"""Get useful information from live Python objects. This module encapsulates the interface provided by the internal special attributes (co_*, im_*, tb_*, etc.) in a friendlier fashion. It also provides some help for examining source code and class layout. Here are some of the useful functions provided by this module: ismodule(), isclass(), ismethod(), isfunction(), isgeneratorfunction(), isgenerator(), istraceback(), isframe(), iscode(), isbuiltin(), isroutine() - check object types getmembers() - get members of an object that satisfy a given condition getfile(), getsourcefile(), getsource() - find an object's source code getdoc(), getcomments() - get documentation on an object getmodule() - determine the module that an object came from getclasstree() - arrange classes so as to represent their hierarchy getargspec(), getargvalues(), getcallargs() - get info about function arguments getfullargspec() - same, with support for Python-3000 features formatargspec(), formatargvalues() - format an argument spec getouterframes(), getinnerframes() - get info about frames currentframe() - get the current stack frame stack(), trace() - get info about frames on the stack or in a traceback signature() - get a Signature object for the callable """ # This module is in the public domain. No warranties. __author__ = ('Ka-Ping Yee ', 'Yury Selivanov ') import ast import importlib.machinery import itertools import linecache import os import re import sys import tokenize import types import warnings import functools import builtins from operator import attrgetter from collections import namedtuple, OrderedDict # Create constants for the compiler flags in Include/code.h # We try to get them from dis to avoid duplication, but fall # back to hardcoding so the dependency is optional try: from dis import COMPILER_FLAG_NAMES as _flag_names except ImportError: CO_OPTIMIZED, CO_NEWLOCALS = 0x1, 0x2 CO_VARARGS, CO_VARKEYWORDS = 0x4, 0x8 CO_NESTED, CO_GENERATOR, CO_NOFREE = 0x10, 0x20, 0x40 else: mod_dict = globals() for k, v in _flag_names.items(): mod_dict["CO_" + v] = k # See Include/object.h TPFLAGS_IS_ABSTRACT = 1 << 20 # ----------------------------------------------------------- type-checking def ismodule(object): """Return true if the object is a module. Module objects provide these attributes: __cached__ pathname to byte compiled file __doc__ documentation string __file__ filename (missing for built-in modules)""" return isinstance(object, types.ModuleType) def isclass(object): """Return true if the object is a class. Class objects provide these attributes: __doc__ documentation string __module__ name of module in which this class was defined""" return isinstance(object, type) def ismethod(object): """Return true if the object is an instance method. Instance method objects provide these attributes: __doc__ documentation string __name__ name with which this method was defined __func__ function object containing implementation of method __self__ instance to which this method is bound""" return isinstance(object, types.MethodType) def ismethoddescriptor(object): """Return true if the object is a method descriptor. But not if ismethod() or isclass() or isfunction() are true. This is new in Python 2.2, and, for example, is true of int.__add__. An object passing this test has a __get__ attribute but not a __set__ attribute, but beyond that the set of attributes varies. __name__ is usually sensible, and __doc__ often is. Methods implemented via descriptors that also pass one of the other tests return false from the ismethoddescriptor() test, simply because the other tests promise more -- you can, e.g., count on having the __func__ attribute (etc) when an object passes ismethod().""" if isclass(object) or ismethod(object) or isfunction(object): # mutual exclusion return False tp = type(object) return hasattr(tp, "__get__") and not hasattr(tp, "__set__") def isdatadescriptor(object): """Return true if the object is a data descriptor. Data descriptors have both a __get__ and a __set__ attribute. Examples are properties (defined in Python) and getsets and members (defined in C). Typically, data descriptors will also have __name__ and __doc__ attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed.""" if isclass(object) or ismethod(object) or isfunction(object): # mutual exclusion return False tp = type(object) return hasattr(tp, "__set__") and hasattr(tp, "__get__") if hasattr(types, 'MemberDescriptorType'): # CPython and equivalent def ismemberdescriptor(object): """Return true if the object is a member descriptor. Member descriptors are specialized descriptors defined in extension modules.""" return isinstance(object, types.MemberDescriptorType) else: # Other implementations def ismemberdescriptor(object): """Return true if the object is a member descriptor. Member descriptors are specialized descriptors defined in extension modules.""" return False if hasattr(types, 'GetSetDescriptorType'): # CPython and equivalent def isgetsetdescriptor(object): """Return true if the object is a getset descriptor. getset descriptors are specialized descriptors defined in extension modules.""" return isinstance(object, types.GetSetDescriptorType) else: # Other implementations def isgetsetdescriptor(object): """Return true if the object is a getset descriptor. getset descriptors are specialized descriptors defined in extension modules.""" return False def isfunction(object): """Return true if the object is a user-defined function. Function objects provide these attributes: __doc__ documentation string __name__ name with which this function was defined __code__ code object containing compiled function bytecode __defaults__ tuple of any default values for arguments __globals__ global namespace in which this function was defined __annotations__ dict of parameter annotations __kwdefaults__ dict of keyword only parameters with defaults""" return isinstance(object, types.FunctionType) def isgeneratorfunction(object): """Return true if the object is a user-defined generator function. Generator function objects provides same attributes as functions. See help(isfunction) for attributes listing.""" return bool((isfunction(object) or ismethod(object)) and object.__code__.co_flags & CO_GENERATOR) def isgenerator(object): """Return true if the object is a generator. Generator objects provide these attributes: __iter__ defined to support iteration over container close raises a new GeneratorExit exception inside the generator to terminate the iteration gi_code code object gi_frame frame object or possibly None once the generator has been exhausted gi_running set to 1 when generator is executing, 0 otherwise next return the next item from the container send resumes the generator and "sends" a value that becomes the result of the current yield-expression throw used to raise an exception inside the generator""" return isinstance(object, types.GeneratorType) def istraceback(object): """Return true if the object is a traceback. Traceback objects provide these attributes: tb_frame frame object at this level tb_lasti index of last attempted instruction in bytecode tb_lineno current line number in Python source code tb_next next inner traceback object (called by this level)""" return isinstance(object, types.TracebackType) def isframe(object): """Return true if the object is a frame object. Frame objects provide these attributes: f_back next outer frame object (this frame's caller) f_builtins built-in namespace seen by this frame f_code code object being executed in this frame f_globals global namespace seen by this frame f_lasti index of last attempted instruction in bytecode f_lineno current line number in Python source code f_locals local namespace seen by this frame f_trace tracing function for this frame, or None""" return isinstance(object, types.FrameType) def iscode(object): """Return true if the object is a code object. Code objects provide these attributes: co_argcount number of arguments (not including * or ** args) co_code string of raw compiled bytecode co_consts tuple of constants used in the bytecode co_filename name of file in which this code object was created co_firstlineno number of first line in Python source code co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg co_lnotab encoded mapping of line numbers to bytecode indices co_name name with which this code object was defined co_names tuple of names of local variables co_nlocals number of local variables co_stacksize virtual machine stack space required co_varnames tuple of names of arguments and local variables""" return isinstance(object, types.CodeType) def isbuiltin(object): """Return true if the object is a built-in function or method. Built-in functions and methods provide these attributes: __doc__ documentation string __name__ original name of this function or method __self__ instance to which a method is bound, or None""" return isinstance(object, types.BuiltinFunctionType) def isroutine(object): """Return true if the object is any kind of function or method.""" return (isbuiltin(object) or isfunction(object) or ismethod(object) or ismethoddescriptor(object)) def isabstract(object): """Return true if the object is an abstract base class (ABC).""" return bool(isinstance(object, type) and object.__flags__ & TPFLAGS_IS_ABSTRACT) def getmembers(object, predicate=None): """Return all members of an object as (name, value) pairs sorted by name. Optionally, only return members that satisfy a given predicate.""" if isclass(object): mro = (object,) + getmro(object) else: mro = () results = [] processed = set() names = dir(object) # :dd any DynamicClassAttributes to the list of names if object is a class; # this may result in duplicate entries if, for example, a virtual # attribute with the same name as a DynamicClassAttribute exists try: for base in object.