() # The pid should be None in the child process, expect for the fork # context. It should not be a new value. reused = _resource_tracker._pid in (None, pid) reused &= _resource_tracker._check_alive() conn.send(reused) def test_resource_tracker_reused(self): from multiprocessing.resource_tracker import _resource_tracker _resource_tracker.ensure_running() pid = _resource_tracker._pid r, w = multiprocessing.Pipe(duplex=False) p = multiprocessing.Process(target=self._is_resource_tracker_reused, args=(w, pid)) p.start() is_resource_tracker_reused = r.recv() # Clean up p.join() w.close() r.close() self.assertTrue(is_resource_tracker_reused) def test_too_long_name_resource(self): # gh-96819: Resource names that will make the length of a write to a pipe # greater than PIPE_BUF are not allowed rtype = "shared_memory" too_long_name_resource = "a" * (512 - len(rtype)) with self.assertRaises(ValueError): resource_tracker.register(too_long_name_resource, rtype) class TestSimpleQueue(unittest.TestCase): @classmethod def _test_empty(cls, queue, child_can_start, parent_can_continue): child_can_start.wait() # issue 30301, could fail under spawn and forkserver try: queue.put(queue.empty()) queue.put(queue.empty()) finally: parent_can_continue.set() def test_empty(self): queue = multiprocessing.SimpleQueue() child_can_start = multiprocessing.Event() parent_can_continue = multiprocessing.Event() proc = multiprocessing.Process( target=self._test_empty, args=(queue, child_can_start, parent_can_continue) ) proc.daemon = True proc.start() self.assertTrue(queue.empty()) child_can_start.set() parent_can_continue.wait() self.assertFalse(queue.empty()) self.assertEqual(queue.get(), True) self.assertEqual(queue.get(), False) self.assertTrue(queue.empty()) proc.join() def test_close(self): queue = multiprocessing.SimpleQueue() queue.close() # closing a queue twice should not fail queue.close() # Test specific to CPython since it tests private attributes @test.support.cpython_only def test_closed(self): queue = multiprocessing.SimpleQueue() queue.close() self.assertTrue(queue._reader.closed) self.assertTrue(queue._writer.closed) class TestPoolNotLeakOnFailure(unittest.TestCase): def test_release_unused_processes(self): # Issue #19675: During pool creation, if we can't create a process, # don't leak already created ones. will_fail_in = 3 forked_processes = [] class FailingForkProcess: def __init__(self, **kwargs): self.name = 'Fake Process' self.exitcode = None self.state = None forked_processes.append(self) def start(self): nonlocal will_fail_in if will_fail_in <= 0: raise OSError("Manually induced OSError") will_fail_in -= 1 self.state = 'started' def terminate(self): self.state = 'stopping' def join(self): if self.state == 'stopping': self.state = 'stopped' def is_alive(self): return self.state == 'started' or self.state == 'stopping' with self.assertRaisesRegex(OSError, 'Manually induced OSError'): p = multiprocessing.pool.Pool(5, context=unittest.mock.MagicMock( Process=FailingForkProcess)) p.close() p.join() self.assertFalse( any(process.is_alive() for process in forked_processes)) @hashlib_helper.requires_hashdigest('sha256') class TestSyncManagerTypes(unittest.TestCase): """Test all the types which can be shared between a parent and a child process by using a manager which acts as an intermediary between them. In the following unit-tests the base type is created in the parent process, the @classmethod represents the worker process and the shared object is readable and editable between the two. # The child. @classmethod def _test_list(cls, obj): assert obj[0] == 5 assert obj.append(6) # The parent. def test_list(self): o = self.manager.list() o.append(5) self.run_worker(self._test_list, o) assert