#ifdef _Py_JIT #include "Python.h" #include "pycore_abstract.h" #include "pycore_bitutils.h" #include "pycore_call.h" #include "pycore_ceval.h" #include "pycore_critical_section.h" #include "pycore_dict.h" #include "pycore_intrinsics.h" #include "pycore_long.h" #include "pycore_opcode_metadata.h" #include "pycore_opcode_utils.h" #include "pycore_optimizer.h" #include "pycore_pyerrors.h" #include "pycore_setobject.h" #include "pycore_sliceobject.h" #include "pycore_jit.h" // Memory management stuff: //////////////////////////////////////////////////// #ifndef MS_WINDOWS #include #endif static size_t get_page_size(void) { #ifdef MS_WINDOWS SYSTEM_INFO si; GetSystemInfo(&si); return si.dwPageSize; #else return sysconf(_SC_PAGESIZE); #endif } static void jit_error(const char *message) { #ifdef MS_WINDOWS int hint = GetLastError(); #else int hint = errno; #endif PyErr_Format(PyExc_RuntimeWarning, "JIT %s (%d)", message, hint); } static unsigned char * jit_alloc(size_t size) { assert(size); assert(size % get_page_size() == 0); #ifdef MS_WINDOWS int flags = MEM_COMMIT | MEM_RESERVE; unsigned char *memory = VirtualAlloc(NULL, size, flags, PAGE_READWRITE); int failed = memory == NULL; #else int flags = MAP_ANONYMOUS | MAP_PRIVATE; unsigned char *memory = mmap(NULL, size, PROT_READ | PROT_WRITE, flags, -1, 0); int failed = memory == MAP_FAILED; #endif if (failed) { jit_error("unable to allocate memory"); return NULL; } return memory; } static int jit_free(unsigned char *memory, size_t size) { assert(size); assert(size % get_page_size() == 0); #ifdef MS_WINDOWS int failed = !VirtualFree(memory, 0, MEM_RELEASE); #else int failed = munmap(memory, size); #endif if (failed) { jit_error("unable to free memory"); return -1; } return 0; } static int mark_executable(unsigned char *memory, size_t size) { if (size == 0) { return 0; } assert(size % get_page_size() == 0); // Do NOT ever leave the memory writable! Also, don't forget to flush the // i-cache (I cannot begin to tell you how horrible that is to debug): #ifdef MS_WINDOWS if (!FlushInstructionCache(GetCurrentProcess(), memory, size)) { jit_error("unable to flush instruction cache"); return -1; } int old; int failed = !VirtualProtect(memory, size, PAGE_EXECUTE_READ, &old); #else __builtin___clear_cache((char *)memory, (char *)memory + size); int failed = mprotect(memory, size, PROT_EXEC | PROT_READ); #endif if (failed) { jit_error("unable to protect executable memory"); return -1; } return 0; } // JIT compiler stuff: ///////////////////////////////////////////////////////// #define SYMBOL_MASK_WORDS 4 typedef uint32_t symbol_mask[SYMBOL_MASK_WORDS]; typedef struct { unsigned char *mem; symbol_mask mask; size_t size; } trampoline_state; typedef struct { trampoline_state trampolines; uintptr_t instruction_starts[UOP_MAX_TRACE_LENGTH]; } jit_state; // Warning! AArch64 requires you to get your hands dirty. These are your gloves: // value[value_start : value_start + len] static uint32_t get_bits(uint64_t value, uint8_t value_start, uint8_t width) { assert(width <= 32); return (value >> value_start) & ((1ULL << width) - 1); } // *loc[loc_start : loc_start + width] = value[value_start : value_start + width] static void set_bits(uint32_t *loc, uint8_t loc_start, uint64_t value, uint8_t value_start, uint8_t width) { assert(loc_start + width <= 32); // Clear the bits we're about to patch: *loc &= ~(((1ULL << width) - 1) << loc_start); assert(get_bits(*loc, loc_start, width) == 0); // Patch the bits: *loc |= get_bits(value, value_start, width) << loc_start; assert(get_bits(*loc, loc_start, width) == get_bits(value, value_start, width)); } // See https://developer.arm.com/documentation/ddi0602/2023-09/Base-Instructions // for instruction encodings: #define IS_AARCH64_ADD_OR_SUB(I) (((I) & 0x11C00000) == 0x11000000) #define IS_AARCH64_ADRP(I) (((I) & 0x9F000000) == 0x90000000) #define IS_AARCH64_BRANCH(I) (((I) & 0x7C000000) == 0x14000000) #define IS_AARCH64_LDR_OR_STR(I) (((I) & 0x3B000000) == 0x39000000) #define IS_AARCH64_MOV(I) (((I) & 0x9F800000) == 0x92800000) // LLD is a great reference for performing relocations... just keep in // mind that Tools/jit/build.py does filtering and preprocessing for us! // Here's a good place to start for each platform: // - aarch64-apple-darwin: // - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64.cpp // - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.cpp // - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.h // - aarch64-pc-windows-msvc: // - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp // - aarch64-unknown-linux-gnu: // - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/AArch64.cpp // - i686-pc-windows-msvc: // - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp // - x86_64-apple-darwin: // - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/X86_64.cpp // - x86_64-pc-windows-msvc: // - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp // - x86_64-unknown-linux-gnu: // - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/X86_64.cpp // Many of these patches are "relaxing", meaning that they can rewrite the // code they're patching to be more efficient (like turning a 64-bit memory // load into a 32-bit immediate load). These patches have an "x" in their name. // Relative patches have an "r" in their name. // 32-bit absolute address. void patch_32(unsigned char *location, uint64_t value) { uint32_t *loc32 = (uint32_t *)location; // Check that we're not out of range of 32 unsigned bits: assert(value < (1ULL << 32)); *loc32 = (uint32_t)value; } // 32-bit relative address. void patch_32r(unsigned char *location, uint64_t value) { uint32_t *loc32 = (uint32_t *)location; value -= (uintptr_t)location; // Check that we're not out of range of 32 signed bits: assert((int64_t)value >= -(1LL << 31)); assert((int64_t)value < (1LL << 31)); *loc32 = (uint32_t)value; } // 64-bit absolute address. void patch_64(unsigned char *location, uint64_t value) { uint64_t *loc64 = (uint64_t *)location; *loc64 = value; } // 12-bit low part of an absolute address. Pairs nicely with patch_aarch64_21r // (below). void patch_aarch64_12(unsigned char *location, uint64_t value) { uint32_t *loc32 = (uint32_t *)location; assert(IS_AARCH64_LDR_OR_STR(*loc32) || IS_AARCH64_ADD_OR_SUB(*loc32)); // There might be an implicit shift encoded in the instruction: uint8_t shift = 0; if (IS_AARCH64_LDR_OR_STR(*loc32)) { shift = (uint8_t)get_bits(*loc32, 30, 2); // If both of these are set, the shift is supposed to be 4. // That's pretty weird, and it's never actually been observed... assert(get_bits(*loc32, 23, 1) == 0 || get_bits(*loc32, 26, 1) == 0); } value = get_bits(value, 0, 12); assert(get_bits(value, 0, shift) == 0); set_bits(loc32, 10, value, shift, 12); } // Relaxable 12-bit low part of an absolute address. Pairs nicely with // patch_aarch64_21rx (below). void patch_aarch64_12x(unsigned char *location, uint64_t value) { // This can *only* be relaxed if it occurs immediately before a matching // patch_aarch64_21rx. If that happens, the JIT build step will replace both // calls with a single call to patch_aarch64_33rx. Otherwise, we end up // here, and the instruction is patched normally: patch_aarch64_12(location, value); } // 16-bit low part of an absolute address. void patch_aarch64_16a(unsigned char *location, uint64_t value) { uint32_t *loc32 = (uint32_t *)location; assert(IS_AARCH64_MOV(*loc32)); // Check the implicit shift (this is "part 0 of 3"): assert(get_bits(*loc32, 21, 2) == 0); set_bits(loc32, 5, value, 0, 16); } // 16-bit middle-low part of an absolute address. void patch_aarch64_16b(unsigned char *location, uint64_t value) { uint32_t *loc32 = (uint32_t *)location; assert(IS_AARCH64_MOV(*loc32)); // Check the implicit shift (this is "part 1 of 3"): assert(get_bits(*loc32, 21, 2) == 1); set_bits(loc32, 5, value, 16, 16); } // 16-bit middle-high part of an absolute address. void patch_aarch64_16c(unsigned char *location, uint64_t value) { uint32_t *loc32 = (uint32_t *)location; assert(IS_AARCH64_MOV(*loc32)); // Check the implicit shift (this is "part 2 of 3"): assert(get_bits(*loc32, 21, 2) == 2); set_bits(loc32, 5, value, 32, 16); } // 16-bit high part of an absolute address. void patch_aarch64_16d(unsigned char *location, uint64_t value) { uint32_t *loc32 = (uint32_t *)location; assert(IS_AARCH64_MOV(*loc32)); // Check the implicit shift (this is "part 3 of 3"): assert(get_bits(*loc32, 21, 2) == 3); set_bits(loc32, 5, value, 48, 16); } // 21-bit count of pages between this page and an absolute address's page... I // know, I know, it's weird. Pairs nicely with