__bases__: for k, v in base.__dict__.items(): if isinstance(v, types.DynamicClassAttribute): names.append(k) except AttributeError: pass for key in names: # First try to get the value via getattr. Some descriptors don't # like calling their __get__ (see bug #1785), so fall back to # looking in the __dict__. try: value = getattr(object, key) # handle the duplicate key if key in processed: raise AttributeError except AttributeError: for base in mro: if key in base.__dict__: value = base.__dict__[key] break else: # could be a (currently) missing slot member, or a buggy # __dir__; discard and move on continue if not predicate or predicate(value): results.append((key, value)) processed.add(key) results.sort(key=lambda pair: pair[0]) return results Attribute = namedtuple('Attribute', 'name kind defining_class object') def classify_class_attrs(cls): """Return list of attribute-descriptor tuples. For each name in dir(cls), the return list contains a 4-tuple with these elements: 0. The name (a string). 1. The kind of attribute this is, one of these strings: 'class method' created via classmethod() 'static method' created via staticmethod() 'property' created via property() 'method' any other flavor of method or descriptor 'data' not a method 2. The class which defined this attribute (a class). 3. The object as obtained by calling getattr; if this fails, or if the resulting object does not live anywhere in the class' mro (including metaclasses) then the object is looked up in the defining class's dict (found by walking the mro). If one of the items in dir(cls) is stored in the metaclass it will now be discovered and not have None be listed as the class in which it was defined. Any items whose home class cannot be discovered are skipped. """ mro = getmro(cls) metamro = getmro(type(cls)) # for attributes stored in the metaclass metamro = tuple([cls for cls in metamro if cls not in (type, object)]) class_bases = (cls,) + mro all_bases = class_bases + metamro names = dir(cls) # :dd any DynamicClassAttributes to the list of names; # this may result in duplicate entries if, for example, a virtual # attribute with the same name as a DynamicClassAttribute exists. for base in mro: for k, v in base.__dict__.items(): if isinstance(v, types.DynamicClassAttribute): names.append(k) result = [] processed = set() for name in names: # Get the object associated with the name, and where it was defined. # Normal objects will be looked up with both getattr and directly in # its class' dict (in case getattr fails [bug #1785], and also to look # for a docstring). # For DynamicClassAttributes on the second pass we only look in the # class's dict. # # Getting an obj from the __dict__ sometimes reveals more than # using getattr. Static and class methods are dramatic examples. homecls = None get_obj = None dict_obj = None if name not in processed: try: if name == '__dict__': raise Exception("__dict__ is special, don't want the proxy") get_obj = getattr(cls, name) except Exception as exc: pass else: homecls = getattr(get_obj, "__objclass__", homecls) if homecls not in class_bases: # if the resulting object does not live somewhere in the # mro, drop it and search the mro manually homecls = None last_cls = None # first look in the classes for srch_cls in class_bases: srch_obj = getattr(srch_cls, name, None) if srch_obj == get_obj: last_cls = srch_cls # then check the metaclasses for srch_cls in metamro: try: srch_obj = srch_cls.__getattr__(cls, name) except AttributeError: continue if srch_obj == get_obj: last_cls = srch_cls if last_cls is not None: homecls = last_cls for base in all_bases: if name in base.__dict__: dict_obj = base.__dict__[name] if homecls not in metamro: homecls = base break if homecls is None: # unable to locate the attribute anywhere, most likely due to # buggy custom __dir__; discard and move on continue obj = get_obj or dict_obj # Classify the object or its descriptor. if isinstance(dict_obj, staticmethod): kind = "static method" obj = dict_obj elif isinstance(dict_obj, classmethod): kind = "class method" obj = dict_obj elif isinstance(dict_obj, property): kind = "property" obj = dict_obj elif isfunction(obj) or ismethoddescriptor(obj): kind = "method" else: kind = "data" result.append(Attribute(name, kind, homecls, obj)) processed.add(name) return result # ----------------------------------------------------------- class helpers def getmro(cls): "Return tuple of base classes (including cls) in method resolution order." return cls.__mro__ # -------------------------------------------------------- function helpers def unwrap(func, *, stop=None): """Get the object wrapped by *func*. Follows the chain of :attr:`__wrapped__` attributes returning the last object in the chain. *stop* is an optional callback accepting an object in the wrapper chain as its sole argument that allows the unwrapping to be terminated early if the callback returns a true value. If the callback never returns a true value, the last object in the chain is returned as usual. For example, :func:`signature` uses this to stop unwrapping if any object in the chain has a ``__signature__`` attribute defined. :exc:`ValueError` is raised if a cycle is encountered. """ if stop is None: def _is_wrapper(f): return hasattr(f, '__wrapped__') else: def _is_wrapper(f): return hasattr(f, '__wrapped__') and not stop(f) f = func # remember the original func for error reporting memo = {id(f)} # Memoise by id to tolerate non-hashable objects while _is_wrapper(func): func = func.__wrapped__ id_func = id(func) if id_func in memo: raise ValueError('wrapper loop when unwrapping {!r}'.format(f)) memo.add(id_func) return func # -------------------------------------------------- source code extraction def indentsize(line): """Return the indent size, in spaces, at the start of a line of text.""" expline = line.expandtabs() return len(expline) - len(expline.lstrip()) def getdoc(object): """Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are indented to line up with blocks of code, any whitespace than can be uniformly removed from the second line onwards is removed.""" try: doc = object.__doc__ except AttributeError: return None if not isinstance(doc, str): return None return cleandoc(doc) def cleandoc(doc): """Clean up indentation from docstrings. Any whitespace that can be uniformly removed from the second line onwards is removed.""" try: lines = doc.expandtabs().split('\n') except UnicodeError: return None else: # Find minimum indentation of any non-blank lines after first line. margin = sys.maxsize for line in lines[1:]: content = len(line.lstrip()) if content: indent = len(line) - content margin = min(margin, indent) # Remove indentation. if lines: lines[0] = lines[0].lstrip() if margin < sys.maxsize: for i in range(1, len(lines)): lines[i] = lines[i][margin:] # Remove any trailing or leading blank lines. while lines and not lines[-1]: lines.pop() while lines and not lines[0]: lines.pop(0) return '\n'.join(lines) def getfile(object): """Work out which source or compiled file an object was defined in.""" if ismodule(object): if hasattr(object, '__file__'): return object.__file__ raise TypeError('{!r} is a built-in module'.format(object)) if isclass(object): if hasattr(object, '__module__'): object = sys.modules.get(object.__module__) if hasattr(object, '__file__'): return object.__file__ raise TypeError('{!r} is a built-in class'.format(object)) if ismethod(object): object = object.__func__ if isfunction(object): object = object.__code__ if istraceback(object): object = object.tb_frame if isframe(object): object = object.f_code if iscode(object): return object.co_filename raise TypeError('{!r} is not a module, class, method, ' 'function, traceback, frame, or code object'.format(object)) ModuleInfo = namedtuple('ModuleInfo', 'name suffix mode module_type') def getmoduleinfo(path): """Get the module name, suffix, mode, and module type for a given file.""" warnings.warn('inspect.getmoduleinfo() is deprecated', DeprecationWarning, 2) with warnings.catch_warnings(): warnings.simplefilter('ignore', PendingDeprecationWarning) import imp filename = os.path.basename(path) suffixes = [(-len(suffix), suffix, mode, mtype) for suffix, mode, mtype in imp.get_suffixes()] suffixes.sort() # try longest suffixes first, in case they overlap for neglen, suffix, mode, mtype in suffixes: if filename[neglen:] == suffix: return ModuleInfo(filename[:neglen], suffix, mode, mtype) def getmodulename(path): """Return the module name for a given file, or None.""" fname = os.path.basename(path) # Check for paths that look like an actual module file suffixes = [(-len(suffix), suffix) for suffix in importlib.machinery.all_suffixes()] suffixes.sort() # try longest suffixes first, in case they overlap for neglen, suffix in suffixes: if fname.endswith(suffix): return fname[:neglen] return None def getsourcefile(object): """Return the filename that can be used to locate an object's source. Return None if no way can be identified to get the source. """ filename = getfile(object) all_bytecode_suffixes = importlib.machinery.DEBUG_BYTECODE_SUFFIXES[:] all_bytecode_suffixes += importlib.machinery.OPTIMIZED_BYTECODE_SUFFIXES[:] if any(filename.endswith(s) for s in all_bytecode_suffixes): filename = (os.path.splitext(filename)[0] + importlib.machinery.SOURCE_SUFFIXES[0]) elif any(filename.endswith(s) for s in importlib.machinery.EXTENSION_SUFFIXES): return None if os.path.exists(filename): return filename # only return a non-existent filename if the module has a PEP 302 loader if getattr(getmodule(object, filename), '__loader__', None) is not None: return filename # or it is in the linecache if filename in linecache.cache: return filename def getabsfile(object, _filename=None): """Return an absolute path to the source or compiled file for an object. The idea is for each object to have a unique origin, so this routine normalizes the result as much as possible.""" if _filename is None: _filename = getsourcefile(object) or getfile(object) return os.path.normcase(os.path.abspath(_filename)) modulesbyfile = {} _filesbymodname = {} def getmodule(object, _filename=None): """Return the module an object was defined in, or None if not found.""" if ismodule(object): return object if hasattr(object, '__module__'): return sys.modules.get(object.