o[1] == 6 """ manager_class = multiprocessing.managers.SyncManager def setUp(self): self.manager = self.manager_class() self.manager.start() self.proc = None def tearDown(self): if self.proc is not None and self.proc.is_alive(): self.proc.terminate() self.proc.join() self.manager.shutdown() self.manager = None self.proc = None @classmethod def setUpClass(cls): support.reap_children() tearDownClass = setUpClass def wait_proc_exit(self): # Only the manager process should be returned by active_children() # but this can take a bit on slow machines, so wait a few seconds # if there are other children too (see #17395). join_process(self.proc) timeout = WAIT_ACTIVE_CHILDREN_TIMEOUT start_time = time.monotonic() for _ in support.sleeping_retry(timeout, error=False): if len(multiprocessing.active_children()) <= 1: break else: dt = time.monotonic() - start_time support.environment_altered = True support.print_warning(f"multiprocessing.Manager still has " f"{multiprocessing.active_children()} " f"active children after {dt:.1f} seconds") def run_worker(self, worker, obj): self.proc = multiprocessing.Process(target=worker, args=(obj, )) self.proc.daemon = True self.proc.start() self.wait_proc_exit() self.assertEqual(self.proc.exitcode, 0) @classmethod def _test_event(cls, obj): assert obj.is_set() obj.wait() obj.clear() obj.wait(0.001) def test_event(self): o = self.manager.Event() o.set() self.run_worker(self._test_event, o) assert not o.is_set() o.wait(0.001) @classmethod def _test_lock(cls, obj): obj.acquire() def test_lock(self, lname="Lock"): o = getattr(self.manager, lname)() self.run_worker(self._test_lock, o) o.release() self.assertRaises(RuntimeError, o.release) # already released @classmethod def _test_rlock(cls, obj): obj.acquire() obj.release() def test_rlock(self, lname="Lock"): o = getattr(self.manager, lname)() self.run_worker(self._test_rlock, o) @classmethod def _test_semaphore(cls, obj): obj.acquire() def test_semaphore(self, sname="Semaphore"): o = getattr(self.manager, sname)() self.run_worker(self._test_semaphore, o) o.release() def test_bounded_semaphore(self): self.test_semaphore(sname="BoundedSemaphore") @classmethod def _test_condition(cls, obj): obj.acquire() obj.release() def test_condition(self): o = self.manager.Condition() self.run_worker(self._test_condition, o) @classmethod def _test_barrier(cls, obj): assert obj.parties == 5 obj.reset() def test_barrier(self): o = self.manager.Barrier(5) self.run_worker(self._test_barrier, o) @classmethod def _test_pool(cls, obj): # TODO: fix https://bugs.python.org/issue35919 with obj: pass def test_pool(self): o = self.manager.Pool(processes=4) self.run_worker(self._test_pool, o) @classmethod def _test_queue(cls, obj): assert obj.qsize() == 2 assert obj.full() assert not obj.empty() assert obj.get() == 5 assert not obj.empty() assert obj.get() == 6 assert obj.empty() def test_queue(self, qname="Queue"): o = getattr(self.manager, qname)(2) o.put(5) o.put(6) self.run_worker(self._test_queue, o) assert o.empty() assert not o.full() def test_joinable_queue(self): self.test_queue("JoinableQueue") @classmethod def _test_list(cls, obj): case = unittest.TestCase() case.assertEqual(obj[0], 5) case.assertEqual(obj.count(5), 1) case.assertEqual(obj.index(5), 0) obj.sort() obj.reverse() for x in obj: pass case.assertEqual(len(obj), 1) case.assertEqual(obj.pop(0), 5) def test_list(self): o = self.manager.list() o.append(5) self.run_worker(self._test_list, o) self.assertIsNotNone(o) self.assertEqual(len(o), 0) @classmethod def _test_dict(cls, obj): case = unittest.TestCase() case.assertEqual(len(obj), 1) case.assertEqual(obj['foo'], 5) case.assertEqual(obj.get('foo'), 