#ifdef _Py_TIER2 #include "Python.h" #include "opcode.h" #include "pycore_interp.h" #include "pycore_backoff.h" #include "pycore_bitutils.h" // _Py_popcount32() #include "pycore_object.h" // _PyObject_GC_UNTRACK() #include "pycore_opcode_metadata.h" // _PyOpcode_OpName[] #include "pycore_opcode_utils.h" // MAX_REAL_OPCODE #include "pycore_optimizer.h" // _Py_uop_analyze_and_optimize() #include "pycore_pystate.h" // _PyInterpreterState_GET() #include "pycore_uop_ids.h" #include "pycore_jit.h" #include #include #include #define NEED_OPCODE_METADATA #include "pycore_uop_metadata.h" // Uop tables #undef NEED_OPCODE_METADATA #define MAX_EXECUTORS_SIZE 256 static bool has_space_for_executor(PyCodeObject *code, _Py_CODEUNIT *instr) { if (instr->op.code == ENTER_EXECUTOR) { return true; } if (code->co_executors == NULL) { return true; } return code->co_executors->size < MAX_EXECUTORS_SIZE; } static int32_t get_index_for_executor(PyCodeObject *code, _Py_CODEUNIT *instr) { if (instr->op.code == ENTER_EXECUTOR) { return instr->op.arg; } _PyExecutorArray *old = code->co_executors; int size = 0; int capacity = 0; if (old != NULL) { size = old->size; capacity = old->capacity; assert(size < MAX_EXECUTORS_SIZE); } assert(size <= capacity); if (size == capacity) { /* Array is full. Grow array */ int new_capacity = capacity ? capacity * 2 : 4; _PyExecutorArray *new = PyMem_Realloc( old, offsetof(_PyExecutorArray, executors) + new_capacity * sizeof(_PyExecutorObject *)); if (new == NULL) { return -1; } new->capacity = new_capacity; new->size = size; code->co_executors = new; } assert(size < code->co_executors->capacity); return size; } static void insert_executor(PyCodeObject *code, _Py_CODEUNIT *instr, int index, _PyExecutorObject *executor) { Py_INCREF(executor); if (instr->op.code == ENTER_EXECUTOR) { assert(index == instr->op.arg); _Py_ExecutorDetach(code->co_executors->executors[index]); } else { assert(code->co_executors->size == index); assert(code->co_executors->capacity > index); code->co_executors->size++; } executor->vm_data.opcode = instr->op.code; executor->vm_data.oparg = instr->op.arg; executor->vm_data.code = code; executor->vm_data.index = (int)(instr - _PyCode_CODE(code)); code->co_executors->executors[index] = executor; assert(index < MAX_EXECUTORS_SIZE); instr->op.code = ENTER_EXECUTOR; instr->op.arg = index; } static int never_optimize( _PyOptimizerObject* self, _PyInterpreterFrame *frame, _Py_CODEUNIT *instr, _PyExecutorObject **exec, int Py_UNUSED(stack_entries), bool Py_UNUSED(progress_needed)) { // This may be called if the optimizer is reset return 0; } PyTypeObject _PyDefaultOptimizer_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) .tp_name = "noop_optimizer", .tp_basicsize = sizeof(_PyOptimizerObject), .tp_itemsize = 0, .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION, }; static _PyOptimizerObject _PyOptimizer_Default = { PyObject_HEAD_INIT(&_PyDefaultOptimizer_Type) .optimize = never_optimize, }; _PyOptimizerObject * _Py_GetOptimizer(void) { PyInterpreterState *interp = _PyInterpreterState_GET(); if (interp->optimizer == &_PyOptimizer_Default) { return NULL; } Py_INCREF(interp->optimizer); return interp->optimizer; } static _PyExecutorObject * make_executor_from_uops(_PyUOpInstruction *buffer, int length, const _PyBloomFilter *dependencies); static const _PyBloomFilter EMPTY_FILTER = { 0 }; _PyOptimizerObject * _Py_SetOptimizer(PyInterpreterState *interp, _PyOptimizerObject *optimizer) { if (optimizer == NULL) { optimizer = &_PyOptimizer_Default; } _PyOptimizerObject *old = interp->optimizer; if (old == NULL) { old = &_PyOptimizer_Default; } Py_INCREF(optimizer); interp->optimizer = optimizer; return old; } int _Py_SetTier2Optimizer(_PyOptimizerObject *optimizer) { PyInterpreterState *interp = _PyInterpreterState_GET(); _PyOptimizerObject *old = _Py_SetOptimizer(interp, optimizer); Py_XDECREF(old); return old == NULL ? -1 : 0; } /* Returns 1 if optimized, 0 if not optimized, and -1 for an error. * If optimized, *executor_ptr contains a new reference to the executor */ int _PyOptimizer_Optimize( _PyInterpreterFrame *frame, _Py_CODEUNIT *start, _PyStackRef *stack_pointer, _PyExecutorObject **executor_ptr, int chain_depth) { // The first executor in a chain and the MAX_CHAIN_DEPTH'th executor *must* // make progress in order to avoid infinite loops or excessively-long // side-exit chains. We can only insert the executor into the bytecode if // this is true, since a deopt won't infinitely re-enter the executor: chain_depth %= MAX_CHAIN_DEPTH; bool progress_needed = chain_depth == 0; PyCodeObject *code = _PyFrame_GetCode(frame); assert(PyCode_Check(code)); PyInterpreterState *interp = _PyInterpreterState_GET(); if (progress_needed && !has_space_for_executor(code, start)) { return 0; } _PyOptimizerObject *opt = interp->optimizer; int err = opt->optimize(opt, frame, start, executor_ptr, (int)(stack_pointer - _PyFrame_Stackbase(frame)), progress_needed); if (err <= 0) { return err; } assert(*executor_ptr != NULL); if (progress_needed) { int index = get_index_for_executor(code, start); if (index < 0) { /* Out of memory. Don't raise and assume that the * error will show up elsewhere. * * If an optimizer has already produced an executor, * it might get confused by the executor disappearing, * but there is not much we can do about that here. */ Py_DECREF(*executor_ptr); return 0; } insert_executor(code, start, index, *executor_ptr); } else { (*executor_ptr)->vm_data.code = NULL; } (*executor_ptr)->vm_data.chain_depth = chain_depth; assert((*executor_ptr)->vm_data.valid); return 1; } _PyExecutorObject * _Py_GetExecutor(PyCodeObject *code, int offset) { int code_len = (int)Py_SIZE(code); for (int i = 0 ; i < code_len;) { if (_PyCode_CODE(code)[i].op.code == ENTER_EXECUTOR && i*2 == offset) { int oparg = _PyCode_CODE(code)[i].op.arg; _PyExecutorObject *res = code->co_executors->executors[oparg]; Py_INCREF(res); return res; } i += _PyInstruction_GetLength(code, i); } PyErr_SetString(PyExc_ValueError, "no executor at given byte offset"); return NULL; } static PyObject * is_valid(PyObject *self, PyObject *Py_UNUSED(ignored)) { return PyBool_FromLong(((_PyExecutorObject *)self)->vm_data.valid); } static PyObject * get_opcode(PyObject *self, PyObject *Py_UNUSED(ignored)) { return PyLong_FromUnsignedLong(((_PyExecutorObject *)self)->vm_data.opcode); } static PyObject * get_oparg(PyObject *self, PyObject *Py_UNUSED(ignored)) { return PyLong_FromUnsignedLong(((_PyExecutorObject *)self)->vm_data.oparg); } static PyMethodDef executor_methods[] = { { "is_valid", is_valid, METH_NOARGS, NULL }, { "get_opcode", get_opcode, METH_NOARGS, NULL }, { "get_oparg", get_oparg, METH_NOARGS, NULL }, { NULL, NULL }, }; ///////////////////// Experimental UOp Optimizer ///////////////////// static int executor_clear(_PyExecutorObject *executor); static void unlink_executor(_PyExecutorObject *executor); static void uop_dealloc(_PyExecutorObject *self) { _PyObject_GC_UNTRACK(self); assert(self->vm_data.code == NULL); unlink_executor(self); #ifdef _Py_JIT _PyJIT_Free(self); #endif PyObject_GC_Del(self); } const char * _PyUOpName(int index) { if (index < 0 || index > MAX_UOP_ID) { return NULL; } return _PyOpcode_uop_name[index]; } #ifdef Py_DEBUG void _PyUOpPrint(const _PyUOpInstruction *uop) { const char *name = _PyUOpName(uop->opcode); if (name == NULL) { printf("", uop->opcode); } else { printf("%s", name); } switch(uop->format) { case UOP_FORMAT_TARGET: printf(" (%d, target=%d, operand=%#" PRIx64, uop->oparg, uop->target, (uint64_t)uop->operand); break; case UOP_FORMAT_JUMP: printf(" (%d, jump_target=%d, operand=%#" PRIx64, uop->oparg, uop->jump_target, (uint64_t)uop->operand); break; default: printf(" (%d, Unknown format)", uop->oparg); } if (_PyUop_Flags[uop->opcode] & HAS_ERROR_FLAG) { printf(", error_target=%d", uop->error_target); } printf(")"); } #endif static Py_ssize_t uop_len(_PyExecutorObject *self) { return self->code_size; } static PyObject * uop_item(_PyExecutorObject *self, Py_ssize_t index) { Py_ssize_t len = uop_len(self); if (index < 0 || index >= len) { PyErr_SetNone(PyExc_IndexError); return NULL; } const char *name = _PyUOpName(self->trace[index].opcode); if (name == NULL) { name = ""; } PyObject *oname = _PyUnicode_FromASCII(name, strlen(name)); if (oname == NULL) { return NULL; } PyObject *oparg = PyLong_FromUnsignedLong(self->trace[index].oparg); if (oparg == NULL) { Py_DECREF(oname); return NULL; } PyObject *target = PyLong_FromUnsignedLong(self->trace[index].target); if (oparg == NULL) { Py_DECREF(oparg); Py_DECREF(oname); return NULL; } PyObject *operand = PyLong_FromUnsignedLongLong(self->trace[index].operand); if (operand == NULL) { Py_DECREF(target); Py_DECREF(oparg); Py_DECREF(oname); return NULL; } PyObject *args[4] = { oname, oparg, target, operand }; return _PyTuple_FromArraySteal(args, 4); } PySequenceMethods uop_as_sequence = { .sq_length = (lenfunc)uop_len, .sq_item = (ssizeargfunc)uop_item, }; static int executor_traverse(PyObject *o, visitproc visit, void *arg) { _PyExecutorObject *executor = (_PyExecutorObject *)o; for (uint32_t i = 0; i < executor->exit_count; i++) { Py_VISIT(executor->exits[i].executor); } return 0; } static PyObject * get_jit_code(PyObject *self, PyObject *Py_UNUSED(ignored)) { #ifndef _Py_JIT PyErr_SetString(PyExc_RuntimeError, "JIT support not enabled."); return NULL; #else _PyExecutorObject *executor = (_PyExecutorObject *)self; if (executor->jit_code == NULL || executor->jit_size == 0) { Py_RETURN_NONE; } return PyBytes_FromStringAndSize(executor->jit_code, executor->jit_size); #endif } static PyMethodDef uop_executor_methods[] = { { "is_valid", is_valid, METH_NOARGS, NULL }, { "get_jit_code", get_jit_code, METH_NOARGS, NULL}, { "get_opcode", get_opcode, METH_NOARGS, NULL }, { "get_oparg", get_oparg, METH_NOARGS, NULL }, { NULL, NULL }, }; static int executor_is_gc(PyObject *o) { return !_Py_IsImmortal(o); } PyTypeObject _PyUOpExecutor_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) .tp_name = "uop_executor", .tp_basicsize = offsetof(_PyExecutorObject, exits), .tp_itemsize = 1, .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION | Py_TPFLAGS_HAVE_GC, .tp_dealloc = (destructor)uop_dealloc, .tp_as_sequence = &uop_as_sequence, .tp_methods = uop_executor_methods, .tp_traverse = executor_traverse, .tp_clear = (inquiry)executor_clear, .tp_is_gc = executor_is_gc, }; /* TO DO -- Generate these tables */ static const uint16_t _PyUOp_Replacements[MAX_UOP_ID + 1] = { [_ITER_JUMP_RANGE] = _GUARD_NOT_EXHAUSTED_RANGE, [_ITER_JUMP_LIST] = _GUARD_NOT_EXHAUSTED_LIST, [_ITER_JUMP_TUPLE] = _GUARD_NOT_EXHAUSTED_TUPLE, [_FOR_ITER] = _FOR_ITER_TIER_TWO, }; static const uint8_t is_for_iter_test[MAX_UOP_ID + 1] = { [_GUARD_NOT_EXHAUSTED_RANGE] = 1, [_GUARD_NOT_EXHAUSTED_LIST] = 1, [_GUARD_NOT_EXHAUSTED_TUPLE] = 1, [_FOR_ITER_TIER_TWO] = 1, }; static const uint16_t BRANCH_TO_GUARD[4][2] = { [POP_JUMP_IF_FALSE - POP_JUMP_IF_FALSE][0] = _GUARD_IS_TRUE_POP, [POP_JUMP_IF_FALSE - POP_JUMP_IF_FALSE][1] = _GUARD_IS_FALSE_POP, [POP_JUMP_IF_TRUE - POP_JUMP_IF_FALSE][0] = _GUARD_IS_FALSE_POP, [POP_JUMP_IF_TRUE - POP_JUMP_IF_FALSE][1] = _GUARD_IS_TRUE_POP, [POP_JUMP_IF_NONE - POP_JUMP_IF_FALSE][0] = _GUARD_IS_NOT_NONE_POP, [POP_JUMP_IF_NONE - POP_JUMP_IF_FALSE][1] = _GUARD_IS_NONE_POP, [POP_JUMP_IF_NOT_NONE - POP_JUMP_IF_FALSE][0] = _GUARD_IS_NONE_POP, [POP_JUMP_IF_NOT_NONE - POP_JUMP_IF_FALSE][1] = _GUARD_IS_NOT_NONE_POP, }; #define CONFIDENCE_RANGE 1000 #define CONFIDENCE_CUTOFF 333 #ifdef Py_DEBUG #define DPRINTF(level, ...) \ if (lltrace >= (level)) { printf(__VA_ARGS__); } #else #define DPRINTF(level, ...) #endif static inline int