__module__) # Try the filename to modulename cache if _filename is not None and _filename in modulesbyfile: return sys.modules.get(modulesbyfile[_filename]) # Try the cache again with the absolute file name try: file = getabsfile(object, _filename) except TypeError: return None if file in modulesbyfile: return sys.modules.get(modulesbyfile[file]) # Update the filename to module name cache and check yet again # Copy sys.modules in order to cope with changes while iterating for modname, module in list(sys.modules.items()): if ismodule(module) and hasattr(module, '__file__'): f = module.__file__ if f == _filesbymodname.get(modname, None): # Have already mapped this module, so skip it continue _filesbymodname[modname] = f f = getabsfile(module) # Always map to the name the module knows itself by modulesbyfile[f] = modulesbyfile[ os.path.realpath(f)] = module.__name__ if file in modulesbyfile: return sys.modules.get(modulesbyfile[file]) # Check the main module main = sys.modules['__main__'] if not hasattr(object, '__name__'): return None if hasattr(main, object.__name__): mainobject = getattr(main, object.__name__) if mainobject is object: return main # Check builtins builtin = sys.modules['builtins'] if hasattr(builtin, object.__name__): builtinobject = getattr(builtin, object.__name__) if builtinobject is object: return builtin def findsource(object): """Return the entire source file and starting line number for an object. The argument may be a module, class, method, function, traceback, frame, or code object. The source code is returned as a list of all the lines in the file and the line number indexes a line in that list. An OSError is raised if the source code cannot be retrieved.""" file = getfile(object) sourcefile = getsourcefile(object) if not sourcefile and file[:1] + file[-1:] != '<>': raise OSError('source code not available') file = sourcefile if sourcefile else file module = getmodule(object, file) if module: lines = linecache.getlines(file, module.__dict__) else: lines = linecache.getlines(file) if not lines: raise OSError('could not get source code') if ismodule(object): return lines, 0 if isclass(object): name = object.__name__ pat = re.compile(r'^(\s*)class\s*' + name + r'\b') # make some effort to find the best matching class definition: # use the one with the least indentation, which is the one # that's most probably not inside a function definition. candidates = [] for i in range(len(lines)): match = pat.match(lines[i]) if match: # if it's at toplevel, it's already the best one if lines[i][0] == 'c': return lines, i # else add whitespace to candidate list candidates.append((match.group(1), i)) if candidates: # this will sort by whitespace, and by line number, # less whitespace first candidates.sort() return lines, candidates[0][1] else: raise OSError('could not find class definition') if ismethod(object): object = object.__func__ if isfunction(object): object = object.__code__ if istraceback(object): object = object.tb_frame if isframe(object): object = object.f_code if iscode(object): if not hasattr(object, 'co_firstlineno'): raise OSError('could not find function definition') lnum = object.co_firstlineno - 1 pat = re.compile(r'^(\s*def\s)|(.*(? 0: if pat.match(lines[lnum]): break lnum = lnum - 1 return lines, lnum raise OSError('could not find code object') def getcomments(object): """Get lines of comments immediately preceding an object's source code. Returns None when source can't be found. """ try: lines, lnum = findsource(object) except (OSError, TypeError): return None if ismodule(object): # Look for a comment block at the top of the file. start = 0 if lines and lines[0][:2] == '#!': start = 1 while start < len(lines) and lines[start].strip() in ('', '#'): start = start + 1 if start < len(lines) and lines[start][:1] == '#': comments = [] end = start while end < len(lines) and lines[end][:1] == '#': comments.append(lines[end].expandtabs()) end = end + 1 return ''.join(comments) # Look for a preceding block of comments at the same indentation. elif lnum > 0: indent = indentsize(lines[lnum]) end = lnum - 1 if end >= 0 and lines[end].lstrip()[:1] == '#' and \ indentsize(lines[end]) == indent: comments = [lines[end].expandtabs().lstrip()] if end > 0: end = end - 1 comment = lines[end].expandtabs().lstrip() while comment[:1] == '#' and indentsize(lines[end]) == indent: comments[:0] = [comment] end = end - 1 if end < 0: break comment = lines[end].expandtabs().lstrip() while comments and comments[0].strip() == '#': comments[:1] = [] while comments and comments[-1].strip() == '#': comments[-1:] = [] return ''.join(comments) class EndOfBlock(Exception): pass class BlockFinder: """Provide a tokeneater() method to detect the end of a code block.""" def __init__(self): self.indent = 0 self.islambda = False self.started = False self.passline = False self.last = 1 def tokeneater(self, type, token, srowcol, erowcol, line): if not self.started: # look for the first "def", "class" or "lambda" if token in ("def", "class", "lambda"): if token == "lambda": self.islambda = True self.started = True self.passline = True # skip to the end of the line elif type == tokenize.NEWLINE: self.passline = False # stop skipping when a NEWLINE is seen self.last = srowcol[0] if self.islambda: # lambdas always end at the first NEWLINE raise EndOfBlock elif self.passline: pass elif type == tokenize.INDENT: self.indent = self.indent + 1 self.passline = True elif type == tokenize.DEDENT: self.indent = self.indent - 1 # the end of matching indent/dedent pairs end a block # (note that this only works for "def"/"class" blocks, # not e.g. for "if: else:" or "try: finally:" blocks) if self.indent <= 0: raise EndOfBlock elif self.indent == 0 and type not in (tokenize.COMMENT, tokenize.NL): # any other token on the same indentation level end the previous # block as well, except the pseudo-tokens COMMENT and NL. raise EndOfBlock def getblock(lines): """Extract the block of code at the top of the given list of lines.""" blockfinder = BlockFinder() try: tokens = tokenize.generate_tokens(iter(lines).__next__) for _token in tokens: blockfinder.tokeneater(*_token) except (EndOfBlock, IndentationError): pass return lines[:blockfinder.last] def getsourcelines(object): """Return a list of source lines and starting line number for an object. The argument may be a module, class, method, function, traceback, frame, or code object. The source code is returned as a list of the lines corresponding to the object and the line number indicates where in the original source file the first line of code was found. An OSError is raised if the source code cannot be retrieved.""" lines, lnum = findsource(object) if ismodule(object): return lines, 0 else: return getblock(lines[lnum:]), lnum + 1 def getsource(object): """Return the text of the source code for an object. The argument may be a module, class, method, function, traceback, frame, or code object. The source code is returned as a single string. An OSError is raised if the source code cannot be retrieved.""" lines, lnum = getsourcelines(object) return ''.join(lines) # --------------------------------------------------- class tree extraction def walktree(classes, children, parent): """Recursive helper function for getclasstree().""" results = [] classes.sort(key=attrgetter('__module__', '__name__')) for c in classes: results.append((c, c.__bases__)) if c in children: results.append(walktree(children[c], children, c)) return results def getclasstree(classes, unique=False): """Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and a tuple of its base classes. If the 'unique' argument is true, exactly one entry appears in the returned structure for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear multiple times.""" children = {} roots = [] for c in classes: if c.__bases__: for parent in c.__bases__: if not parent in children: children[parent] = [] if c not in children[parent]: children[parent].append(c) if unique and parent in classes: break elif c not in roots: roots.append(c) for parent in children: if parent not in classes: roots.append(parent) return walktree(roots, children, None) # ------------------------------------------------ argument list extraction Arguments = namedtuple('Arguments', 'args, varargs, varkw') def getargs(co): """Get information about the arguments accepted by a code object. Three things are returned: (args, varargs, varkw), where 'args' is the list of argument names. Keyword-only arguments are appended. 