#ifndef Py_INTERNAL_OBJECT_H #define Py_INTERNAL_OBJECT_H #ifdef __cplusplus extern "C" { #endif #ifndef Py_BUILD_CORE # error "this header requires Py_BUILD_CORE define" #endif #include #include "pycore_gc.h" // _PyObject_GC_IS_TRACKED() #include "pycore_emscripten_trampoline.h" // _PyCFunction_TrampolineCall() #include "pycore_interp.h" // PyInterpreterState.gc #include "pycore_pyatomic_ft_wrappers.h" // FT_ATOMIC_STORE_PTR_RELAXED #include "pycore_pystate.h" // _PyInterpreterState_GET() #define _Py_IMMORTAL_REFCNT_LOOSE ((_Py_IMMORTAL_REFCNT >> 1) + 1) // gh-121528, gh-118997: Similar to _Py_IsImmortal() but be more loose when // comparing the reference count to stay compatible with C extensions built // with the stable ABI 3.11 or older. Such extensions implement INCREF/DECREF // as refcnt++ and refcnt-- without taking in account immortal objects. For // example, the reference count of an immortal object can change from // _Py_IMMORTAL_REFCNT to _Py_IMMORTAL_REFCNT+1 (INCREF) or // _Py_IMMORTAL_REFCNT-1 (DECREF). // // This function should only be used in assertions. Otherwise, _Py_IsImmortal() // must be used instead. static inline int _Py_IsImmortalLoose(PyObject *op) { #if defined(Py_GIL_DISABLED) return _Py_IsImmortal(op); #else return (op->ob_refcnt >= _Py_IMMORTAL_REFCNT_LOOSE); #endif } #define _Py_IsImmortalLoose(op) _Py_IsImmortalLoose(_PyObject_CAST(op)) /* Check if an object is consistent. For example, ensure that the reference counter is greater than or equal to 1, and ensure that ob_type is not NULL. Call _PyObject_AssertFailed() if the object is inconsistent. If check_content is zero, only check header fields: reduce the overhead. The function always return 1. The return value is just here to be able to write: assert(_PyObject_CheckConsistency(obj, 1)); */ extern int _PyObject_CheckConsistency(PyObject *op, int check_content); extern void _PyDebugAllocatorStats(FILE *out, const char *block_name, int num_blocks, size_t sizeof_block); extern void _PyObject_DebugTypeStats(FILE *out); #ifdef Py_TRACE_REFS // Forget a reference registered by _Py_NewReference(). Function called by // _Py_Dealloc(). // // On a free list, the function can be used before modifying an object to // remove the object from traced objects. Then _Py_NewReference() or // _Py_NewReferenceNoTotal() should be called again on the object to trace // it again. extern void _Py_ForgetReference(PyObject *); #endif // Export for shared _testinternalcapi extension PyAPI_FUNC(int) _PyObject_IsFreed(PyObject *); /* We need to maintain an internal copy of Py{Var}Object_HEAD_INIT to avoid designated initializer conflicts in C++20. If we use the deinition in object.h, we will be mixing designated and non-designated initializers in pycore objects which is forbiddent in C++20. However, if we then use designated initializers in object.h then Extensions without designated break. Furthermore, we can't use designated initializers in Extensions since these are not supported pre-C++20. Thus, keeping an internal copy here is the most backwards compatible solution */ #if defined(Py_GIL_DISABLED) #define _PyObject_HEAD_INIT(type) \ { \ .ob_ref_local = _Py_IMMORTAL_REFCNT_LOCAL, \ .ob_type = (type) \ } #else #define _PyObject_HEAD_INIT(type) \ { \ .ob_refcnt = _Py_IMMORTAL_REFCNT, \ .ob_type = (type) \ } #endif #define _PyVarObject_HEAD_INIT(type, size) \ { \ .ob_base = _PyObject_HEAD_INIT(type), \ .ob_size = size \ } PyAPI_FUNC(void) _Py_NO_RETURN _Py_FatalRefcountErrorFunc( const char *func, const char *message); #define _Py_FatalRefcountError(message) \ _Py_FatalRefcountErrorFunc(__func__, (message)) #ifdef Py_REF_DEBUG /* The symbol is only exposed in the API for the sake of extensions built against the pre-3.12 stable ABI. */ PyAPI_DATA(Py_ssize_t) _Py_RefTotal; extern void _Py_AddRefTotal(PyThreadState *, Py_ssize_t); extern void _Py_IncRefTotal(PyThreadState *); extern void _Py_DecRefTotal(PyThreadState *); # define _Py_DEC_REFTOTAL(interp) \ interp->object_state.reftotal-- #endif // Increment reference count by n static inline void _Py_RefcntAdd(PyObject* op, Py_ssize_t n) { if (_Py_IsImmortal(op)) { return; } #ifdef Py_REF_DEBUG _Py_AddRefTotal(_PyThreadState_GET(), n); #endif #if !defined(Py_GIL_DISABLED) op->ob_refcnt += n; #else if (_Py_IsOwnedByCurrentThread(op)) { uint32_t local = op->ob_ref_local; Py_ssize_t refcnt = (Py_ssize_t)local + n; # if PY_SSIZE_T_MAX > UINT32_MAX if (refcnt > (Py_ssize_t)UINT32_MAX) { // Make the object immortal if the 32-bit local reference count // would overflow. refcnt = _Py_IMMORTAL_REFCNT_LOCAL; } # endif _Py_atomic_store_uint32_relaxed(&op->ob_ref_local, (uint32_t)refcnt); } else { _Py_atomic_add_ssize(&op->ob_ref_shared, (n << _Py_REF_SHARED_SHIFT)); } #endif } #define _Py_RefcntAdd(op, n) _Py_RefcntAdd(_PyObject_CAST(op), n) PyAPI_FUNC(void) _Py_SetImmortal(PyObject *op); PyAPI_FUNC(void) _Py_SetImmortalUntracked(PyObject *op); // Makes an immortal object mortal again with the specified refcnt. Should only // be used during runtime finalization. static inline void _Py_SetMortal(PyObject *op, Py_ssize_t refcnt) { if (op) { assert(_Py_IsImmortalLoose(op)); #ifdef Py_GIL_DISABLED op->ob_tid = _Py_UNOWNED_TID; op->ob_ref_local = 0; op->ob_ref_shared = _Py_REF_SHARED(refcnt, _Py_REF_MERGED); #else op->ob_refcnt = refcnt; #endif } } /* _Py_ClearImmortal() should only be used during runtime finalization. */ static inline void _Py_ClearImmortal(PyObject *op) { if (op) { _Py_SetMortal(op, 1); Py_DECREF(op); } } #define _Py_ClearImmortal(op) \ do { \ _Py_ClearImmortal(_PyObject_CAST(op)); \ op = NULL; \ } while (0) #if !defined(Py_GIL_DISABLED) static inline void _Py_DECREF_SPECIALIZED(PyObject *op, const destructor destruct) { if (_Py_IsImmortal(op)) { return; } _Py_DECREF_STAT_INC(); #ifdef Py_REF_DEBUG _Py_DEC_REFTOTAL(PyInterpreterState_Get()); #endif if (--op->ob_refcnt != 0) { assert(op->ob_refcnt > 0); } else { #ifdef Py_TRACE_REFS _Py_ForgetReference(op); #endif destruct(op); } } static inline void _Py_DECREF_NO_DEALLOC(PyObject *op) { if (_Py_IsImmortal(op)) { return; } _Py_DECREF_STAT_INC(); #ifdef Py_REF_DEBUG _Py_DEC_REFTOTAL(PyInterpreterState_Get()); #endif op->ob_refcnt--; #ifdef Py_DEBUG if (op->ob_refcnt <= 0) { _Py_FatalRefcountError("Expected a positive remaining refcount"); } #endif } #else // TODO: implement Py_DECREF specializations for Py_GIL_DISABLED build static inline void _Py_DECREF_SPECIALIZED(PyObject *op, const