add_to_trace( _PyUOpInstruction *trace, int trace_length, uint16_t opcode, uint16_t oparg, uint64_t operand, uint32_t target) { trace[trace_length].opcode = opcode; trace[trace_length].format = UOP_FORMAT_TARGET; trace[trace_length].target = target; trace[trace_length].oparg = oparg; trace[trace_length].operand = operand; return trace_length + 1; } #ifdef Py_DEBUG #define ADD_TO_TRACE(OPCODE, OPARG, OPERAND, TARGET) \ assert(trace_length < max_length); \ trace_length = add_to_trace(trace, trace_length, (OPCODE), (OPARG), (OPERAND), (TARGET)); \ if (lltrace >= 2) { \ printf("%4d ADD_TO_TRACE: ", trace_length); \ _PyUOpPrint(&trace[trace_length-1]); \ printf("\n"); \ } #else #define ADD_TO_TRACE(OPCODE, OPARG, OPERAND, TARGET) \ assert(trace_length < max_length); \ trace_length = add_to_trace(trace, trace_length, (OPCODE), (OPARG), (OPERAND), (TARGET)); #endif #define INSTR_IP(INSTR, CODE) \ ((uint32_t)((INSTR) - ((_Py_CODEUNIT *)(CODE)->co_code_adaptive))) // Reserve space for n uops #define RESERVE_RAW(n, opname) \ if (trace_length + (n) > max_length) { \ DPRINTF(2, "No room for %s (need %d, got %d)\n", \ (opname), (n), max_length - trace_length); \ OPT_STAT_INC(trace_too_long); \ goto done; \ } // Reserve space for N uops, plus 3 for _SET_IP, _CHECK_VALIDITY and _EXIT_TRACE #define RESERVE(needed) RESERVE_RAW((needed) + 3, _PyUOpName(opcode)) // Trace stack operations (used by _PUSH_FRAME, _RETURN_VALUE) #define TRACE_STACK_PUSH() \ if (trace_stack_depth >= TRACE_STACK_SIZE) { \ DPRINTF(2, "Trace stack overflow\n"); \ OPT_STAT_INC(trace_stack_overflow); \ return 0; \ } \ assert(func == NULL || func->func_code == (PyObject *)code); \ trace_stack[trace_stack_depth].func = func; \ trace_stack[trace_stack_depth].code = code; \ trace_stack[trace_stack_depth].instr = instr; \ trace_stack_depth++; #define TRACE_STACK_POP() \ if (trace_stack_depth <= 0) { \ Py_FatalError("Trace stack underflow\n"); \ } \ trace_stack_depth--; \ func = trace_stack[trace_stack_depth].func; \ code = trace_stack[trace_stack_depth].code; \ assert(func == NULL || func->func_code == (PyObject *)code); \ instr = trace_stack[trace_stack_depth].instr; /* Returns the length of the trace on success, * 0 if it failed to produce a worthwhile trace, * and -1 on an error. */ static int translate_bytecode_to_trace( _PyInterpreterFrame *frame, _Py_CODEUNIT *instr, _PyUOpInstruction *trace, int buffer_size, _PyBloomFilter *dependencies, bool progress_needed) { bool first = true; PyCodeObject *code = _PyFrame_GetCode(frame); PyFunctionObject *func = _PyFrame_GetFunction(frame); assert(PyFunction_Check(func)); PyCodeObject *initial_code = code; _Py_BloomFilter_Add(dependencies, initial_code); _Py_CODEUNIT *initial_instr = instr; int trace_length = 0; // Leave space for possible trailing _EXIT_TRACE int max_length = buffer_size-2; struct { PyFunctionObject *func; PyCodeObject *code; _Py_CODEUNIT *instr; } trace_stack[TRACE_STACK_SIZE]; int trace_stack_depth = 0; int confidence = CONFIDENCE_RANGE; // Adjusted by branch instructions bool jump_seen = false; #ifdef Py_DEBUG char *python_lltrace = Py_GETENV("PYTHON_LLTRACE"); int lltrace = 0; if (python_lltrace != NULL && *python_lltrace >= '0') { lltrace = *python_lltrace - '0'; // TODO: Parse an int and all that } #endif DPRINTF(2, "Optimizing %s (%s:%d) at byte offset %d\n", PyUnicode_AsUTF8(code->co_qualname), PyUnicode_AsUTF8(code->co_filename), code->co_firstlineno, 2 * INSTR_IP(initial_instr, code)); ADD_TO_TRACE(_START_EXECUTOR, 0, (uintptr_t)instr, INSTR_IP(instr, code)); ADD_TO_TRACE(_MAKE_WARM, 0, 0, 0); uint32_t target = 0; for (;;) { target = INSTR_IP(instr, code); // Need space for _DEOPT max_length--; uint32_t opcode = instr->op.code; uint32_t oparg = instr->op.arg; if (!first && instr == initial_instr) { // We have looped around to the start: RESERVE(1); ADD_TO_TRACE(_JUMP_TO_TOP, 0, 0, 0); goto done; } DPRINTF(2, "%d: %s(%d)\n", target, _PyOpcode_OpName[opcode], oparg); if (opcode == EXTENDED_ARG) { instr++; opcode = instr->op.code; oparg = (oparg << 8) | instr->op.arg; if (opcode == EXTENDED_ARG) { instr--; goto done; } } if (opcode == ENTER_EXECUTOR) { // We have a couple of options here. We *could* peek "underneath" // this executor and continue tracing, which could give us a longer, // more optimizeable trace (at the expense of lots of duplicated // tier two code). Instead, we choose to just end here and stitch to // the other trace, which allows a side-exit traces to rejoin the // "main" trace periodically (and also helps protect us against // pathological behavior where the amount of tier two code explodes // for a medium-length, branchy code path). This seems to work // better in practice, but in the future we could be smarter about // what we do here: goto done; } assert(opcode != ENTER_EXECUTOR && opcode != EXTENDED_ARG); RESERVE_RAW(2, "_CHECK_VALIDITY_AND_SET_IP"); ADD_TO_TRACE(_CHECK_VALIDITY_AND_SET_IP, 0, (uintptr_t)instr, target); /* Special case the first instruction, * so that we can guarantee forward progress */ if (first && progress_needed) { assert(first); if (OPCODE_HAS_EXIT(opcode) || OPCODE_HAS_DEOPT(opcode)) { opcode = _PyOpcode_Deopt[opcode]; } assert(!OPCODE_HAS_EXIT(opcode)); assert(!OPCODE_HAS_DEOPT(opcode)); } if (OPCODE_HAS_EXIT(opcode)) { // Make space for side exit and final _EXIT_TRACE: RESERVE_RAW(2, "_EXIT_TRACE"); max_length--; } if (OPCODE_HAS_ERROR(opcode)) { // Make space for error stub and final _EXIT_TRACE: RESERVE_RAW(2, "_ERROR_POP_N"); max_length--; } switch (opcode) { case POP_JUMP_IF_NONE: case POP_JUMP_IF_NOT_NONE: case POP_JUMP_IF_FALSE: case POP_JUMP_IF_TRUE: { RESERVE(1); int counter = instr[1].cache; int bitcount = _Py_popcount32(counter); int jump_likely = bitcount > 8; /* If bitcount is 8 (half the jumps were taken), adjust confidence by 50%. If it's 16 or 0 (all or