'varargs' and 'varkw' are the names of the * and ** arguments or None.""" args, varargs, kwonlyargs, varkw = _getfullargs(co) return Arguments(args + kwonlyargs, varargs, varkw) def _getfullargs(co): """Get information about the arguments accepted by a code object. Four things are returned: (args, varargs, kwonlyargs, varkw), where 'args' and 'kwonlyargs' are lists of argument names, and 'varargs' and 'varkw' are the names of the * and ** arguments or None.""" if not iscode(co): raise TypeError('{!r} is not a code object'.format(co)) nargs = co.co_argcount names = co.co_varnames nkwargs = co.co_kwonlyargcount args = list(names[:nargs]) kwonlyargs = list(names[nargs:nargs+nkwargs]) step = 0 nargs += nkwargs varargs = None if co.co_flags & CO_VARARGS: varargs = co.co_varnames[nargs] nargs = nargs + 1 varkw = None if co.co_flags & CO_VARKEYWORDS: varkw = co.co_varnames[nargs] return args, varargs, kwonlyargs, varkw ArgSpec = namedtuple('ArgSpec', 'args varargs keywords defaults') def getargspec(func): """Get the names and default values of a function's arguments. A tuple of four things is returned: (args, varargs, varkw, defaults). 'args' is a list of the argument names. 'args' will include keyword-only argument names. 'varargs' and 'varkw' are the names of the * and ** arguments or None. 'defaults' is an n-tuple of the default values of the last n arguments. Use the getfullargspec() API for Python-3000 code, as annotations and keyword arguments are supported. getargspec() will raise ValueError if the func has either annotations or keyword arguments. """ args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, ann = \ getfullargspec(func) if kwonlyargs or ann: raise ValueError("Function has keyword-only arguments or annotations" ", use getfullargspec() API which can support them") return ArgSpec(args, varargs, varkw, defaults) FullArgSpec = namedtuple('FullArgSpec', 'args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations') def getfullargspec(func): """Get the names and default values of a callable object's arguments. A tuple of seven things is returned: (args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults annotations). 'args' is a list of the argument names. 'varargs' and 'varkw' are the names of the * and ** arguments or None. 'defaults' is an n-tuple of the default values of the last n arguments. 'kwonlyargs' is a list of keyword-only argument names. 'kwonlydefaults' is a dictionary mapping names from kwonlyargs to defaults. 'annotations' is a dictionary mapping argument names to annotations. The first four items in the tuple correspond to getargspec(). """ builtin_method_param = None if ismethod(func): # There is a notable difference in behaviour between getfullargspec # and Signature: the former always returns 'self' parameter for bound # methods, whereas the Signature always shows the actual calling # signature of the passed object. # # To simulate this behaviour, we "unbind" bound methods, to trick # inspect.signature to always return their first parameter ("self", # usually) func = func.__func__ elif isbuiltin(func): # We have a builtin function or method. For that, we check the # special '__text_signature__' attribute, provided by the # Argument Clinic. If it's a method, we'll need to make sure # that its first parameter (usually "self") is always returned # (see the previous comment). text_signature = getattr(func, '__text_signature__', None) if text_signature and text_signature.startswith('($'): builtin_method_param = _signature_get_bound_param(text_signature) try: sig = signature(func) except Exception as ex: # Most of the times 'signature' will raise ValueError. # But, it can also raise AttributeError, and, maybe something # else. So to be fully backwards compatible, we catch all # possible exceptions here, and reraise a TypeError. raise TypeError('unsupported callable') from ex args = [] varargs = None varkw = None kwonlyargs = [] defaults = () annotations = {} defaults = () kwdefaults = {} if sig.return_annotation is not sig.empty: annotations['return'] = sig.return_annotation for param in sig.parameters.values(): kind = param.kind name = param.name if kind is _POSITIONAL_ONLY: args.append(name) elif kind is _POSITIONAL_OR_KEYWORD: args.append(name) if param.default is not param.empty: defaults += (param.default,) elif kind is _VAR_POSITIONAL: varargs = name elif kind is _KEYWORD_ONLY: kwonlyargs.append(name) if param.default is not param.empty: kwdefaults[name] = param.default elif kind is _VAR_KEYWORD: varkw = name if param.annotation is not param.empty: annotations[name] = param.annotation if not kwdefaults: # compatibility with 'func.__kwdefaults__' kwdefaults = None if not defaults: # compatibility with 'func.__defaults__' defaults = None if builtin_method_param and (not args or args[0] != builtin_method_param): # `func` is a method, and we always need to return its # first parameter -- usually "self" (to be backwards # compatible with the previous implementation of # getfullargspec) args.insert(0, builtin_method_param) return FullArgSpec(args, varargs, varkw, defaults, kwonlyargs, kwdefaults, annotations) ArgInfo = namedtuple('ArgInfo', 'args varargs keywords locals') def getargvalues(frame): """Get information about arguments passed into a particular frame. A tuple of four things is returned: (args, varargs, varkw, locals). 'args' is a list of the argument names. 'varargs' and 'varkw' are the names of the * and ** arguments or None. 'locals' is the locals dictionary of the given frame.""" args, varargs, varkw = getargs(frame.f_code) return ArgInfo(args, varargs, varkw, frame.f_locals) def formatannotation(annotation, base_module=None): if isinstance(annotation, type): if annotation.__module__ in ('builtins', base_module): return annotation.__name__ return annotation.__module__+'.'+annotation.__name__ return repr(annotation) def formatannotationrelativeto(object): module = getattr(object, '__module__', None) def _formatannotation(annotation): return formatannotation(annotation, module) return _formatannotation def formatargspec(args, varargs=None, varkw=None, defaults=None, kwonlyargs=(), kwonlydefaults={}, annotations={}, formatarg=str, formatvarargs=lambda name: '*' + name, formatvarkw=lambda name: '**' + name, formatvalue=lambda value: '=' + repr(value), formatreturns=lambda text: ' -> ' + text, formatannotation=formatannotation): """Format an argument spec from the values returned by getargspec or getfullargspec. The first seven arguments are (args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations). The other five arguments are the corresponding optional formatting functions that are called to turn names and values into strings. The last argument is an optional function to format the sequence of arguments.""" def formatargandannotation(arg): result = formatarg(arg) if arg in annotations: result += ': ' + formatannotation(annotations[arg]) return result specs = [] if defaults: firstdefault = len(args) - len(defaults) for i, arg in enumerate(args): spec = formatargandannotation(arg) if defaults and i >= firstdefault: spec = spec + formatvalue(defaults[i - firstdefault]) specs.append(spec) if varargs is not None: specs.append(formatvarargs(formatargandannotation(varargs))) else: if kwonlyargs: specs.append('*') if kwonlyargs: for kwonlyarg in kwonlyargs: spec = formatargandannotation(kwonlyarg) if kwonlydefaults and kwonlyarg in kwonlydefaults: spec += formatvalue(kwonlydefaults[kwonlyarg]) specs.append(spec) if varkw is not None: specs.append(formatvarkw(formatargandannotation(varkw))) result = '(' + ', '.join(specs) + ')' if 'return' in annotations: result += formatreturns(formatannotation(annotations['return'])) return result def formatargvalues(args, varargs, varkw, locals, formatarg=str, formatvarargs=lambda name: '*' + name, formatvarkw=lambda name: '**' + name, formatvalue=lambda value: '=' + repr(value)): """Format an argument spec from the 4 values returned by getargvalues. The first four arguments are (args, varargs, varkw, locals). The next four arguments are the corresponding optional formatting functions that are called to turn names and values into strings. The ninth argument is an optional function to format the sequence of arguments.""" def convert(name, locals=locals, formatarg=formatarg, formatvalue=formatvalue): return formatarg(name) + formatvalue(locals[name]) specs = [] for i in range(len(args)): specs.append(convert(args[i])) if varargs: specs.append(formatvarargs(varargs) + formatvalue(locals[varargs])) if varkw: specs.append(formatvarkw(varkw) + formatvalue(locals[varkw])) return '(' + ', '.join(specs) + ')' def _missing_arguments(f_name, argnames, pos, values): names = [repr(name) for name in argnames if name not in values] missing = len(names) if missing == 1: s = names[0] elif missing == 2: s = "{} and {}".format(*names) else: tail = ", {} and {}".format(names[-2:]) del names[-2:] s = ", ".join(names) + tail raise TypeError("%s() missing %i required %s argument%s: %s" % (f_name, missing, "positional" if pos else "keyword-only", "" if missing == 1 else "s", s)) def _too_many(f_name, args, kwonly, varargs, defcount, given, values): atleast = len(args) - defcount kwonly_given = len([arg for arg in kwonly if arg in values]) if varargs: plural = atleast != 1 sig = "at least %d" % (atleast,) elif defcount: plural = True sig = "from %d to %d" % (atleast, len(args)) else: plural = len(args) != 1 sig = str(len(args)) kwonly_sig = "" if kwonly_given: msg = " positional argument%s (and %d keyword-only argument%s)" kwonly_sig = (msg % ("s" if given != 1 else "", kwonly_given, "s" if kwonly_given != 1 else "")) raise TypeError("%s() takes %s positional argument%s but %d%s %s given" % (f_name, sig, "s" if plural else "", given, kwonly_sig, "was" if given == 1 and not kwonly_given else "were")) def getcallargs(*func_and_positional, **named): """Get the mapping of arguments to values. A dict is returned, with keys the function argument names (including the names of the * and ** arguments, if any), and values the respective bound values from 'positional' and 'named'.""" func = func_and_positional[0] positional = func_and_positional[1:] spec = getfullargspec(func) args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, ann = spec f_name = func.