"""Generate the cases for the tier 2 interpreter. Reads the instruction definitions from bytecodes.c. Writes the cases to executor_cases.c.h, which is #included in ceval.c. """ import argparse from analyzer import ( Analysis, Instruction, Uop, analyze_files, StackItem, analysis_error, ) from generators_common import ( DEFAULT_INPUT, ROOT, emit_to, write_header, type_and_null, Emitter, TokenIterator, always_true, ) from cwriter import CWriter from typing import TextIO, Iterator from lexer import Token from stack import Local, Stack, StackError, Storage DEFAULT_OUTPUT = ROOT / "Python/executor_cases.c.h" def declare_variable( var: StackItem, uop: Uop, required: set[str], out: CWriter ) -> None: if not var.used or var.name not in required: return required.remove(var.name) type, null = type_and_null(var) space = " " if type[-1].isalnum() else "" if var.condition: out.emit(f"{type}{space}{var.name} = {null};\n") if uop.replicates: # Replicas may not use all their conditional variables # So avoid a compiler warning with a fake use out.emit(f"(void){var.name};\n") else: out.emit(f"{type}{space}{var.name};\n") def declare_variables(uop: Uop, out: CWriter) -> None: stack = Stack() for var in reversed(uop.stack.inputs): stack.pop(var) for var in uop.stack.outputs: stack.push(Local.undefined(var)) required = set(stack.defined) required.discard("unused") for var in reversed(uop.stack.inputs): declare_variable(var, uop, required, out) for var in uop.stack.outputs: declare_variable(var, uop, required, out) class Tier2Emitter(Emitter): def __init__(self, out: CWriter): super().__init__(out) self._replacers["oparg"] = self.oparg def error_if( self, tkn: Token, tkn_iter: TokenIterator, uop: Uop, storage: Storage, inst: Instruction | None, ) -> bool: self.out.emit_at("if ", tkn) lparen = next(tkn_iter) self.emit(lparen) assert lparen.kind == "LPAREN" first_tkn = next(tkn_iter) self.out.emit(first_tkn) emit_to(self.out, tkn_iter, "COMMA") label = next(tkn_iter).text next(tkn_iter) # RPAREN next(tkn_iter) # Semi colon self.emit(") JUMP_TO_ERROR();\n") return not always_true(first_tkn) def error_no_pop( self, tkn: Token, tkn_iter: TokenIterator, uop: Uop, storage: Storage, inst: Instruction | None, ) -> bool: next(tkn_iter) # LPAREN next(tkn_iter) # RPAREN next(tkn_iter) # Semi colon self.out.emit_at("JUMP_TO_ERROR();", tkn) return False def deopt_if( self, tkn: Token, tkn_iter: TokenIterator, uop: Uop, storage: Storage, inst: Instruction | None, ) -> bool: self.out.emit_at("if ", tkn) lparen = next(tkn_iter) self.emit(lparen) assert lparen.kind == "LPAREN" first_tkn = tkn_iter.peek() emit_to(self.out, tkn_iter, "RPAREN") next(tkn_iter) # Semi colon self.emit(") {\n") self.emit("UOP_STAT_INC(uopcode, miss);\n") self.emit("JUMP_TO_JUMP_TARGET();\n") self.emit("}\n") return not always_true(first_tkn) def exit_if( # type: ignore[override] self, tkn: Token, tkn_iter: TokenIterator, uop: Uop, storage: Storage, inst: Instruction | None, ) -> bool: self.out.emit_at("if ", tkn) lparen = next(tkn_iter) self.emit(lparen) first_tkn = tkn_iter.peek() emit_to(self.out, tkn_iter, "RPAREN") next(tkn_iter) # Semi colon self.emit(") {\n") self.emit("UOP_STAT_INC(uopcode, miss);\n") self.emit("JUMP_TO_JUMP_TARGET();\n") self.emit("}\n") return not always_true(first_tkn) def oparg( self, tkn: Token, tkn_iter: TokenIterator, uop: Uop, storage: Storage, inst: Instruction | None, ) -> bool: if not uop.name.endswith("_0") and not uop.name.endswith("_1"): self.emit(tkn) return True amp = next(tkn_iter) if amp.text != "&": self.emit(tkn) self.emit(amp) return True one = next(tkn_iter) assert one.text == "1" self.out.emit_at(uop.name[-1], tkn) return True def write_uop(uop: Uop, emitter: Emitter, stack: Stack) -> Stack: locals: dict[str, Local] = {} try: emitter.out.start_line() if uop.properties.oparg: emitter.emit("oparg = CURRENT_OPARG();\n") assert uop.properties.const_oparg < 0 elif uop.properties.const_oparg >= 0: emitter.emit(f"oparg = {uop.properties.const_oparg};\n") emitter.emit(f"assert(oparg == CURRENT_OPARG());\n") code_list, storage = Storage.for_uop(stack, uop) for code in code_list: emitter.emit(code) for cache in uop.caches: if cache.name != "unused": if cache.size == 4: type = cast = "PyObject *" else: type = f"uint{cache.size*16}_t " cast = f"uint{cache.size*16}_t" emitter.emit(f"{type}{cache.name} = ({cast})CURRENT_OPERAND();\n") storage = emitter.emit_tokens(uop, storage, None) except StackError as ex: raise analysis_error(ex.args[0], uop.body[0]) from None return storage.stack SKIPS = ("_EXTENDED_ARG",) def generate_tier2( filenames: list[str], analysis: Analysis, outfile: TextIO, lines: bool ) -> None: write_header(__file__, filenames, outfile) outfile.write( """ #ifdef TIER_ONE #error "This file is for Tier 2 only" #endif #define TIER_TWO 2 """ ) out = CWriter(outfile, 2, lines) emitter = Tier2Emitter(out) out.emit("\n") for name, uop in analysis.uops.items(): if uop.properties.tier == 1: continue if uop.properties.oparg_and_1: out.emit(f"/* {uop.name} is split on (oparg & 1) */\n\n") continue if uop.is_super(): continue why_not_viable = uop.why_not_viable() if why_not_viable is not None: out.emit( f"/* {uop.name} is not a viable micro-op for tier 2 because it {why_not_viable} */\n\n" ) continue out.emit(f"case {uop.name}: {{\n") declare_variables(uop, out) stack = Stack() stack = write_uop(uop, emitter, stack) out.start_line() if not uop.properties.always_exits: stack.flush(out) out.emit("break;\n") out.start_line() out.emit("}") out.emit("\n\n") outfile.write("#undef TIER_TWO\n") arg_parser = argparse.ArgumentParser( description="Generate the code for the tier 2 interpreter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) arg_parser.add_argument( "-o", "--output", type=str, help="Generated code", default=DEFAULT_OUTPUT ) arg_parser.add_argument( "-l", "--emit-line-directives", help="Emit #line directives", action="store_true" ) arg_parser.add_argument( "input", nargs=argparse.REMAINDER, help="Instruction definition file(s)" ) if __name__ == "__main__": args = arg_parser.parse_args() if len(args.input) == 0: args.input.append(DEFAULT_INPUT) data = analyze_files(args.input) with open(args.output, "w") as outfile: generate_tier2(args.input, data, outfile, args.emit_line_directives)