none were taken), adjust by 10% (since the future is still somewhat uncertain). For values in between, adjust proportionally. */ if (jump_likely) { confidence = confidence * (bitcount + 2) / 20; } else { confidence = confidence * (18 - bitcount) / 20; } uint32_t uopcode = BRANCH_TO_GUARD[opcode - POP_JUMP_IF_FALSE][jump_likely]; DPRINTF(2, "%d: %s(%d): counter=%04x, bitcount=%d, likely=%d, confidence=%d, uopcode=%s\n", target, _PyOpcode_OpName[opcode], oparg, counter, bitcount, jump_likely, confidence, _PyUOpName(uopcode)); if (confidence < CONFIDENCE_CUTOFF) { DPRINTF(2, "Confidence too low (%d < %d)\n", confidence, CONFIDENCE_CUTOFF); OPT_STAT_INC(low_confidence); goto done; } _Py_CODEUNIT *next_instr = instr + 1 + _PyOpcode_Caches[_PyOpcode_Deopt[opcode]]; _Py_CODEUNIT *target_instr = next_instr + oparg; if (jump_likely) { DPRINTF(2, "Jump likely (%04x = %d bits), continue at byte offset %d\n", instr[1].cache, bitcount, 2 * INSTR_IP(target_instr, code)); instr = target_instr; ADD_TO_TRACE(uopcode, 0, 0, INSTR_IP(next_instr, code)); goto top; } ADD_TO_TRACE(uopcode, 0, 0, INSTR_IP(target_instr, code)); break; } case JUMP_BACKWARD: ADD_TO_TRACE(_CHECK_PERIODIC, 0, 0, target); _Py_FALLTHROUGH; case JUMP_BACKWARD_NO_INTERRUPT: { instr += 1 + _PyOpcode_Caches[_PyOpcode_Deopt[opcode]] - (int)oparg; if (jump_seen) { OPT_STAT_INC(inner_loop); DPRINTF(2, "JUMP_BACKWARD not to top ends trace\n"); goto done; } jump_seen = true; goto top; } case JUMP_FORWARD: { RESERVE(0); // This will emit two _SET_IP instructions; leave it to the optimizer instr += oparg; break; } case RESUME: /* Use a special tier 2 version of RESUME_CHECK to allow traces to * start with RESUME_CHECK */ ADD_TO_TRACE(_TIER2_RESUME_CHECK, 0, 0, target); break; default: { const struct opcode_macro_expansion *expansion = &_PyOpcode_macro_expansion[opcode]; if (expansion->nuops > 0) { // Reserve space for nuops (+ _SET_IP + _EXIT_TRACE) int nuops = expansion->nuops; RESERVE(nuops + 1); /* One extra for exit */ int16_t last_op = expansion->uops[nuops-1].uop; if (last_op == _RETURN_VALUE || last_op == _RETURN_GENERATOR || last_op == _YIELD_VALUE) { // Check for trace stack underflow now: // We can't bail e.g. in the middle of // LOAD_CONST + _RETURN_VALUE. if (trace_stack_depth == 0) { DPRINTF(2, "Trace stack underflow\n"); OPT_STAT_INC(trace_stack_underflow); goto done; } } uint32_t orig_oparg = oparg; // For OPARG_TOP/BOTTOM for (int i = 0; i < nuops; i++) { oparg = orig_oparg; uint32_t uop = expansion->uops[i].uop; uint64_t operand = 0; // Add one to account for the actual opcode/oparg pair: int offset = expansion->uops[i].offset + 1; switch (expansion->uops[i].size) { case OPARG_FULL: assert(opcode != JUMP_BACKWARD_NO_INTERRUPT && opcode != JUMP_BACKWARD); break; case OPARG_CACHE_1: operand = read_u16(&instr[offset].cache); break; case OPARG_CACHE_2: operand = read_u32(&instr[offset].cache); break; case OPARG_CACHE_4: operand = read_u64(&instr[offset].cache); break; case OPARG_TOP: // First half of super-instr oparg = orig_oparg >> 4; break; case OPARG_BOTTOM: // Second half of super-instr oparg = orig_oparg & 0xF; break; case OPARG_SAVE_RETURN_OFFSET: // op=_SAVE_RETURN_OFFSET; oparg=return_offset oparg = offset; assert(uop == _SAVE_RETURN_OFFSET); break; case OPARG_REPLACED: uop = _PyUOp_Replacements[uop]; assert(uop != 0); #ifdef Py_DEBUG { uint32_t next_inst = target + 1 + INLINE_CACHE_ENTRIES_FOR_ITER + (oparg > 255); uint32_t jump_target = next_inst + oparg; assert(_Py_GetBaseCodeUnit(code, jump_target).op.code == END_FOR); assert(_Py_GetBaseCodeUnit(code, jump_target+1).op.code == POP_TOP); } #endif break; default: fprintf(stderr, "opcode=%d, oparg=%d; nuops=%d, i=%d; size=%d, offset=%d\n", opcode, oparg, nuops, i, expansion->uops[i].size, expansion->uops[i].offset); Py_FatalError("garbled expansion"); } if (uop == _RETURN_VALUE || uop == _RETURN_GENERATOR || uop == _YIELD_VALUE) { TRACE_STACK_POP(); /* Set the operand to the function or code object returned to, * to assist optimization passes. (See _PUSH_FRAME below.) */ if (func != NULL) { operand = (uintptr_t)func; } else if (code != NULL) { operand = (uintptr_t)code | 1; } else { operand = 0; } ADD_TO_TRACE(uop, oparg, operand, target); DPRINTF(2, "Returning to %s (%s:%d) at byte offset %d\n", PyUnicode_AsUTF8(code->co_qualname), PyUnicode_AsUTF8(code->co_filename), code->co_firstlineno, 2 * INSTR_IP(instr, code)); goto top; } if (uop == _PUSH_FRAME) { assert(i + 1 == nuops); if (opcode == FOR_ITER_GEN || opcode == LOAD_ATTR_PROPERTY || opcode == BINARY_SUBSCR_GETITEM || opcode == SEND_GEN) { DPRINTF(2, "Bailing due to dynamic target\n"); ADD_TO_TRACE(uop, oparg, 0, target); ADD_TO_TRACE(_DYNAMIC_EXIT, 0, 0, 0); goto done; } assert(_PyOpcode_Deopt[opcode] == CALL || _PyOpcode_Deopt[opcode] == CALL_KW); int func_version_offset = offsetof(_PyCallCache, func_version)/sizeof(_Py_CODEUNIT) // Add one to account for the actual opcode/oparg pair: + 1; uint32_t func_version = read_u32(&instr[func_version_offset].cache); PyCodeObject *new_code = NULL; PyFunctionObject *new_func = _PyFunction_LookupByVersion(func_version, (PyObject **) &new_code); DPRINTF(2, "Function: version=%#x; new_func=%p, new_code=%p\n", (int)func_version, new_func, new_code); if (new_code != NULL) { if (new_code == code) { // Recursive call, bail (we could be here forever). DPRINTF(2, "Bailing on recursive call to %s (%s:%d)\n", PyUnicode_AsUTF8(new_code->co_qualname), PyUnicode_AsUTF8(new_code->co_filename), new_code->co_firstlineno); OPT_STAT_INC(recursive_call); ADD_TO_TRACE(uop, oparg, 0, target); ADD_TO_TRACE(_EXIT_TRACE, 0, 0, 0); goto done; } if (new_code->co_version != func_version) { // func.