__name__ arg2value = {} if ismethod(func) and func.__self__ is not None: # implicit 'self' (or 'cls' for classmethods) argument positional = (func.__self__,) + positional num_pos = len(positional) num_args = len(args) num_defaults = len(defaults) if defaults else 0 n = min(num_pos, num_args) for i in range(n): arg2value[args[i]] = positional[i] if varargs: arg2value[varargs] = tuple(positional[n:]) possible_kwargs = set(args + kwonlyargs) if varkw: arg2value[varkw] = {} for kw, value in named.items(): if kw not in possible_kwargs: if not varkw: raise TypeError("%s() got an unexpected keyword argument %r" % (f_name, kw)) arg2value[varkw][kw] = value continue if kw in arg2value: raise TypeError("%s() got multiple values for argument %r" % (f_name, kw)) arg2value[kw] = value if num_pos > num_args and not varargs: _too_many(f_name, args, kwonlyargs, varargs, num_defaults, num_pos, arg2value) if num_pos < num_args: req = args[:num_args - num_defaults] for arg in req: if arg not in arg2value: _missing_arguments(f_name, req, True, arg2value) for i, arg in enumerate(args[num_args - num_defaults:]): if arg not in arg2value: arg2value[arg] = defaults[i] missing = 0 for kwarg in kwonlyargs: if kwarg not in arg2value: if kwarg in kwonlydefaults: arg2value[kwarg] = kwonlydefaults[kwarg] else: missing += 1 if missing: _missing_arguments(f_name, kwonlyargs, False, arg2value) return arg2value ClosureVars = namedtuple('ClosureVars', 'nonlocals globals builtins unbound') def getclosurevars(func): """ Get the mapping of free variables to their current values. Returns a named tuple of dicts mapping the current nonlocal, global and builtin references as seen by the body of the function. A final set of unbound names that could not be resolved is also provided. """ if ismethod(func): func = func.__func__ if not isfunction(func): raise TypeError("'{!r}' is not a Python function".format(func)) code = func.__code__ # Nonlocal references are named in co_freevars and resolved # by looking them up in __closure__ by positional index if func.__closure__ is None: nonlocal_vars = {} else: nonlocal_vars = { var : cell.cell_contents for var, cell in zip(code.co_freevars, func.__closure__) } # Global and builtin references are named in co_names and resolved # by looking them up in __globals__ or __builtins__ global_ns = func.__globals__ builtin_ns = global_ns.get("__builtins__", builtins.__dict__) if ismodule(builtin_ns): builtin_ns = builtin_ns.__dict__ global_vars = {} builtin_vars = {} unbound_names = set() for name in code.co_names: if name in ("None", "True", "False"): # Because these used to be builtins instead of keywords, they # may still show up as name references. We ignore them. continue try: global_vars[name] = global_ns[name] except KeyError: try: builtin_vars[name] = builtin_ns[name] except KeyError: unbound_names.add(name) return ClosureVars(nonlocal_vars, global_vars, builtin_vars, unbound_names) # -------------------------------------------------- stack frame extraction Traceback = namedtuple('Traceback', 'filename lineno function code_context index') def getframeinfo(frame, context=1): """Get information about a frame or traceback object. A tuple of five things is returned: the filename, the line number of the current line, the function name, a list of lines of context from the source code, and the index of the current line within that list. The optional second argument specifies the number of lines of context to return, which are centered around the current line.""" if istraceback(frame): lineno = frame.tb_lineno frame = frame.tb_frame else: lineno = frame.f_lineno if not isframe(frame): raise TypeError('{!r} is not a frame or traceback object'.format(frame)) filename = getsourcefile(frame) or getfile(frame) if context > 0: start = lineno - 1 - context//2 try: lines, lnum = findsource(frame) except OSError: lines = index = None else: start = max(start, 1) start = max(0, min(start, len(lines) - context)) lines = lines[start:start+context] index = lineno - 1 - start else: lines = index = None return Traceback(filename, lineno, frame.f_code.co_name, lines, index) def getlineno(frame): """Get the line number from a frame object, allowing for optimization.""" # FrameType.f_lineno is now a descriptor that grovels co_lnotab return frame.f_lineno def getouterframes(frame, context=1): """Get a list of records for a frame and all higher (calling) frames. Each record contains a frame object, filename, line number, function name, a list of lines of context, and index within the context.""" framelist = [] while frame: framelist.append((frame,) + getframeinfo(frame, context)) frame = frame.f_back return framelist def getinnerframes(tb, context=1): """Get a list of records for a traceback's frame and all lower frames. Each record contains a frame object, filename, line number, function name, a list of lines of context, and index within the context.""" framelist = [] while tb: framelist.append((tb.tb_frame,) + getframeinfo(tb, context)) tb = tb.tb_next return framelist def currentframe(): """Return the frame of the caller or None if this is not possible.""" return sys._getframe(1) if hasattr(sys, "_getframe") else None def stack(context=1): """Return a list of records for the stack above the caller's frame.""" return getouterframes(sys._getframe(1), context) def trace(context=1): """Return a list of records for the stack below the current exception.""" return getinnerframes(sys.exc_info()[2], context) # ------------------------------------------------ static version of getattr _sentinel = object() def _static_getmro(klass): return type.__dict__['__mro__'].__get__(klass) def _check_instance(obj, attr): instance_dict = {} try: instance_dict = object.__getattribute__(obj, "__dict__") except AttributeError: pass return dict.get(instance_dict, attr, _sentinel) def _check_class(klass, attr): for entry in _static_getmro(klass): if _shadowed_dict(type(entry)) is _sentinel: try: return entry.__dict__[attr] except KeyError: pass return _sentinel def _is_type(obj): try: _static_getmro(obj) except TypeError: return False return True def _shadowed_dict(klass): dict_attr = type.__dict__["__dict__"] for entry in _static_getmro(klass): try: class_dict = dict_attr.__get__(entry)["__dict__"] except KeyError: pass else: if not (type(class_dict) is types.GetSetDescriptorType and class_dict.__name__ == "__dict__" and class_dict.__objclass__ is entry): return class_dict return _sentinel def getattr_static(obj, attr, default=_sentinel): """Retrieve attributes without triggering dynamic lookup via the descriptor protocol, __getattr__ or __getattribute__. Note: this function may not be able to retrieve all attributes that getattr can fetch (like dynamically created attributes) and may find attributes that getattr can't (like descriptors that raise AttributeError). It can also return descriptor objects instead of instance members in some cases. See the documentation for details. """ instance_result = _sentinel if not _is_type(obj): klass = type(obj) dict_attr = _shadowed_dict(klass) if (dict_attr is _sentinel or type(dict_attr) is types.MemberDescriptorType): instance_result = _check_instance(obj, attr) else: klass = obj klass_result = _check_class(klass, attr) if instance_result is not _sentinel and klass_result is not _sentinel: if (_check_class(type(klass_result), '__get__') is not _sentinel and _check_class(type(klass_result), '__set__') is not _sentinel): return klass_result if instance_result is not _sentinel: return instance_result if klass_result is not _sentinel: return klass_result if obj is klass: # for types we check the metaclass too for entry in _static_getmro(type(klass)): if _shadowed_dict(type(entry)) is _sentinel: try: return entry.__dict__[attr] except KeyError: pass if default is not _sentinel: return default raise AttributeError(attr) # ------------------------------------------------ generator introspection GEN_CREATED = 'GEN_CREATED' GEN_RUNNING = 'GEN_RUNNING' GEN_SUSPENDED = 'GEN_SUSPENDED' GEN_CLOSED = 'GEN_CLOSED' def getgeneratorstate(generator): """Get current state of a generator-iterator. Possible states are: GEN_CREATED: Waiting to start execution. GEN_RUNNING: Currently being executed by the interpreter. GEN_SUSPENDED: Currently suspended at a yield expression. GEN_CLOSED: Execution has completed. """ if generator.gi_running: return GEN_RUNNING if generator.gi_frame is None: return GEN_CLOSED if generator.gi_frame.f_lasti == -1: return GEN_CREATED return GEN_SUSPENDED def getgeneratorlocals(generator): """ Get the mapping of generator local variables to their current values. A dict is returned, with the keys the local variable names and values the bound values.""" if not isgenerator(generator): raise TypeError("'{!r}' is not a Python generator".format(generator)) frame = getattr(generator, "gi_frame", None) if frame is not None: return generator.gi_frame.f_locals else: return {} ############################################################################### ### Function Signature Object (PEP 362) ############################################################################### _WrapperDescriptor = type(type.