5) case.assertListEqual(list(obj.items()), [('foo', 5)]) case.assertListEqual(list(obj.keys()), ['foo']) case.assertListEqual(list(obj.values()), [5]) case.assertDictEqual(obj.copy(), {'foo': 5}) case.assertTupleEqual(obj.popitem(), ('foo', 5)) def test_dict(self): o = self.manager.dict() o['foo'] = 5 self.run_worker(self._test_dict, o) self.assertIsNotNone(o) self.assertEqual(len(o), 0) @classmethod def _test_value(cls, obj): case = unittest.TestCase() case.assertEqual(obj.value, 1) case.assertEqual(obj.get(), 1) obj.set(2) def test_value(self): o = self.manager.Value('i', 1) self.run_worker(self._test_value, o) self.assertEqual(o.value, 2) self.assertEqual(o.get(), 2) @classmethod def _test_array(cls, obj): case = unittest.TestCase() case.assertEqual(obj[0], 0) case.assertEqual(obj[1], 1) case.assertEqual(len(obj), 2) case.assertListEqual(list(obj), [0, 1]) def test_array(self): o = self.manager.Array('i', [0, 1]) self.run_worker(self._test_array, o) @classmethod def _test_namespace(cls, obj): case = unittest.TestCase() case.assertEqual(obj.x, 0) case.assertEqual(obj.y, 1) def test_namespace(self): o = self.manager.Namespace() o.x = 0 o.y = 1 self.run_worker(self._test_namespace, o) class TestNamedResource(unittest.TestCase): @only_run_in_spawn_testsuite("spawn specific test.") def test_global_named_resource_spawn(self): # # gh-90549: Check that global named resources in main module # will not leak by a subprocess, in spawn context. # testfn = os_helper.TESTFN self.addCleanup(os_helper.unlink, testfn) with open(testfn, 'w', encoding='utf-8') as f: f.write(textwrap.dedent('''\ import multiprocessing as mp ctx = mp.get_context('spawn') global_resource = ctx.Semaphore() def submain(): pass if __name__ == '__main__': p = ctx.Process(target=submain) p.start() p.join() ''')) rc, out, err = script_helper.assert_python_ok(testfn) # on error, err = 'UserWarning: resource_tracker: There appear to # be 1 leaked semaphore objects to clean up at shutdown' self.assertFalse(err, msg=err.decode('utf-8')) class MiscTestCase(unittest.TestCase): def test__all__(self): # Just make sure names in not_exported are excluded support.check__all__(self, multiprocessing, extra=multiprocessing.__all__, not_exported=['SUBDEBUG', 'SUBWARNING']) @only_run_in_spawn_testsuite("avoids redundant testing.") def test_spawn_sys_executable_none_allows_import(self): # Regression test for a bug introduced in # https://github.com/python/cpython/issues/90876 that caused an # ImportError in multiprocessing when sys.executable was None. # This can be true in embedded environments. rc, out, err = script_helper.assert_python_ok( "-c", """if 1: import sys sys.executable = None assert "multiprocessing" not in sys.modules, "already imported!" import multiprocessing import multiprocessing.spawn # This should not fail\n""", ) self.assertEqual(rc, 0) self.assertFalse(err, msg=err.decode('utf-8')) # # Mixins # class BaseMixin(object): @classmethod def setUpClass(cls): cls.dangling = (multiprocessing.process._dangling.copy(), threading._dangling.copy()) @classmethod def tearDownClass(cls): # bpo-26762: Some multiprocessing objects like Pool create reference # cycles. Trigger a garbage collection to break these cycles. test.support.gc_collect() processes = set(multiprocessing.process._dangling) - set(cls.dangling[0]) if processes: test.support.environment_altered = True support.print_warning(f'Dangling processes: {processes}') processes = None threads = set(threading._dangling) - set(cls.dangling[1]) if threads: test.support.environment_altered = True support.print_warning(f'Dangling threads: {threads}') threads = None class ProcessesMixin(BaseMixin): TYPE = 'processes' Process = multiprocessing.Process connection = multiprocessing.connection current_process = staticmethod(multiprocessing.current_process) parent_process = staticmethod(multiprocessing.parent_process) active_children = staticmethod(multiprocessing.active_children) set_executable = staticmethod(multiprocessing.set_executable) Pool = staticmethod(multiprocessing.Pool) Pipe = staticmethod(multiprocessing.Pipe) Queue = staticmethod(multiprocessing.Queue) JoinableQueue = staticmethod(multiprocessing.JoinableQueue) Lock = staticmethod(multiprocessing.Lock) RLock = staticmethod(multiprocessing.RLock) Semaphore = staticmethod(multiprocessing.Semaphore) BoundedSemaphore = staticmethod(multiprocessing.BoundedSemaphore) Condition = staticmethod(multiprocessing.Condition) Event = staticmethod(multiprocessing.Event) Barrier = staticmethod(multiprocessing.Barrier) Value = staticmethod(multiprocessing.Value) Array = staticmethod(multiprocessing.Array) RawValue = staticmethod(multiprocessing.RawValue) RawArray = staticmethod(multiprocessing.RawArray) class ManagerMixin(BaseMixin): TYPE = 'manager' Process = multiprocessing.Process Queue = property(operator.attrgetter('manager.Queue')) JoinableQueue = property(operator.attrgetter('manager.JoinableQueue')) Lock = property(operator.attrgetter('manager.Lock')) RLock = property(operator.attrgetter('manager.RLock')) Semaphore = property(operator.attrgetter('manager.Semaphore')) BoundedSemaphore = property(operator.attrgetter('manager.BoundedSemaphore')) Condition = property(operator.attrgetter('manager.Condition')) Event = property(operator.attrgetter('manager.Event')) Barrier = property(operator.attrgetter('manager.Barrier')) Value = property(operator.attrgetter('manager.Value')) Array = property(operator.attrgetter('manager.Array')) list = property(operator.attrgetter('manager.list')) dict = property(operator.attrgetter('manager.dict')) Namespace = property(operator.attrgetter('manager.Namespace')) @classmethod def Pool(cls, *args, **kwds): return cls.manager.Pool(*args, **kwds) @classmethod def setUpClass(cls): super().setUpClass() cls.manager = multiprocessing.Manager() @classmethod def tearDownClass(cls): # only the manager process should be returned by active_children() # but this can take a bit on slow machines, so wait a few seconds # if there are other children too (see #17395) timeout = WAIT_ACTIVE_CHILDREN_TIMEOUT start_time = time.monotonic() for _ in support.sleeping_retry(timeout, error=False): if len(multiprocessing.active_children()) <= 1: break else: dt = time.monotonic() - start_time support.environment_altered = True support.print_warning(f"multiprocessing.Manager still has " f"{multiprocessing.active_children()} " f"active children after {dt:.1f} seconds") gc.collect() # do garbage collection if cls.manager._number_of_objects() != 0: # This is not really an error since some tests do not # ensure that all processes which hold a reference to a # managed object have been joined. test.support.environment_altered = True support.print_warning('Shared objects which still exist ' 'at manager shutdown:') support.print_warning(cls.manager._debug_info()) cls.manager.shutdown() cls.manager.join() cls.manager = None super().tearDownClass() class ThreadsMixin(BaseMixin): TYPE = 'threads' Process = multiprocessing.dummy.Process connection = multiprocessing.dummy.connection current_process = staticmethod(multiprocessing.dummy.current_process) active_children = staticmethod(multiprocessing.dummy.active_children) Pool = staticmethod(multiprocessing.dummy.Pool) Pipe = staticmethod(multiprocessing.dummy.Pipe) Queue = staticmethod(multiprocessing.dummy.Queue) JoinableQueue = staticmethod(multiprocessing.dummy.JoinableQueue) Lock = staticmethod(multiprocessing.dummy.Lock) RLock = staticmethod(multiprocessing.dummy.RLock) Semaphore = staticmethod(multiprocessing.dummy.Semaphore) BoundedSemaphore = staticmethod(multiprocessing.dummy.BoundedSemaphore) Condition = staticmethod(multiprocessing.dummy.Condition) Event = staticmethod(multiprocessing.dummy.Event) Barrier = staticmethod(multiprocessing.dummy.Barrier) Value = staticmethod(multiprocessing.dummy.Value) Array = staticmethod(multiprocessing.dummy.Array) # # Functions used to create test cases from the base ones in this module # def install_tests_in_module_dict(remote_globs, start_method, only_type=None, exclude_types=False): __module__ = remote_globs['__name__'] local_globs = globals() ALL_TYPES = {'processes', 'threads', 'manager'} for name, base in local_globs.items(): if not isinstance(base, type): continue if issubclass(base, BaseTestCase): if base is BaseTestCase: continue assert set(base.ALLOWED_TYPES) <= ALL_TYPES, base.ALLOWED_TYPES for type_ in base.ALLOWED_TYPES: if only_type and type_ != only_type: continue if exclude_types: continue newname = 'With' + type_.capitalize() + name[1:] Mixin = local_globs[type_.capitalize() + 'Mixin'] class Temp(base, Mixin, unittest.TestCase): pass if type_ == 'manager': Temp = hashlib_helper.requires_hashdigest('sha256')(Temp) Temp.__name__ = Temp.__qualname__ = newname Temp.__module__ = __module__ remote_globs[newname] = Temp elif issubclass(base, unittest.TestCase): if only_type: continue class Temp(base, object): pass Temp.__name__ = Temp.__qualname__ = name Temp.__module__ = __module__ remote_globs[name] = Temp dangling = [None, None] old_start_method = [None] def setUpModule(): multiprocessing.set_forkserver_preload(PRELOAD) multiprocessing.process._cleanup() dangling[0] = multiprocessing.process._dangling.copy() dangling[1] = threading._dangling.copy() old_start_method[0] = multiprocessing.get_start_method(allow_none=True) try: multiprocessing.set_start_method(start_method, force=True) except ValueError: raise unittest.SkipTest(start_method + ' start method not supported') if sys.platform.startswith("linux"): try: lock = multiprocessing.RLock() except OSError: raise unittest.SkipTest("OSError raises on RLock creation, " "see issue 3111!") check_enough_semaphores() util.get_temp_dir() # creates temp directory multiprocessing.get_logger().setLevel(LOG_LEVEL) def tearDownModule(): need_sleep = False # bpo-26762: Some multiprocessing objects like Pool create reference # cycles. Trigger a garbage collection to break these cycles. test.support.gc_collect() multiprocessing.set_start_method(old_start_method[0], force=True) # pause a bit so we don't get warning about dangling threads/processes processes = set(multiprocessing.process._dangling) - set(dangling[0]) if processes: need_sleep = True test.support.environment_altered = True support.print_warning(f'Dangling processes: {processes}') processes = None threads = set(threading._dangling) - set(dangling[1]) if threads: need_sleep = True test.support.environment_altered = True support.print_warning(f'Dangling threads: {threads}') threads = None # Sleep 500 ms to give time to child processes to complete. if need_sleep: time.sleep(0.5) multiprocessing.util._cleanup_tests() remote_globs['setUpModule'] = setUpModule remote_globs['tearDownModule'] = tearDownModule @unittest.skipIf(not hasattr(_multiprocessing, 'SemLock'), 'SemLock not available') @unittest.skipIf(sys.platform != "linux", "Linux only") class SemLockTests(unittest.TestCase): def test_semlock_subclass(self): class SemLock(_multiprocessing.SemLock): pass name = f'test_semlock_subclass-{os.getpid()}' s = SemLock(1, 0, 10, name, False) _multiprocessing.sem_unlink(name)