destructor destruct) { Py_DECREF(op); } static inline void _Py_DECREF_NO_DEALLOC(PyObject *op) { Py_DECREF(op); } static inline int _Py_REF_IS_MERGED(Py_ssize_t ob_ref_shared) { return (ob_ref_shared & _Py_REF_SHARED_FLAG_MASK) == _Py_REF_MERGED; } static inline int _Py_REF_IS_QUEUED(Py_ssize_t ob_ref_shared) { return (ob_ref_shared & _Py_REF_SHARED_FLAG_MASK) == _Py_REF_QUEUED; } // Merge the local and shared reference count fields and add `extra` to the // refcount when merging. Py_ssize_t _Py_ExplicitMergeRefcount(PyObject *op, Py_ssize_t extra); #endif // !defined(Py_GIL_DISABLED) #ifdef Py_REF_DEBUG # undef _Py_DEC_REFTOTAL #endif extern int _PyType_CheckConsistency(PyTypeObject *type); extern int _PyDict_CheckConsistency(PyObject *mp, int check_content); /* Update the Python traceback of an object. This function must be called when a memory block is reused from a free list. Internal function called by _Py_NewReference(). */ extern int _PyTraceMalloc_TraceRef(PyObject *op, PyRefTracerEvent event, void*); // Fast inlined version of PyType_HasFeature() static inline int _PyType_HasFeature(PyTypeObject *type, unsigned long feature) { return ((FT_ATOMIC_LOAD_ULONG_RELAXED(type->tp_flags) & feature) != 0); } extern void _PyType_InitCache(PyInterpreterState *interp); extern PyStatus _PyObject_InitState(PyInterpreterState *interp); extern void _PyObject_FiniState(PyInterpreterState *interp); extern bool _PyRefchain_IsTraced(PyInterpreterState *interp, PyObject *obj); /* Inline functions trading binary compatibility for speed: _PyObject_Init() is the fast version of PyObject_Init(), and _PyObject_InitVar() is the fast version of PyObject_InitVar(). These inline functions must not be called with op=NULL. */ static inline void _PyObject_Init(PyObject *op, PyTypeObject *typeobj) { assert(op != NULL); Py_SET_TYPE(op, typeobj); assert(_PyType_HasFeature(typeobj, Py_TPFLAGS_HEAPTYPE) || _Py_IsImmortalLoose(typeobj)); Py_INCREF(typeobj); _Py_NewReference(op); } static inline void _PyObject_InitVar(PyVarObject *op, PyTypeObject *typeobj, Py_ssize_t size) { assert(op != NULL); assert(typeobj != &PyLong_Type); _PyObject_Init((PyObject *)op, typeobj); Py_SET_SIZE(op, size); } /* Tell the GC to track this object. * * The object must not be tracked by the GC. * * NB: While the object is tracked by the collector, it must be safe to call the * ob_traverse method. * * Internal note: interp->gc.generation0->_gc_prev doesn't have any bit flags * because it's not object header. So we don't use _PyGCHead_PREV() and * _PyGCHead_SET_PREV() for it to avoid unnecessary bitwise operations. * * See also the public PyObject_GC_Track() function. */ static inline void _PyObject_GC_TRACK( // The preprocessor removes _PyObject_ASSERT_FROM() calls if NDEBUG is defined #ifndef NDEBUG const char *filename, int lineno, #endif PyObject *op) { _PyObject_ASSERT_FROM(op, !