__code__ was updated. // Perhaps it may happen again, so don't bother tracing. // TODO: Reason about this -- is it better to bail or not? DPRINTF(2, "Bailing because co_version != func_version\n"); ADD_TO_TRACE(uop, oparg, 0, target); ADD_TO_TRACE(_EXIT_TRACE, 0, 0, 0); goto done; } // Increment IP to the return address instr += _PyOpcode_Caches[_PyOpcode_Deopt[opcode]] + 1; TRACE_STACK_PUSH(); _Py_BloomFilter_Add(dependencies, new_code); /* Set the operand to the callee's function or code object, * to assist optimization passes. * We prefer setting it to the function (for remove_globals()) * but if that's not available but the code is available, * use the code, setting the low bit so the optimizer knows. */ if (new_func != NULL) { operand = (uintptr_t)new_func; } else if (new_code != NULL) { operand = (uintptr_t)new_code | 1; } else { operand = 0; } ADD_TO_TRACE(uop, oparg, operand, target); code = new_code; func = new_func; instr = _PyCode_CODE(code); DPRINTF(2, "Continuing in %s (%s:%d) at byte offset %d\n", PyUnicode_AsUTF8(code->co_qualname), PyUnicode_AsUTF8(code->co_filename), code->co_firstlineno, 2 * INSTR_IP(instr, code)); goto top; } DPRINTF(2, "Bail, new_code == NULL\n"); ADD_TO_TRACE(uop, oparg, 0, target); ADD_TO_TRACE(_DYNAMIC_EXIT, 0, 0, 0); goto done; } if (uop == _BINARY_OP_INPLACE_ADD_UNICODE) { assert(i + 1 == nuops); _Py_CODEUNIT *next_instr = instr + 1 + _PyOpcode_Caches[_PyOpcode_Deopt[opcode]]; assert(next_instr->op.code == STORE_FAST); operand = next_instr->op.arg; // Skip the STORE_FAST: instr++; } // All other instructions ADD_TO_TRACE(uop, oparg, operand, target); } break; } DPRINTF(2, "Unsupported opcode %s\n", _PyOpcode_OpName[opcode]); OPT_UNSUPPORTED_OPCODE(opcode); goto done; // Break out of loop } // End default } // End switch (opcode) instr++; // Add cache size for opcode instr += _PyOpcode_Caches[_PyOpcode_Deopt[opcode]]; if (opcode == CALL_LIST_APPEND) { assert(instr->op.code == POP_TOP); instr++; } top: // Jump here after _PUSH_FRAME or likely branches. first = false; } // End for (;;) done: while (trace_stack_depth > 0) { TRACE_STACK_POP(); } assert(code == initial_code); // Skip short traces where we can't even translate a single instruction: if (first) { OPT_STAT_INC(trace_too_short); DPRINTF(2, "No trace for %s (%s:%d) at byte offset %d (no progress)\n", PyUnicode_AsUTF8(code->co_qualname), PyUnicode_AsUTF8(code->co_filename), code->co_firstlineno, 2 * INSTR_IP(initial_instr, code)); return 0; } if (!is_terminator(&trace[trace_length-1])) { /* Allow space for _EXIT_TRACE */ max_length += 2; ADD_TO_TRACE(_EXIT_TRACE, 0, 0, target); } DPRINTF(1, "Created a proto-trace for %s (%s:%d) at byte offset %d -- length %d\n", PyUnicode_AsUTF8(code->co_qualname), PyUnicode_AsUTF8(code->co_filename), code->co_firstlineno, 2 * INSTR_IP(initial_instr, code), trace_length); OPT_HIST(trace_length, trace_length_hist); return trace_length; } #undef RESERVE #undef RESERVE_RAW #undef INSTR_IP #undef ADD_TO_TRACE #undef DPRINTF #define UNSET_BIT(array, bit) (array[(bit)>>5] &= ~(1<<((bit)&31))) #define SET_BIT(array, bit) (array[(bit)>>5] |= (1<<((bit)&31))) #define BIT_IS_SET(array, bit) (array[(bit)>>5] & (1<<((bit)&31))) /* Count the number of unused uops and exits */ static int count_exits(_PyUOpInstruction *buffer, int length) { int exit_count = 0; for (int i = 0; i < length; i++) { int opcode = buffer[i].opcode; if (opcode == _EXIT_TRACE || opcode == _DYNAMIC_EXIT) { exit_count++; } } return exit_count; } static void make_exit(_PyUOpInstruction *inst, int opcode, int target) { inst->opcode = opcode; inst->oparg = 0; inst->operand = 0; inst->format = UOP_FORMAT_TARGET; inst->target = target; } /* Convert implicit exits, errors and deopts * into explicit ones. */ static int prepare_for_execution(_PyUOpInstruction *buffer, int length) { int32_t current_jump = -1; int32_t current_jump_target = -1; int32_t current_error = -1; int32_t current_error_target = -1; int32_t current_popped = -1; int32_t current_exit_op = -1; /* Leaving in NOPs slows down the interpreter and messes up the stats */ _PyUOpInstruction *copy_to = &buffer[0]; for (int i = 0; i < length; i++) { _PyUOpInstruction *inst = &buffer[i]; if (inst->opcode != _NOP) { if (copy_to != inst) { *copy_to = *inst; } copy_to++; } } length = (int)(copy_to - buffer); int next_spare = length; for (int i = 0; i < length; i++) { _PyUOpInstruction *inst = &buffer[i]; int opcode = inst->opcode; int32_t target = (int32_t)uop_get_target(inst); if (_PyUop_Flags[opcode] & (HAS_EXIT_FLAG | HAS_DEOPT_FLAG)) { uint16_t exit_op = (_PyUop_Flags[opcode] & HAS_EXIT_FLAG) ? _EXIT_TRACE : _DEOPT; int32_t jump_target = target; if (is_for_iter_test[opcode]) { /* Target the POP_TOP immediately after the END_FOR, * leaving only the iterator on the stack. */ int extended_arg = inst->oparg > 255; int32_t next_inst = target + 1 + INLINE_CACHE_ENTRIES_FOR_ITER + extended_arg; jump_target = next_inst + inst->oparg + 1; } if (jump_target != current_jump_target || current_exit_op != exit_op) { make_exit(&buffer[next_spare], exit_op, jump_target); current_exit_op = exit_op; current_jump_target = jump_target; current_jump = next_spare; next_spare++; } buffer[i].jump_target = current_jump; buffer[i].format = UOP_FORMAT_JUMP; } if (_PyUop_Flags[opcode] & HAS_ERROR_FLAG) { int popped = (_PyUop_Flags[opcode] & HAS_ERROR_NO_POP_FLAG) ? 0 : _PyUop_num_popped(opcode, inst->oparg); if (target != current_error_target || popped != current_popped) { current_popped = popped; current_error = next_spare; current_error_target = target; make_exit(&buffer[next_spare], _ERROR_POP_N, 0); buffer[next_spare].oparg = popped; buffer[next_spare].operand = target; next_spare++; } buffer[i].error_target = current_error; if (buffer[i].format == UOP_FORMAT_TARGET) { buffer[i].format = UOP_FORMAT_JUMP; buffer[i].jump_target = 0; } } if (opcode == _JUMP_TO_TOP) { assert(buffer[0].opcode == _START_EXECUTOR); buffer[i].format = UOP_FORMAT_JUMP; buffer[i].jump_target = 1; } } return next_spare; } /* Executor side exits */ static _PyExecutorObject * allocate_executor(int exit_count, int length) { int size = exit_count*sizeof(_PyExitData) + length*sizeof(_PyUOpInstruction); _PyExecutorObject *res = PyObject_GC_NewVar(_PyExecutorObject, &_PyUOpExecutor_Type, size); if (res == NULL) { return NULL; } res->trace = (_PyUOpInstruction *)(res->exits + exit_count); res->code_size = length; res->exit_count = exit_count; return res; } #ifdef Py_DEBUG #define CHECK(PRED) \ if (!