__call__) _MethodWrapper = type(all.__call__) _ClassMethodWrapper = type(int.__dict__['from_bytes']) _NonUserDefinedCallables = (_WrapperDescriptor, _MethodWrapper, _ClassMethodWrapper, types.BuiltinFunctionType) def _signature_get_user_defined_method(cls, method_name): try: meth = getattr(cls, method_name) except AttributeError: return else: if not isinstance(meth, _NonUserDefinedCallables): # Once '__signature__' will be added to 'C'-level # callables, this check won't be necessary return meth def _signature_get_partial(wrapped_sig, partial, extra_args=()): # Internal helper to calculate how 'wrapped_sig' signature will # look like after applying a 'functools.partial' object (or alike) # on it. new_params = OrderedDict(wrapped_sig.parameters.items()) partial_args = partial.args or () partial_keywords = partial.keywords or {} if extra_args: partial_args = extra_args + partial_args try: ba = wrapped_sig.bind_partial(*partial_args, **partial_keywords) except TypeError as ex: msg = 'partial object {!r} has incorrect arguments'.format(partial) raise ValueError(msg) from ex for arg_name, arg_value in ba.arguments.items(): param = new_params[arg_name] if arg_name in partial_keywords: # We set a new default value, because the following code # is correct: # # >>> def foo(a): print(a) # >>> print(partial(partial(foo, a=10), a=20)()) # 20 # >>> print(partial(partial(foo, a=10), a=20)(a=30)) # 30 # # So, with 'partial' objects, passing a keyword argument is # like setting a new default value for the corresponding # parameter # # We also mark this parameter with '_partial_kwarg' # flag. Later, in '_bind', the 'default' value of this # parameter will be added to 'kwargs', to simulate # the 'functools.partial' real call. new_params[arg_name] = param.replace(default=arg_value, _partial_kwarg=True) elif (param.kind not in (_VAR_KEYWORD, _VAR_POSITIONAL) and not param._partial_kwarg): new_params.pop(arg_name) return wrapped_sig.replace(parameters=new_params.values()) def _signature_bound_method(sig): # Internal helper to transform signatures for unbound # functions to bound methods params = tuple(sig.parameters.values()) if not params or params[0].kind in (_VAR_KEYWORD, _KEYWORD_ONLY): raise ValueError('invalid method signature') kind = params[0].kind if kind in (_POSITIONAL_OR_KEYWORD, _POSITIONAL_ONLY): # Drop first parameter: # '(p1, p2[, ...])' -> '(p2[, ...])' params = params[1:] else: if kind is not _VAR_POSITIONAL: # Unless we add a new parameter type we never # get here raise ValueError('invalid argument type') # It's a var-positional parameter. # Do nothing. '(*args[, ...])' -> '(*args[, ...])' return sig.replace(parameters=params) def _signature_is_builtin(obj): # Internal helper to test if `obj` is a callable that might # support Argument Clinic's __text_signature__ protocol. return (isinstance(obj, _NonUserDefinedCallables) or ismethoddescriptor(obj) or # Can't test 'isinstance(type)' here, as it would # also be True for regular python classes obj in (type, object)) def _signature_get_bound_param(spec): # Internal helper to get first parameter name from a # __text_signature__ of a builtin method, which should # be in the following format: '($param1, ...)'. # Assumptions are that the first argument won't have # a default value or an annotation. assert spec.startswith('($') pos = spec.find(',') if pos == -1: pos = spec.find(')') cpos = spec.find(':') assert cpos == -1 or cpos > pos cpos = spec.find('=') assert cpos == -1 or cpos > pos return spec[2:pos] def signature(obj): '''Get a signature object for the passed callable.''' if not callable(obj): raise TypeError('{!r} is not a callable object'.format(obj)) if isinstance(obj, types.MethodType): # In this case we skip the first parameter of the underlying # function (usually `self` or `cls`). sig = signature(obj.__func__) return _signature_bound_method(sig) # Was this function wrapped by a decorator? obj = unwrap(obj, stop=(lambda f: hasattr(f, "__signature__"))) try: sig = obj.__signature__ except AttributeError: pass else: if sig is not None: return sig try: partialmethod = obj._partialmethod except AttributeError: pass else: if isinstance(partialmethod, functools.partialmethod): # Unbound partialmethod (see functools.partialmethod) # This means, that we need to calculate the signature # as if it's a regular partial object, but taking into # account that the first positional argument # (usually `self`, or `cls`) will not be passed # automatically (as for boundmethods) wrapped_sig = signature(partialmethod.func) sig = _signature_get_partial(wrapped_sig, partialmethod, (None,)) first_wrapped_param = tuple(wrapped_sig.parameters.values())[0] new_params = (first_wrapped_param,) + tuple(sig.parameters.values()) return sig.replace(parameters=new_params) if _signature_is_builtin(obj): return Signature.from_builtin(obj) if isinstance(obj, types.FunctionType): return Signature.from_function(obj) if isinstance(obj, functools.partial): wrapped_sig = signature(obj.func) return _signature_get_partial(wrapped_sig, obj) sig = None if isinstance(obj, type): # obj is a class or a metaclass # First, let's see if it has an overloaded __call__ defined # in its metaclass call = _signature_get_user_defined_method(type(obj), '__call__') if call is not None: sig = signature(call) else: # Now we check if the 'obj' class has a '__new__' method new = _signature_get_user_defined_method(obj, '__new__') if new is not None: sig = signature(new) else: # Finally, we should have at least __init__ implemented init = _signature_get_user_defined_method(obj, '__init__') if init is not None: sig = signature(init) if sig is None: if type in obj.__mro__: # 'obj' is a metaclass without user-defined __init__ # or __new__. Return a signature of 'type' builtin. return signature(type) else: # We have a class (not metaclass), but no user-defined # __init__ or __new__ for it return signature(object) elif not isinstance(obj, _NonUserDefinedCallables): # An object with __call__ # We also check that the 'obj' is not an instance of # _WrapperDescriptor or _MethodWrapper to avoid # infinite recursion (and even potential segfault) call = _signature_get_user_defined_method(type(obj), '__call__') if call is not None: sig = signature(call) if sig is not None: # For classes and objects we skip the first parameter of their # __call__, __new__, or __init__ methods return _signature_bound_method(sig) if isinstance(obj, types.BuiltinFunctionType): # Raise a nicer error message for builtins msg = 'no signature found for builtin function {!r}'.format(obj) raise ValueError(msg) raise ValueError('callable {!r} is not supported by signature'.format(obj)) class _void: '''A private marker - used in Parameter & Signature''' class _empty: pass class _ParameterKind(int): def __new__(self, *args, name): obj = int.__new__(self, *args) obj._name = name return obj def __str__(self): return self._name def __repr__(self): return '<_ParameterKind: {!r}>'.format(self._name) _POSITIONAL_ONLY = _ParameterKind(0, name='POSITIONAL_ONLY') _POSITIONAL_OR_KEYWORD = _ParameterKind(1, name='POSITIONAL_OR_KEYWORD') _VAR_POSITIONAL = _ParameterKind(2, name='VAR_POSITIONAL') _KEYWORD_ONLY = _ParameterKind(3, name='KEYWORD_ONLY') _VAR_KEYWORD = _ParameterKind(4, name='VAR_KEYWORD') class Parameter: '''Represents a parameter in a function signature. Has the following public attributes: * name : str The name of the parameter as a string. * default : object The default value for the parameter if specified. If the parameter has no default value, this attribute is set to `Parameter.empty`. * annotation The annotation for the parameter if specified. If the parameter has no annotation, this attribute is set to `Parameter.empty`. * kind : str Describes how argument values are bound to the parameter. Possible values: `Parameter.POSITIONAL_ONLY`, `Parameter.POSITIONAL_OR_KEYWORD`, `Parameter.VAR_POSITIONAL`, `Parameter.KEYWORD_ONLY`, `Parameter.VAR_KEYWORD`. ''' __slots__ = ('_name', '_kind', '_default', '_annotation', '_partial_kwarg') POSITIONAL_ONLY = _POSITIONAL_ONLY POSITIONAL_OR_KEYWORD = _POSITIONAL_OR_KEYWORD VAR_POSITIONAL = _VAR_POSITIONAL KEYWORD_ONLY = _KEYWORD_ONLY VAR_KEYWORD = _VAR_KEYWORD empty = _empty def __init__(self, name, kind, *, default=_empty, annotation=_empty, _partial_kwarg=False): if kind not in (_POSITIONAL_ONLY, _POSITIONAL_OR_KEYWORD, _VAR_POSITIONAL, _KEYWORD_ONLY, _VAR_KEYWORD): raise ValueError("invalid value for 'Parameter.kind' attribute") self._kind = kind if default is not _empty: if kind in (_VAR_POSITIONAL, _VAR_KEYWORD): msg = '{} parameters cannot have default values'.format(kind) raise ValueError(msg) self._default = default self._annotation = annotation if name is _empty: raise ValueError('name is a required attribute for Parameter') if not isinstance(name, str): raise TypeError("name must be a str, not a {!r}".format(name)) if not name.isidentifier(): raise ValueError('{!r} is not a valid parameter name'.format(name)) self._name = name self._partial_kwarg = _partial_kwarg @property def name(self): return self._name @property def default(self): return self._default @property def annotation(self): return self._annotation @property def kind(self): return self._kind def replace(self, *, name=_void, kind=_void, annotation=_void, default=_void, _partial_kwarg=_void): '''Creates a customized copy of the Parameter.''' if name is _void: name = self._name if kind is _void: kind = self._kind if annotation is _void: annotation = self._annotation if default is _void: default = self._default if _partial_kwarg is _void: _partial_kwarg = self._partial_kwarg return type(self)(name, kind, default=default, annotation=annotation, _partial_kwarg=_partial_kwarg) def __str__(self): kind = self.kind formatted = self._name # Add annotation and default value if self._annotation is not _empty: formatted = '{}:{}'.format(formatted, formatannotation(self._annotation)) if self._default is not _empty: formatted = '{}={}'.format(formatted, repr(self._default)) if kind == _VAR_POSITIONAL: formatted = '*' + formatted elif kind == _VAR_KEYWORD: formatted = '**' + formatted return formatted def __repr__(self): return '<{} at {:#x} {!r}>'.format(self.