_PyObject_GC_IS_TRACKED(op), "object already tracked by the garbage collector", filename, lineno, __func__); #ifdef Py_GIL_DISABLED _PyObject_SET_GC_BITS(op, _PyGC_BITS_TRACKED); #else PyGC_Head *gc = _Py_AS_GC(op); _PyObject_ASSERT_FROM(op, (gc->_gc_prev & _PyGC_PREV_MASK_COLLECTING) == 0, "object is in generation which is garbage collected", filename, lineno, __func__); PyInterpreterState *interp = _PyInterpreterState_GET(); PyGC_Head *generation0 = &interp->gc.young.head; PyGC_Head *last = (PyGC_Head*)(generation0->_gc_prev); _PyGCHead_SET_NEXT(last, gc); _PyGCHead_SET_PREV(gc, last); /* Young objects will be moved into the visited space during GC, so set the bit here */ gc->_gc_next = ((uintptr_t)generation0) | interp->gc.visited_space; generation0->_gc_prev = (uintptr_t)gc; #endif } /* Tell the GC to stop tracking this object. * * Internal note: This may be called while GC. So _PyGC_PREV_MASK_COLLECTING * must be cleared. But _PyGC_PREV_MASK_FINALIZED bit is kept. * * The object must be tracked by the GC. * * See also the public PyObject_GC_UnTrack() which accept an object which is * not tracked. */ static inline void _PyObject_GC_UNTRACK( // The preprocessor removes _PyObject_ASSERT_FROM() calls if NDEBUG is defined #ifndef NDEBUG const char *filename, int lineno, #endif PyObject *op) { _PyObject_ASSERT_FROM(op, _PyObject_GC_IS_TRACKED(op), "object not tracked by the garbage collector", filename, lineno, __func__); #ifdef Py_GIL_DISABLED _PyObject_CLEAR_GC_BITS(op, _PyGC_BITS_TRACKED); #else PyGC_Head *gc = _Py_AS_GC(op); PyGC_Head *prev = _PyGCHead_PREV(gc); PyGC_Head *next = _PyGCHead_NEXT(gc); _PyGCHead_SET_NEXT(prev, next); _PyGCHead_SET_PREV(next, prev); gc->_gc_next = 0; gc->_gc_prev &= _PyGC_PREV_MASK_FINALIZED; #endif } // Macros to accept any type for the parameter, and to automatically pass // the filename and the filename (if NDEBUG is not defined) where the macro // is called. #ifdef NDEBUG # define _PyObject_GC_TRACK(op) \ _PyObject_GC_TRACK(_PyObject_CAST(op)) # define _PyObject_GC_UNTRACK(op) \ _PyObject_GC_UNTRACK(_PyObject_CAST(op)) #else # define _PyObject_GC_TRACK(op) \ _PyObject_GC_TRACK(__FILE__, __LINE__, _PyObject_CAST(op)) # define _PyObject_GC_UNTRACK(op) \ _PyObject_GC_UNTRACK(__FILE__, __LINE__, _PyObject_CAST(op)) #endif #ifdef Py_GIL_DISABLED /* Tries to increment an object's reference count * * This is a specialized version of _Py_TryIncref that only succeeds if the * object is immortal or local to this thread. It does not handle the case * where the reference count modification requires an atomic operation. This * allows call sites to specialize for the immortal/local case. */ static inline int _Py_TryIncrefFast(PyObject *op) { uint32_t local = _Py_atomic_load_uint32_relaxed(&op->ob_ref_local); local += 1; if (local == 0) { // immortal return 1; } if (_Py_IsOwnedByCurrentThread(op)) { _Py_INCREF_STAT_INC(); _Py_atomic_store_uint32_relaxed(&op->ob_ref_local, local); #ifdef Py_REF_DEBUG _Py_IncRefTotal(_PyThreadState_GET()); #endif return 1; } return 0; } static inline int _Py_TryIncRefShared(PyObject *op) { Py_ssize_t shared = _Py_atomic_load_ssize_relaxed(&op->ob_ref_shared); for (;;) { // If the shared refcount is zero and the object is either merged // or may not have weak references, then we cannot incref it. if (shared == 0 || shared == _Py_REF_MERGED) { return 0; } if (_Py_atomic_compare_exchange_ssize( &op->ob_ref_shared, &shared, shared + (1 << _Py_REF_SHARED_SHIFT))) { #ifdef Py_REF_DEBUG _Py_IncRefTotal(_PyThreadState_GET()); #endif _Py_INCREF_STAT_INC(); return 1; } } } /* Tries to incref the object op and ensures that *src still points to it. */ static inline int _Py_TryIncrefCompare(PyObject **src, PyObject *op) { if (_Py_TryIncrefFast(op)) { return 1; } if (!