(PRED)) { \ printf(#PRED " at %d\n", i); \ assert(0); \ } static int target_unused(int opcode) { return (_PyUop_Flags[opcode] & (HAS_ERROR_FLAG | HAS_EXIT_FLAG | HAS_DEOPT_FLAG)) == 0; } static void sanity_check(_PyExecutorObject *executor) { for (uint32_t i = 0; i < executor->exit_count; i++) { _PyExitData *exit = &executor->exits[i]; CHECK(exit->target < (1 << 25)); } bool ended = false; uint32_t i = 0; CHECK(executor->trace[0].opcode == _START_EXECUTOR); for (; i < executor->code_size; i++) { const _PyUOpInstruction *inst = &executor->trace[i]; uint16_t opcode = inst->opcode; CHECK(opcode <= MAX_UOP_ID); CHECK(_PyOpcode_uop_name[opcode] != NULL); switch(inst->format) { case UOP_FORMAT_TARGET: CHECK(target_unused(opcode)); break; case UOP_FORMAT_JUMP: CHECK(inst->jump_target < executor->code_size); break; } if (_PyUop_Flags[opcode] & HAS_ERROR_FLAG) { CHECK(inst->format == UOP_FORMAT_JUMP); CHECK(inst->error_target < executor->code_size); } if (is_terminator(inst)) { ended = true; i++; break; } } CHECK(ended); for (; i < executor->code_size; i++) { const _PyUOpInstruction *inst = &executor->trace[i]; uint16_t opcode = inst->opcode; CHECK( opcode == _DEOPT || opcode == _EXIT_TRACE || opcode == _ERROR_POP_N); } } #undef CHECK #endif /* Makes an executor from a buffer of uops. * Account for the buffer having gaps and NOPs by computing a "used" * bit vector and only copying the used uops. Here "used" means reachable * and not a NOP. */ static _PyExecutorObject * make_executor_from_uops(_PyUOpInstruction *buffer, int length, const _PyBloomFilter *dependencies) { int exit_count = count_exits(buffer, length); _PyExecutorObject *executor = allocate_executor(exit_count, length); if (executor == NULL) { return NULL; } /* Initialize exits */ for (int i = 0; i < exit_count; i++) { executor->exits[i].executor = NULL; executor->exits[i].temperature = initial_temperature_backoff_counter(); } int next_exit = exit_count-1; _PyUOpInstruction *dest = (_PyUOpInstruction *)&executor->trace[length]; assert(buffer[0].opcode == _START_EXECUTOR); buffer[0].operand = (uint64_t)executor; for (int i = length-1; i >= 0; i--) { int opcode = buffer[i].opcode; dest--; *dest = buffer[i]; assert(opcode != _POP_JUMP_IF_FALSE && opcode != _POP_JUMP_IF_TRUE); if (opcode == _EXIT_TRACE) { _PyExitData *exit = &executor->exits[next_exit]; exit->target = buffer[i].target; dest->operand = (uint64_t)exit; next_exit--; } if (opcode == _DYNAMIC_EXIT) { _PyExitData *exit = &executor->exits[next_exit]; exit->target = 0; dest->operand = (uint64_t)exit; next_exit--; } } assert(next_exit == -1); assert(dest == executor->trace); assert(dest->opcode == _START_EXECUTOR); _Py_ExecutorInit(executor, dependencies); #ifdef Py_DEBUG char *python_lltrace = Py_GETENV("PYTHON_LLTRACE"); int lltrace = 0; if (python_lltrace != NULL && *python_lltrace >= '0') { lltrace = *python_lltrace - '0'; // TODO: Parse an int and all that } if (lltrace >= 2) { printf("Optimized trace (length %d):\n", length); for (int i = 0; i < length; i++) { printf("%4d OPTIMIZED: ", i); _PyUOpPrint(&executor->trace[i]); printf("\n"); } } sanity_check(executor); #endif #ifdef _Py_JIT executor->jit_code = NULL; executor->jit_side_entry = NULL; executor->jit_size = 0; // This is initialized to true so we can prevent the executor // from being immediately detected as cold and invalidated. executor->vm_data.warm = true; if (_PyJIT_Compile(executor, executor->trace, length)) { Py_DECREF(executor); return NULL; } #endif _PyObject_GC_TRACK(executor); return executor; } #ifdef Py_STATS /* Returns the effective trace length. * Ignores NOPs and trailing exit and error handling.*/ int effective_trace_length(_PyUOpInstruction *buffer, int length) { int nop_count = 0; for (int i = 0; i < length; i++) { int opcode = buffer[i].opcode; if (opcode == _NOP) { nop_count++; } if (is_terminator(&buffer[i])) { return i+1-nop_count; } } Py_FatalError("No terminating instruction"); Py_UNREACHABLE(); } #endif static int uop_optimize( _PyOptimizerObject *self, _PyInterpreterFrame *frame, _Py_CODEUNIT *instr, _PyExecutorObject **exec_ptr, int curr_stackentries, bool progress_needed) { _PyBloomFilter dependencies; _Py_BloomFilter_Init(&dependencies); _PyUOpInstruction buffer[UOP_MAX_TRACE_LENGTH]; OPT_STAT_INC(attempts); int length = translate_bytecode_to_trace(frame, instr, buffer, UOP_MAX_TRACE_LENGTH, &dependencies, progress_needed); if (length <= 0) { // Error or nothing translated return length; } assert(length < UOP_MAX_TRACE_LENGTH); OPT_STAT_INC(traces_created); char *env_var = Py_GETENV("PYTHON_UOPS_OPTIMIZE"); if (env_var == NULL || *env_var == '\0' || *env_var > '0') { length = _Py_uop_analyze_and_optimize(frame, buffer, length, curr_stackentries, &dependencies); if (length <= 0) { return length; } } assert(length < UOP_MAX_TRACE_LENGTH); assert(length >= 1); /* Fix up */ for (int pc = 0; pc < length; pc++) { int opcode = buffer[pc].opcode; int oparg = buffer[pc].oparg; if (_PyUop_Flags[opcode] & HAS_OPARG_AND_1_FLAG) { buffer[pc].opcode = opcode + 1 + (oparg & 1); } else if (oparg < _PyUop_Replication[opcode]) { buffer[pc].opcode = opcode + oparg + 1; } else if (is_terminator(&buffer[pc])) { break; } assert(_PyOpcode_uop_name[buffer[pc].opcode]); assert(strncmp(_PyOpcode_uop_name[buffer[pc].opcode], _PyOpcode_uop_name[opcode], strlen(_PyOpcode_uop_name[opcode])) == 0); } OPT_HIST(effective_trace_length(buffer, length), optimized_trace_length_hist); length = prepare_for_execution(buffer, length); assert(length <= UOP_MAX_TRACE_LENGTH); _PyExecutorObject *executor = make_executor_from_uops(buffer, length, &dependencies); if (executor == NULL) { return -1; } assert(length <= UOP_MAX_TRACE_LENGTH); *exec_ptr = executor; return 1; } static void uop_opt_dealloc(PyObject *self) { PyObject_Free(self); } PyTypeObject _PyUOpOptimizer_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) .tp_name = "uop_optimizer", .tp_basicsize = sizeof(_PyOptimizerObject), .tp_itemsize = 0, .