__class__.__name__, id(self), self.name) def __eq__(self, other): return (issubclass(other.__class__, Parameter) and self._name == other._name and self._kind == other._kind and self._default == other._default and self._annotation == other._annotation) def __ne__(self, other): return not self.__eq__(other) class BoundArguments: '''Result of `Signature.bind` call. Holds the mapping of arguments to the function's parameters. Has the following public attributes: * arguments : OrderedDict An ordered mutable mapping of parameters' names to arguments' values. Does not contain arguments' default values. * signature : Signature The Signature object that created this instance. * args : tuple Tuple of positional arguments values. * kwargs : dict Dict of keyword arguments values. ''' def __init__(self, signature, arguments): self.arguments = arguments self._signature = signature @property def signature(self): return self._signature @property def args(self): args = [] for param_name, param in self._signature.parameters.items(): if (param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY) or param._partial_kwarg): # Keyword arguments mapped by 'functools.partial' # (Parameter._partial_kwarg is True) are mapped # in 'BoundArguments.kwargs', along with VAR_KEYWORD & # KEYWORD_ONLY break try: arg = self.arguments[param_name] except KeyError: # We're done here. Other arguments # will be mapped in 'BoundArguments.kwargs' break else: if param.kind == _VAR_POSITIONAL: # *args args.extend(arg) else: # plain argument args.append(arg) return tuple(args) @property def kwargs(self): kwargs = {} kwargs_started = False for param_name, param in self._signature.parameters.items(): if not kwargs_started: if (param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY) or param._partial_kwarg): kwargs_started = True else: if param_name not in self.arguments: kwargs_started = True continue if not kwargs_started: continue try: arg = self.arguments[param_name] except KeyError: pass else: if param.kind == _VAR_KEYWORD: # **kwargs kwargs.update(arg) else: # plain keyword argument kwargs[param_name] = arg return kwargs def __eq__(self, other): return (issubclass(other.__class__, BoundArguments) and self.signature == other.signature and self.arguments == other.arguments) def __ne__(self, other): return not self.__eq__(other) class Signature: '''A Signature object represents the overall signature of a function. It stores a Parameter object for each parameter accepted by the function, as well as information specific to the function itself. A Signature object has the following public attributes and methods: * parameters : OrderedDict An ordered mapping of parameters' names to the corresponding Parameter objects (keyword-only arguments are in the same order as listed in `code.co_varnames`). * return_annotation : object The annotation for the return type of the function if specified. If the function has no annotation for its return type, this attribute is set to `Signature.empty`. * bind(*args, **kwargs) -> BoundArguments Creates a mapping from positional and keyword arguments to parameters. * bind_partial(*args, **kwargs) -> BoundArguments Creates a partial mapping from positional and keyword arguments to parameters (simulating 'functools.partial' behavior.) ''' __slots__ = ('_return_annotation', '_parameters') _parameter_cls = Parameter _bound_arguments_cls = BoundArguments empty = _empty def __init__(self, parameters=None, *, return_annotation=_empty, __validate_parameters__=True): '''Constructs Signature from the given list of Parameter objects and 'return_annotation'. All arguments are optional. ''' if parameters is None: params = OrderedDict() else: if __validate_parameters__: params = OrderedDict() top_kind = _POSITIONAL_ONLY kind_defaults = False for idx, param in enumerate(parameters): kind = param.kind name = param.name if kind < top_kind: msg = 'wrong parameter order: {} before {}' msg = msg.format(top_kind, kind) raise ValueError(msg) elif kind > top_kind: kind_defaults = False top_kind = kind if (kind in (_POSITIONAL_ONLY, _POSITIONAL_OR_KEYWORD) and not param._partial_kwarg): # If we have a positional-only or positional-or-keyword # parameter, that does not have its default value set # by 'functools.partial' or other "partial" signature: if param.default is _empty: if kind_defaults: # No default for this parameter, but the # previous parameter of the same kind had # a default msg = 'non-default argument follows default ' \ 'argument' raise ValueError(msg) else: # There is a default for this parameter. kind_defaults = True if name in params: msg = 'duplicate parameter name: {!r}'.format(name) raise ValueError(msg) params[name] = param else: params = OrderedDict(((param.name, param) for param in parameters)) self._parameters = types.MappingProxyType(params) self._return_annotation = return_annotation @classmethod def from_function(cls, func): '''Constructs Signature for the given python function''' if not isinstance(func, types.FunctionType): raise TypeError('{!r} is not a Python function'.format(func)) Parameter = cls._parameter_cls # Parameter information. func_code = func.__code__ pos_count = func_code.co_argcount arg_names = func_code.co_varnames positional = tuple(arg_names[:pos_count]) keyword_only_count = func_code.co_kwonlyargcount keyword_only = arg_names[pos_count:(pos_count + keyword_only_count)] annotations = func.__annotations__ defaults = func.__defaults__ kwdefaults = func.__kwdefaults__ if defaults: pos_default_count = len(defaults) else: pos_default_count = 0 parameters = [] # Non-keyword-only parameters w/o defaults. non_default_count = pos_count - pos_default_count for name in positional[:non_default_count]: annotation = annotations.get(name, _empty) parameters.append(Parameter(name, annotation=annotation, kind=_POSITIONAL_OR_KEYWORD)) # ... w/ defaults. for offset, name in enumerate(positional[non_default_count:]): annotation = annotations.get(name, _empty) parameters.append(Parameter(name, annotation=annotation, kind=_POSITIONAL_OR_KEYWORD, default=defaults[offset])) # *args if func_code.co_flags & CO_VARARGS: name = arg_names[pos_count + keyword_only_count] annotation = annotations.get(name, _empty) parameters.append(Parameter(name, annotation=annotation, kind=_VAR_POSITIONAL)) # Keyword-only parameters. for name in keyword_only: default = _empty if kwdefaults is not None: default = kwdefaults.get(name, _empty) annotation = annotations.get(name, _empty) parameters.append(Parameter(name, annotation=annotation, kind=_KEYWORD_ONLY, default=default)) # **kwargs if func_code.co_flags & CO_VARKEYWORDS: index = pos_count + keyword_only_count if func_code.co_flags & CO_VARARGS: index += 1 name = arg_names[index] annotation = annotations.get(name, _empty) parameters.append(Parameter(name, annotation=annotation, kind=_VAR_KEYWORD)) return cls(parameters, return_annotation=annotations.get('return', _empty), __validate_parameters__=False) @classmethod def from_builtin(cls, func): if not _signature_is_builtin(func): raise TypeError("{!r} is not a Python builtin " "function".format(func)) s = getattr(func, "__text_signature__", None) if not s: raise ValueError("no signature found for builtin {!r}".format(func)) Parameter = cls._parameter_cls if s.endswith("/)"): kind = Parameter.POSITIONAL_ONLY s = s[:-2] + ')' else: kind = Parameter.POSITIONAL_OR_KEYWORD first_parameter_is_self = s.startswith("($") if first_parameter_is_self: s = '(' + s[2:] s = "def foo" + s + ": pass" try: module = ast.parse(s) except SyntaxError: module = None if not isinstance(module, ast.Module): raise ValueError("{!r} builtin has invalid signature".format(func)) f = module.body[0] parameters = [] empty = Parameter.empty invalid = object() module = None module_dict = {} module_name = getattr(func, '__module__', None) if module_name: module = sys.modules.get(module_name, None) if module: module_dict = module.