_Py_TryIncRefShared(op)) { return 0; } if (op != _Py_atomic_load_ptr(src)) { Py_DECREF(op); return 0; } return 1; } /* Loads and increfs an object from ptr, which may contain a NULL value. Safe with concurrent (atomic) updates to ptr. NOTE: The writer must set maybe-weakref on the stored object! */ static inline PyObject * _Py_XGetRef(PyObject **ptr) { for (;;) { PyObject *value = _Py_atomic_load_ptr(ptr); if (value == NULL) { return value; } if (_Py_TryIncrefCompare(ptr, value)) { return value; } } } /* Attempts to loads and increfs an object from ptr. Returns NULL on failure, which may be due to a NULL value or a concurrent update. */ static inline PyObject * _Py_TryXGetRef(PyObject **ptr) { PyObject *value = _Py_atomic_load_ptr(ptr); if (value == NULL) { return value; } if (_Py_TryIncrefCompare(ptr, value)) { return value; } return NULL; } /* Like Py_NewRef but also optimistically sets _Py_REF_MAYBE_WEAKREF on objects owned by a different thread. */ static inline PyObject * _Py_NewRefWithLock(PyObject *op) { if (_Py_TryIncrefFast(op)) { return op; } #ifdef Py_REF_DEBUG _Py_IncRefTotal(_PyThreadState_GET()); #endif _Py_INCREF_STAT_INC(); for (;;) { Py_ssize_t shared = _Py_atomic_load_ssize_relaxed(&op->ob_ref_shared); Py_ssize_t new_shared = shared + (1 << _Py_REF_SHARED_SHIFT); if ((shared & _Py_REF_SHARED_FLAG_MASK) == 0) { new_shared |= _Py_REF_MAYBE_WEAKREF; } if (_Py_atomic_compare_exchange_ssize( &op->ob_ref_shared, &shared, new_shared)) { return op; } } } static inline PyObject * _Py_XNewRefWithLock(PyObject *obj) { if (obj == NULL) { return NULL; } return _Py_NewRefWithLock(obj); } static inline void _PyObject_SetMaybeWeakref(PyObject *op) { if (_Py_IsImmortal(op)) { return; } for (;;) { Py_ssize_t shared = _Py_atomic_load_ssize_relaxed(&op->ob_ref_shared); if ((shared & _Py_REF_SHARED_FLAG_MASK) != 0) { // Nothing to do if it's in WEAKREFS, QUEUED, or MERGED states. return; } if (_Py_atomic_compare_exchange_ssize( &op->ob_ref_shared, &shared, shared | _Py_REF_MAYBE_WEAKREF)) { return; } } } #endif /* Tries to incref op and returns 1 if successful or 0 otherwise. */ static inline int _Py_TryIncref(PyObject *op) { #ifdef Py_GIL_DISABLED return _Py_TryIncrefFast(op) || _Py_TryIncRefShared(op); #else if (Py_REFCNT(op) > 0) { Py_INCREF(op); return 1; } return 0; #endif } #ifdef Py_REF_DEBUG extern void _PyInterpreterState_FinalizeRefTotal(PyInterpreterState *); extern void _Py_FinalizeRefTotal(_PyRuntimeState *); extern void _PyDebug_PrintTotalRefs(void); #endif #ifdef Py_TRACE_REFS extern void _Py_AddToAllObjects(PyObject *op); extern void _Py_PrintReferences(PyInterpreterState *, FILE *); extern void _Py_PrintReferenceAddresses(PyInterpreterState *, FILE *); #endif /* Return the *address* of the object's weaklist. The address may be * dereferenced to get the current head of the weaklist. This is useful * for iterating over the linked list of weakrefs, especially when the * list is being modified externally (e.g. refs getting removed). * * The returned