patch_aarch64_12 (above). void patch_aarch64_21r(unsigned char *location, uint64_t value) { uint32_t *loc32 = (uint32_t *)location; value = (value >> 12) - ((uintptr_t)location >> 12); // Check that we're not out of range of 21 signed bits: assert((int64_t)value >= -(1 << 20)); assert((int64_t)value < (1 << 20)); // value[0:2] goes in loc[29:31]: set_bits(loc32, 29, value, 0, 2); // value[2:21] goes in loc[5:26]: set_bits(loc32, 5, value, 2, 19); } // Relaxable 21-bit count of pages between this page and an absolute address's // page. Pairs nicely with patch_aarch64_12x (above). void patch_aarch64_21rx(unsigned char *location, uint64_t value) { // This can *only* be relaxed if it occurs immediately before a matching // patch_aarch64_12x. If that happens, the JIT build step will replace both // calls with a single call to patch_aarch64_33rx. Otherwise, we end up // here, and the instruction is patched normally: patch_aarch64_21r(location, value); } // 28-bit relative branch. void patch_aarch64_26r(unsigned char *location, uint64_t value) { uint32_t *loc32 = (uint32_t *)location; assert(IS_AARCH64_BRANCH(*loc32)); value -= (uintptr_t)location; // Check that we're not out of range of 28 signed bits: assert((int64_t)value >= -(1 << 27)); assert((int64_t)value < (1 << 27)); // Since instructions are 4-byte aligned, only use 26 bits: assert(get_bits(value, 0, 2) == 0); set_bits(loc32, 0, value, 2, 26); } // A pair of patch_aarch64_21rx and patch_aarch64_12x. void patch_aarch64_33rx(unsigned char *location, uint64_t value) { uint32_t *loc32 = (uint32_t *)location; // Try to relax the pair of GOT loads into an immediate value: assert(IS_AARCH64_ADRP(*loc32)); unsigned char reg = get_bits(loc32[0], 0, 5); assert(IS_AARCH64_LDR_OR_STR(loc32[1])); // There should be only one register involved: assert(reg == get_bits(loc32[1], 0, 5)); // ldr's output register. assert(reg == get_bits(loc32[1], 5, 5)); // ldr's input register. uint64_t relaxed = *(uint64_t *)value; if (relaxed < (1UL << 16)) { // adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; nop loc32[0] = 0xD2800000 | (get_bits(relaxed, 0, 16) << 5) | reg; loc32[1] = 0xD503201F; return; } if (relaxed < (1ULL << 32)) { // adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; movk reg, YYY loc32[0] = 0xD2800000 | (get_bits(relaxed, 0, 16) << 5) | reg; loc32[1] = 0xF2A00000 | (get_bits(relaxed, 16, 16) << 5) | reg; return; } relaxed = value - (uintptr_t)location; if ((relaxed & 0x3) == 0 && (int64_t)relaxed >= -(1L << 19) && (int64_t)relaxed < (1L << 19)) { // adrp reg, AAA; ldr reg, [reg + BBB] -> ldr reg, XXX; nop loc32[0] = 0x58000000 | (get_bits(relaxed, 2, 19) << 5) | reg; loc32[1] = 0xD503201F; return; } // Couldn't do it. Just patch the two instructions normally: patch_aarch64_21rx(location, value); patch_aarch64_12x(location + 4, value); } // Relaxable 32-bit relative address. void patch_x86_64_32rx(unsigned char *location, uint64_t value) { uint8_t *loc8 = (uint8_t *)location; // Try to relax the GOT load into an immediate value: uint64_t relaxed = *(uint64_t *)(value + 4) - 4; if ((int64_t)relaxed - (int64_t)location >= -(1LL << 31) && (int64_t)relaxed - (int64_t)location + 1 < (1LL << 31)) { if (loc8[-2] == 0x8B) { // mov reg, dword ptr [rip + AAA] -> lea reg, [rip + XXX] loc8[-2] = 0x8D; value = relaxed; } else if (loc8[-2] == 0xFF && loc8[-1] == 0x15) { // call qword ptr [rip + AAA] -> nop; call XXX loc8[-2] = 0x90; loc8[-1] = 0xE8; value = relaxed; } else if (loc8[-2] == 0xFF && loc8[-1] == 0x25) { // jmp qword ptr [rip + AAA] -> nop; jmp XXX loc8[-2] = 0x90; loc8[-1] = 0xE9; value = relaxed; } } patch_32r(location, value); } void patch_aarch64_trampoline(unsigned char *location, int ordinal, jit_state *state); #include "jit_stencils.h" #if defined(__aarch64__) || defined(_M_ARM64) #define TRAMPOLINE_SIZE 16 #else #define TRAMPOLINE_SIZE 0 #endif // Generate and patch AArch64 trampolines. The symbols to jump to are stored // in the jit_stencils.h in the symbols_map. void patch_aarch64_trampoline(unsigned char *location, int ordinal, jit_state *state) { // Masking is done modulo 32 as the mask is stored as an array of uint32_t const uint32_t symbol_mask = 1 << (ordinal % 32); const uint32_t trampoline_mask = state->trampolines.mask[ordinal / 32]; assert(symbol_mask & trampoline_mask); // Count the number of set bits in the trampoline mask lower than ordinal, // this gives the index into the array of trampolines. int index = _Py_popcount32(trampoline_mask & (symbol_mask - 1)); for (int i = 0; i < ordinal / 32; i++) { index += _Py_popcount32(state->trampolines.mask[i]); } uint32_t *p = (uint32_t*)(state->trampolines.mem + index * TRAMPOLINE_SIZE); assert((size_t)(index + 1) * TRAMPOLINE_SIZE <= state->trampolines.size); uint64_t value = (uintptr_t)symbols_map[ordinal]; /* Generate the trampoline 0: 58000048 ldr x8, 8 4: d61f0100 br x8 8: 00000000 // The next two words contain the 64-bit address to jump to. c: 00000000 */ p[0] = 0x58000048; p[1] = 0xD61F0100; p[2] = value & 0xffffffff; p[3] = value >> 32; patch_aarch64_26r(location, (uintptr_t)p); } static void combine_symbol_mask(const symbol_mask src, symbol_mask dest) { // Calculate the union of the trampolines required by each StencilGroup for (size_t i = 0; i < SYMBOL_MASK_WORDS; i++) { dest[i] |= src[i]; } } // Compiles executor in-place. Don't forget to call _PyJIT_Free later! int _PyJIT_Compile(_PyExecutorObject *executor, const _PyUOpInstruction trace[], size_t length) { const StencilGroup *group; // Loop once to find the total compiled size: size_t code_size = 0; size_t data_size = 0; jit_state state = {0}; group = &trampoline; code_size += group->code_size; data_size += group->data_size; for (size_t i = 0; i < length; i++) { const _PyUOpInstruction *instruction = &trace[i]; group = &stencil_groups[instruction->opcode]; state.instruction_starts[i] = code_size; code_size += group->code_size; data_size += group->data_size; combine_symbol_mask(group->trampoline_mask, state.trampolines.mask); } group = &stencil_groups[_FATAL_ERROR]; code_size += group->code_size; data_size += group->data_size; combine_symbol_mask(group->trampoline_mask, state.trampolines.mask); // Calculate the size of the trampolines required by the whole trace for (size_t i = 0; i < Py_ARRAY_LENGTH(state.trampolines.mask); i++) { state.trampolines.size += _Py_popcount32(state.trampolines.mask[i]) * TRAMPOLINE_SIZE; } // Round up to the nearest page: size_t page_size = get_page_size(); assert((page_size & (page_size - 1)) == 0); size_t padding = page_size - ((code_size + data_size + state.trampolines.size) & (page_size - 1)); size_t total_size = code_size + data_size + state.trampolines.size + padding; unsigned char *memory = jit_alloc(total_size); if (memory == NULL) { return -1; } // Update the offsets of each instruction: for (size_t i = 0; i < length; i++) { state.instruction_starts[i] += (uintptr_t)memory; } // Loop again to emit the code: unsigned char *code = memory; unsigned char *data = memory + code_size; state.trampolines.mem = memory + code_size + data_size; // Compile the trampoline, which handles converting between the native // calling convention and the calling convention used by jitted code // (which may be different for efficiency reasons). On platforms where // we don't change calling conventions, the trampoline is empty and // nothing is emitted here: group = &trampoline; group->emit(code, data, executor, NULL, &state); code += group->code_size; data += group->data_size; assert(trace[0].opcode == _START_EXECUTOR); for (size_t i = 0; i < length; i++) { const _PyUOpInstruction *instruction = &trace[i]; group = &stencil_groups[instruction->opcode]; group->emit(code, data, executor, instruction, &state); code += group->code_size; data += group->data_size; } // Protect against accidental buffer overrun into data: group = &stencil_groups[_FATAL_ERROR]; group->emit(code, data, executor, NULL, &state); code += group->code_size; data += group->data_size; assert(code == memory + code_size); assert(data == memory + code_size + data_size); if (mark_executable(memory, total_size)) { jit_free(memory, total_size); return -1; } executor->jit_code = memory; executor->jit_side_entry = memory + trampoline.code_size; executor->jit_size = total_size; return 0; } void _PyJIT_Free(_PyExecutorObject *executor) { unsigned char *memory = (unsigned char *)executor->jit_code; size_t size = executor->jit_size; if (memory) { executor->jit_code = NULL; executor->jit_side_entry = NULL; executor->jit_size = 0; if (jit_free(memory, size)) { PyErr_WriteUnraisable(NULL); } } } #endif // _Py_JIT