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION, .tp_dealloc = uop_opt_dealloc, }; PyObject * _PyOptimizer_NewUOpOptimizer(void) { _PyOptimizerObject *opt = PyObject_New(_PyOptimizerObject, &_PyUOpOptimizer_Type); if (opt == NULL) { return NULL; } opt->optimize = uop_optimize; return (PyObject *)opt; } static void counter_dealloc(_PyExecutorObject *self) { /* The optimizer is the operand of the second uop. */ PyObject *opt = (PyObject *)self->trace[1].operand; Py_DECREF(opt); uop_dealloc(self); } PyTypeObject _PyCounterExecutor_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) .tp_name = "counting_executor", .tp_basicsize = offsetof(_PyExecutorObject, exits), .tp_itemsize = 1, .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION | Py_TPFLAGS_HAVE_GC, .tp_dealloc = (destructor)counter_dealloc, .tp_methods = executor_methods, .tp_traverse = executor_traverse, .tp_clear = (inquiry)executor_clear, }; static int counter_optimize( _PyOptimizerObject* self, _PyInterpreterFrame *frame, _Py_CODEUNIT *instr, _PyExecutorObject **exec_ptr, int Py_UNUSED(curr_stackentries), bool Py_UNUSED(progress_needed) ) { PyCodeObject *code = _PyFrame_GetCode(frame); int oparg = instr->op.arg; while (instr->op.code == EXTENDED_ARG) { instr++; oparg = (oparg << 8) | instr->op.arg; } if (instr->op.code != JUMP_BACKWARD) { /* Counter optimizer can only handle backward edges */ return 0; } _Py_CODEUNIT *target = instr + 1 + _PyOpcode_Caches[JUMP_BACKWARD] - oparg; _PyUOpInstruction buffer[4] = { { .opcode = _START_EXECUTOR, .jump_target = 3, .format=UOP_FORMAT_JUMP }, { .opcode = _LOAD_CONST_INLINE, .operand = (uintptr_t)self }, { .opcode = _INTERNAL_INCREMENT_OPT_COUNTER }, { .opcode = _EXIT_TRACE, .target = (uint32_t)(target - _PyCode_CODE(code)), .format=UOP_FORMAT_TARGET } }; _PyExecutorObject *executor = make_executor_from_uops(buffer, 4, &EMPTY_FILTER); if (executor == NULL) { return -1; } Py_INCREF(self); Py_SET_TYPE(executor, &_PyCounterExecutor_Type); *exec_ptr = executor; return 1; } static PyObject * counter_get_counter(PyObject *self, PyObject *args) { return PyLong_FromLongLong(((_PyCounterOptimizerObject *)self)->count); } static PyMethodDef counter_optimizer_methods[] = { { "get_count", counter_get_counter, METH_NOARGS, NULL }, { NULL, NULL }, }; PyTypeObject _PyCounterOptimizer_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) .tp_name = "Counter optimizer", .tp_basicsize = sizeof(_PyCounterOptimizerObject), .tp_itemsize = 0, .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION, .tp_methods = counter_optimizer_methods, .tp_dealloc = (destructor)PyObject_Free, }; PyObject * _PyOptimizer_NewCounter(void) { _PyCounterOptimizerObject *opt = (_PyCounterOptimizerObject *)_PyObject_New(&_PyCounterOptimizer_Type); if (opt == NULL) { return NULL; } opt->base.optimize = counter_optimize; opt->count = 0; return (PyObject *)opt; } /***************************************** * Executor management ****************************************/ /* We use a bloomfilter with k = 6, m = 256 * The choice of k and the following constants * could do with a more rigorous analysis, * but here is a simple analysis: * * We want to keep the false positive rate low. * For n = 5 (a trace depends on 5 objects), * we expect 30 bits set, giving a false positive * rate of (30/256)**6 == 2.5e-6 which is plenty * good enough. * * However with n = 10 we expect 60 bits set (worst case), * giving a false positive of (60/256)**6 == 0.0001 * * We choose k = 6, rather than a higher number as * it means the false positive rate grows slower for high n. * * n = 5, k = 6 => fp = 2.6e-6 * n = 5, k = 8 => fp = 3.5e-7 * n = 10, k = 6 => fp = 1.6e-4 * n = 10, k = 8 => fp = 0.9e-4 * n = 15, k = 6 => fp = 0.18% * n = 15, k = 8 => fp = 0.23% * n = 20, k = 6 => fp = 1.1% * n = 20, k = 8 => fp = 2.3% * * The above analysis assumes perfect hash functions, * but those don't exist, so the real false positive * rates may be worse. */ #define K 6 #define SEED 20221211 /* TO DO -- Use more modern hash functions with better distribution of bits */ static uint64_t address_to_hash(void *ptr) { assert(ptr != NULL); uint64_t uhash = SEED; uintptr_t addr = (uintptr_t)ptr; for (int i = 0; i < SIZEOF_VOID_P; i++) { uhash ^= addr & 255; uhash *= (uint64_t)PyHASH_MULTIPLIER; addr >>= 8; } return uhash; } void _Py_BloomFilter_Init(_PyBloomFilter *bloom) { for (int i = 0; i < _Py_BLOOM_FILTER_WORDS; i++) { bloom->bits[i] = 0; } } /* We want K hash functions that each set 1 bit. * A hash function that sets 1 bit in M bits can be trivially * derived from a log2(M) bit hash function. * So we extract 8 (log2(256)) bits at a time from * the 64bit hash. */ void _Py_BloomFilter_Add(_PyBloomFilter *bloom, void *ptr) { uint64_t hash = address_to_hash(ptr); assert(K <= 8); for (int i = 0; i < K; i++) { uint8_t bits = hash & 255; bloom->bits[bits >> 5] |= (1 << (bits&31)); hash >>= 8; } } static bool bloom_filter_may_contain(_PyBloomFilter *bloom, _PyBloomFilter *hashes) { for (int i = 0; i < _Py_BLOOM_FILTER_WORDS; i++) { if ((bloom->bits[i] & hashes->bits[i]) != hashes->bits[i]) { return false; } } return true; } static void link_executor(_PyExecutorObject *executor) { PyInterpreterState *interp = _PyInterpreterState_GET(); _PyExecutorLinkListNode *links = &executor->vm_data.links; _PyExecutorObject *head = interp->executor_list_head; if (head == NULL) { interp->executor_list_head = executor; links->previous = NULL; links->next = NULL; } else { assert(head->vm_data.links.previous == NULL); links->previous = NULL; links->next = head; head->vm_data.links.previous = executor; interp->executor_list_head = executor; } executor->vm_data.linked = true; /* executor_list_head must be first in list */ assert(interp->executor_list_head->vm_data.links.previous == NULL); } static void unlink_executor(_PyExecutorObject *executor) { if (!executor->vm_data.linked) { return; } _PyExecutorLinkListNode *links = &executor->vm_data.links; assert(executor->vm_data.valid); _PyExecutorObject *next = links->next; _PyExecutorObject *prev = links->previous; if (next != NULL) { next->vm_data.links.previous = prev; } if (prev != NULL) { prev->vm_data.links.next = next; } else { // prev == NULL implies that executor is the list head PyInterpreterState *interp = PyInterpreterState_Get(); assert(interp->executor_list_head == executor); interp->executor_list_head = next; } executor->vm_data.linked = false; } /* This must be called by optimizers before using the executor */ void _Py_ExecutorInit(_PyExecutorObject *executor, const _PyBloomFilter *dependency_set) { executor->vm_data.valid = true; for (int i = 0; i < _Py_BLOOM_FILTER_WORDS; i++) { executor->vm_data.bloom.bits[i] = dependency_set->bits[i]; } link_executor(executor); } /* Detaches the executor from the code object (if any) that * holds a reference to it */ void _Py_ExecutorDetach(_PyExecutorObject *executor) { PyCodeObject *code = executor->vm_data.code; if (code == NULL) { return; } _Py_CODEUNIT *instruction = &_PyCode_CODE(code)[executor->vm_data.index]; assert(instruction->op.code == ENTER_EXECUTOR); int index = instruction->op.arg; assert(code->co_executors->executors[index] == executor); instruction->op.code = executor->vm_data.opcode; instruction->op.arg = executor->vm_data.oparg; executor->vm_data.code = NULL; code->co_executors->executors[index] = NULL; Py_DECREF(executor); } static int executor_clear(_PyExecutorObject *executor) { if (!executor->vm_data.valid) { return 0; } assert(executor->vm_data.valid == 1); unlink_executor(executor); executor->vm_data.valid = 0; /* It is possible for an executor to form a reference * cycle with itself, so decref'ing a side exit could * free the executor unless we hold a strong reference to it */ Py_INCREF(executor); for (uint32_t i = 0; i < executor->exit_count; i++) { executor->exits[i].temperature = initial_unreachable_backoff_counter(); Py_CLEAR(executor->exits[i].executor); } _Py_ExecutorDetach(executor); Py_DECREF(executor); return 0; } void _Py_Executor_DependsOn(_PyExecutorObject *executor, void *obj) { assert(executor->vm_data.valid); _Py_BloomFilter_Add(&executor->vm_data.bloom, obj); } /* Invalidate all executors that depend on `obj` * May cause other executors to be invalidated as well */ void _Py_Executors_InvalidateDependency(PyInterpreterState *interp, void *obj, int is_invalidation) { _PyBloomFilter obj_filter; _Py_BloomFilter_Init(&obj_filter); _Py_BloomFilter_Add(&obj_filter, obj); /* Walk the list of executors */ /* TO DO -- Use a tree to avoid traversing as many objects */ PyObject *invalidate = PyList_New(0); if (invalidate == NULL) { goto error; } /* Clearing an executor can deallocate others, so we need to make a list of * executors to invalidate first */ for (_PyExecutorObject *exec = interp->executor_list_head; exec != NULL;) { assert(exec->vm_data.valid); _PyExecutorObject *next = exec->vm_data.links.next; if (bloom_filter_may_contain(&exec->vm_data.bloom, &obj_filter) && PyList_Append(invalidate, (PyObject *)exec)) { goto error; } exec = next; } for (Py_ssize_t i = 0; i < PyList_GET_SIZE(invalidate); i++) { _PyExecutorObject *exec = (_PyExecutorObject *)PyList_GET_ITEM(invalidate, i); executor_clear(exec); if (is_invalidation) { OPT_STAT_INC(executors_invalidated); } } Py_DECREF(invalidate); return; error: PyErr_Clear(); Py_XDECREF(invalidate); // If we're truly out of memory, wiping out everything is a fine fallback: _Py_Executors_InvalidateAll(interp, is_invalidation); } /* Invalidate all executors */ void _Py_Executors_InvalidateAll(PyInterpreterState *interp, int is_invalidation) { while (interp->executor_list_head) { _PyExecutorObject *executor = interp->executor_list_head; assert(executor->vm_data.valid == 1 && executor->vm_data.linked == 1); if (executor->vm_data.code) { // Clear the entire code object so its co_executors array be freed: _PyCode_Clear_Executors(executor->vm_data.code); } else { executor_clear(executor); } if (is_invalidation) { OPT_STAT_INC(executors_invalidated); } } } void _Py_Executors_InvalidateCold(PyInterpreterState *interp) { /* Walk the list of executors */ /* TO DO -- Use a tree to avoid traversing as many objects */ PyObject *invalidate = PyList_New(0); if (invalidate == NULL) { goto error; } /* Clearing an executor can deallocate others, so we need to make a list of * executors to invalidate first */ for (_PyExecutorObject *exec = interp->executor_list_head; exec != NULL;) { assert(exec->vm_data.valid); _PyExecutorObject *next = exec->vm_data.links.next; if (!exec->vm_data.warm && PyList_Append(invalidate, (PyObject *)exec) < 0) { goto error; } else { exec->vm_data.warm = false; } exec = next; } for (Py_ssize_t i = 0; i < PyList_GET_SIZE(invalidate); i++) { _PyExecutorObject *exec = (_PyExecutorObject *)PyList_GET_ITEM(invalidate, i); executor_clear(exec); } Py_DECREF(invalidate); return; error: PyErr_Clear(); Py_XDECREF(invalidate); // If we're truly out of memory, wiping out everything is a fine fallback _Py_Executors_InvalidateAll(interp, 0); } #endif /* _Py_TIER2 */