pointer should not be used to change the head of the list * nor should it be used to add, remove, or swap any refs in the list. * That is the sole responsibility of the code in weakrefobject.c. */ static inline PyObject ** _PyObject_GET_WEAKREFS_LISTPTR(PyObject *op) { if (PyType_Check(op) && ((PyTypeObject *)op)->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { PyInterpreterState *interp = _PyInterpreterState_GET(); managed_static_type_state *state = _PyStaticType_GetState( interp, (PyTypeObject *)op); return _PyStaticType_GET_WEAKREFS_LISTPTR(state); } // Essentially _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(): Py_ssize_t offset = Py_TYPE(op)->tp_weaklistoffset; return (PyObject **)((char *)op + offset); } /* This is a special case of _PyObject_GET_WEAKREFS_LISTPTR(). * Only the most fundamental lookup path is used. * Consequently, static types should not be used. * * For static builtin types the returned pointer will always point * to a NULL tp_weaklist. This is fine for any deallocation cases, * since static types are never deallocated and static builtin types * are only finalized at the end of runtime finalization. * * If the weaklist for static types is actually needed then use * _PyObject_GET_WEAKREFS_LISTPTR(). */ static inline PyWeakReference ** _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(PyObject *op) { assert(!PyType_Check(op) || ((PyTypeObject *)op)->tp_flags & Py_TPFLAGS_HEAPTYPE); Py_ssize_t offset = Py_TYPE(op)->tp_weaklistoffset; return (PyWeakReference **)((char *)op + offset); } // Fast inlined version of PyObject_IS_GC() static inline int _PyObject_IS_GC(PyObject *obj) { PyTypeObject *type = Py_TYPE(obj); return (PyType_IS_GC(type) && (type->tp_is_gc == NULL || type->tp_is_gc(obj))); } // Fast inlined version of PyObject_Hash() static inline Py_hash_t _PyObject_HashFast(PyObject *op) { if (PyUnicode_CheckExact(op)) { Py_hash_t hash = FT_ATOMIC_LOAD_SSIZE_RELAXED( _PyASCIIObject_CAST(op)->hash); if (hash != -1) { return hash; } } return PyObject_Hash(op); } // Fast inlined version of PyType_IS_GC() #define _PyType_IS_GC(t) _PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC) static inline size_t _PyType_PreHeaderSize(PyTypeObject *tp) { return ( #ifndef Py_GIL_DISABLED _PyType_IS_GC(tp) * sizeof(PyGC_Head) + #endif _PyType_HasFeature(tp, Py_TPFLAGS_PREHEADER) * 2 * sizeof(PyObject *) ); } void _PyObject_GC_Link(PyObject *op); // Usage: assert(_Py_CheckSlotResult(obj, "__getitem__", result != NULL)); extern int _Py_CheckSlotResult( PyObject *obj, const char *slot_name, int success); // Test if a type supports weak references static inline int _PyType_SUPPORTS_WEAKREFS(PyTypeObject *type) { return (type->tp_weaklistoffset != 0); } extern PyObject* _PyType_AllocNoTrack(PyTypeObject *type, Py_ssize_t nitems); extern PyObject *_PyType_NewManagedObject(PyTypeObject *type); extern PyTypeObject* _PyType_CalculateMetaclass(PyTypeObject *, PyObject *); extern PyObject* _PyType_GetDocFromInternalDoc(const char *, const char *); extern PyObject* _PyType_GetTextSignatureFromInternalDoc(const char *, const char *, int); extern int _PyObject_SetAttributeErrorContext(PyObject *v, PyObject* name); void _PyObject_InitInlineValues(PyObject *obj, PyTypeObject *tp); extern int _PyObject_StoreInstanceAttribute(PyObject *obj, PyObject *name, PyObject *value); extern bool _PyObject_TryGetInstanceAttribute(PyObject *obj, PyObject *name, PyObject **attr); #ifdef Py_GIL_DISABLED # define MANAGED_DICT_OFFSET (((Py_ssize_t)sizeof(PyObject *))*-1) # define MANAGED_WEAKREF_OFFSET (((Py_ssize_t)sizeof(PyObject *))*-2) #else # define MANAGED_DICT_OFFSET (((Py_ssize_t)sizeof(PyObject *))*-3) # define MANAGED_WEAKREF_OFFSET (((Py_ssize_t)sizeof(PyObject *))*-4) #endif typedef union { PyDictObject *dict; } PyManagedDictPointer; static inline PyManagedDictPointer * _PyObject_ManagedDictPointer(PyObject *obj) { assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_MANAGED_DICT); return (PyManagedDictPointer *)((char *)obj + MANAGED_DICT_OFFSET); } static inline PyDictObject * _PyObject_GetManagedDict(PyObject *obj) { PyManagedDictPointer *dorv = _PyObject_ManagedDictPointer(obj); return (PyDictObject *)FT_ATOMIC_LOAD_PTR_ACQUIRE(dorv->dict); } static inline PyDictValues * _PyObject_InlineValues(PyObject *obj) { assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_INLINE_VALUES); assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_MANAGED_DICT); assert(Py_TYPE(obj)->tp_basicsize == sizeof(PyObject)); return (PyDictValues *)((char *)obj + sizeof(PyObject)); } extern PyObject ** _PyObject_ComputedDictPointer(PyObject *); extern int _PyObject_IsInstanceDictEmpty(PyObject *); // Export for 'math' shared extension PyAPI_FUNC(PyObject*) _PyObject_LookupSpecial(PyObject *, PyObject *); PyAPI_FUNC(PyObject*) _PyObject_LookupSpecialMethod(PyObject *self, PyObject *attr, PyObject **self_or_null); extern int _PyObject_IsAbstract(PyObject *); PyAPI_FUNC(int) _PyObject_GetMethod(PyObject *obj, PyObject *name, PyObject **method); extern PyObject* _PyObject_NextNotImplemented(PyObject *); // Pickle support. // Export for '_datetime' shared extension PyAPI_FUNC(PyObject*) _PyObject_GetState(PyObject *); /* C function call trampolines to mitigate bad function pointer casts. * * Typical native ABIs ignore additional arguments or fill in missing * values with 0/NULL in function pointer cast. Compilers do not show * warnings when a function pointer is explicitly casted to an * incompatible type. * * Bad fpcasts are an issue in WebAssembly. WASM's indirect_call has strict * function signature checks. Argument count, types, and return type must * match. * * Third party code unintentionally rely on problematic fpcasts. The call * trampoline mitigates common occurrences of bad fpcasts on Emscripten. */ #if !(defined(__EMSCRIPTEN__) && defined(PY_CALL_TRAMPOLINE)) #define _PyCFunction_TrampolineCall(meth, self, args) \ (meth)((self), (args)) #define _PyCFunctionWithKeywords_TrampolineCall(meth, self, args, kw) \ (meth)((self), (args), (kw)) #endif // __EMSCRIPTEN__ && PY_CALL_TRAMPOLINE // Export these 2 symbols for '_pickle' shared extension PyAPI_DATA(PyTypeObject) _PyNone_Type; PyAPI_DATA(PyTypeObject) _PyNotImplemented_Type; // Maps Py_LT to Py_GT, ..., Py_GE to Py_LE. // Export for the stable ABI. PyAPI_DATA(int) _Py_SwappedOp[]; extern void _Py_GetConstant_Init(void); #ifdef __cplusplus } #endif #endif /* !Py_INTERNAL_OBJECT_H */