__dict__ sys_module_dict = sys.modules def parse_name(node): assert isinstance(node, ast.arg) if node.annotation != None: raise ValueError("Annotations are not currently supported") return node.arg def wrap_value(s): try: value = eval(s, module_dict) except NameError: try: value = eval(s, sys_module_dict) except NameError: raise RuntimeError() if isinstance(value, str): return ast.Str(value) if isinstance(value, (int, float)): return ast.Num(value) if isinstance(value, bytes): return ast.Bytes(value) if value in (True, False, None): return ast.NameConstant(value) raise RuntimeError() class RewriteSymbolics(ast.NodeTransformer): def visit_Attribute(self, node): a = [] n = node while isinstance(n, ast.Attribute): a.append(n.attr) n = n.value if not isinstance(n, ast.Name): raise RuntimeError() a.append(n.id) value = ".".join(reversed(a)) return wrap_value(value) def visit_Name(self, node): if not isinstance(node.ctx, ast.Load): raise ValueError() return wrap_value(node.id) def p(name_node, default_node, default=empty): name = parse_name(name_node) if name is invalid: return None if default_node and default_node is not _empty: try: default_node = RewriteSymbolics().visit(default_node) o = ast.literal_eval(default_node) except ValueError: o = invalid if o is invalid: return None default = o if o is not invalid else default parameters.append(Parameter(name, kind, default=default, annotation=empty)) # non-keyword-only parameters args = reversed(f.args.args) defaults = reversed(f.args.defaults) iter = itertools.zip_longest(args, defaults, fillvalue=None) for name, default in reversed(list(iter)): p(name, default) # *args if f.args.vararg: kind = Parameter.VAR_POSITIONAL p(f.args.vararg, empty) # keyword-only arguments kind = Parameter.KEYWORD_ONLY for name, default in zip(f.args.kwonlyargs, f.args.kw_defaults): p(name, default) # **kwargs if f.args.kwarg: kind = Parameter.VAR_KEYWORD p(f.args.kwarg, empty) if first_parameter_is_self: assert parameters if getattr(func, '__self__', None): # strip off self, it's already been bound parameters.pop(0) else: # for builtins, self parameter is always positional-only! p = parameters[0].replace(kind=Parameter.POSITIONAL_ONLY) parameters[0] = p return cls(parameters, return_annotation=cls.empty) @property def parameters(self): return self._parameters @property def return_annotation(self): return self._return_annotation def replace(self, *, parameters=_void, return_annotation=_void): '''Creates a customized copy of the Signature. Pass 'parameters' and/or 'return_annotation' arguments to override them in the new copy. ''' if parameters is _void: parameters = self.parameters.values() if return_annotation is _void: return_annotation = self._return_annotation return type(self)(parameters, return_annotation=return_annotation) def __eq__(self, other): if (not issubclass(type(other), Signature) or self.return_annotation != other.return_annotation or len(self.parameters) != len(other.parameters)): return False other_positions = {param: idx for idx, param in enumerate(other.parameters.keys())} for idx, (param_name, param) in enumerate(self.parameters.items()): if param.kind == _KEYWORD_ONLY: try: other_param = other.parameters[param_name] except KeyError: return False else: if param != other_param: return False else: try: other_idx = other_positions[param_name] except KeyError: return False else: if (idx != other_idx or param != other.parameters[param_name]): return False return True def __ne__(self, other): return not self.__eq__(other) def _bind(self, args, kwargs, *, partial=False): '''Private method. Don't use directly.''' arguments = OrderedDict() parameters = iter(self.parameters.values()) parameters_ex = () arg_vals = iter(args) if partial: # Support for binding arguments to 'functools.partial' objects. # See 'functools.partial' case in 'signature()' implementation # for details. for param_name, param in self.parameters.items(): if (param._partial_kwarg and param_name not in kwargs): # Simulating 'functools.partial' behavior kwargs[param_name] = param.default while True: # Let's iterate through the positional arguments and corresponding # parameters try: arg_val = next(arg_vals) except StopIteration: # No more positional arguments try: param = next(parameters) except StopIteration: # No more parameters. That's it. Just need to check that # we have no `kwargs` after this while loop break else: if param.kind == _VAR_POSITIONAL: # That's OK, just empty *args. Let's start parsing # kwargs break elif param.name in kwargs: if param.kind == _POSITIONAL_ONLY: msg = '{arg!r} parameter is positional only, ' \ 'but was passed as a keyword' msg = msg.format(arg=param.name) raise TypeError(msg) from None parameters_ex = (param,) break elif (param.kind == _VAR_KEYWORD or param.default is not _empty): # That's fine too - we have a default value for this # parameter. So, lets start parsing `kwargs`, starting # with the current parameter parameters_ex = (param,) break else: # No default, not VAR_KEYWORD, not VAR_POSITIONAL, # not in `kwargs` if partial: parameters_ex = (param,) break else: msg = '{arg!r} parameter lacking default value' msg = msg.format(arg=param.name) raise TypeError(msg) from None else: # We have a positional argument to process try: param = next(parameters) except StopIteration: raise TypeError('too many positional arguments') from None else: if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY): # Looks like we have no parameter for this positional # argument raise TypeError('too many positional arguments') if param.kind == _VAR_POSITIONAL: # We have an '*args'-like argument, let's fill it with # all positional arguments we have left and move on to # the next phase values = [arg_val] values.extend(arg_vals) arguments[param.name] = tuple(values) break if param.name in kwargs: raise TypeError('multiple values for argument ' '{arg!r}'.format(arg=param.name)) arguments[param.name] = arg_val # Now, we iterate through the remaining parameters to process # keyword arguments kwargs_param = None for param in itertools.chain(parameters_ex, parameters): if param.kind == _VAR_KEYWORD: # Memorize that we have a '**kwargs'-like parameter kwargs_param = param continue if param.kind == _VAR_POSITIONAL: # Named arguments don't refer to '*args'-like parameters. # We only arrive here if the positional arguments ended # before reaching the last parameter before *args. continue param_name = param.name try: arg_val = kwargs.pop(param_name) except KeyError: # We have no value for this parameter. It's fine though, # if it has a default value, or it is an '*args'-like # parameter, left alone by the processing of positional # arguments. if (not partial and param.kind != _VAR_POSITIONAL and param.default is _empty): raise TypeError('{arg!r} parameter lacking default value'. \ format(arg=param_name)) from None else: if param.kind == _POSITIONAL_ONLY: # This should never happen in case of a properly built # Signature object (but let's have this check here # to ensure correct behaviour just in case) raise TypeError('{arg!r} parameter is positional only, ' 'but was passed as a keyword'. \ format(arg=param.name)) arguments[param_name] = arg_val if kwargs: if kwargs_param is not None: # Process our '**kwargs'-like parameter arguments[kwargs_param.name] = kwargs else: raise TypeError('too many keyword arguments') return self._bound_arguments_cls(self, arguments) def bind(*args, **kwargs): '''Get a BoundArguments object, that maps the passed `args` and `kwargs` to the function's signature. Raises `TypeError` if the passed arguments can not be bound. ''' return args[0]._bind(args[1:], kwargs) def bind_partial(*args, **kwargs): '''Get a BoundArguments object, that partially maps the passed `args` and `kwargs` to the function's signature. Raises `TypeError` if the passed arguments can not be bound. ''' return args[0]._bind(args[1:], kwargs, partial=True) def __str__(self): result = [] render_pos_only_separator = False render_kw_only_separator = True for param in self.parameters.values(): formatted = str(param) kind = param.kind if kind == _POSITIONAL_ONLY: render_pos_only_separator = True elif render_pos_only_separator: # It's not a positional-only parameter, and the flag # is set to 'True' (there were pos-only params before.) result.append('/') render_pos_only_separator = False if kind == _VAR_POSITIONAL: # OK, we have an '*args'-like parameter, so we won't need # a '*' to separate keyword-only arguments render_kw_only_separator = False elif kind == _KEYWORD_ONLY and render_kw_only_separator: # We have a keyword-only parameter to render and we haven't # rendered an '*args'-like parameter before, so add a '*' # separator to the parameters list ("foo(arg1, *, arg2)" case) result.append('*') # This condition should be only triggered once, so # reset the flag render_kw_only_separator = False result.append(formatted) if render_pos_only_separator: # There were only positional-only parameters, hence the # flag was not reset to 'False' result.append('/') rendered = '({})'.format(', '.join(result)) if self.return_annotation is not _empty: anno = formatannotation(self.return_annotation) rendered += ' -> {}'.format(anno) return rendered def _main(): """ Logic for inspecting an object given at command line """ import argparse import importlib parser = argparse.ArgumentParser() parser.add_argument( 'object', help="The object to be analysed. " "It supports the 'module:qualname' syntax") parser.add_argument( '-d', '--details', action='store_true', help='Display info about the module rather than its source code') args = parser.parse_args() target = args.object mod_name, has_attrs, attrs = target.partition(":") try: obj = module = importlib.import_module(mod_name) except Exception as exc: msg = "Failed to import {} ({}: {})".format(mod_name, type(exc).__name__, exc) print(msg, file=sys.stderr) exit(2) if has_attrs: parts = attrs.split(".") obj = module for part in parts: obj = getattr(obj, part) if module.__name__ in sys.builtin_module_names: print("Can't get info for builtin modules.", file=sys.stderr) exit(1) if args.details: print('Target: {}'.format(target)) print('Origin: {}'.format(getsourcefile(module))) print('Cached: {}'.format(module.__cached__)) if obj is module: print('Loader: {}'.format(repr(module.__loader__))) if hasattr(module, '__path__'): print('Submodule search path: {}'.format(module.__path__)) else: try: __, lineno = findsource(obj) except Exception: pass else: print('Line: {}'.format(lineno)) print('\n') else: print(getsource(obj)) if __name__ == "__main__": _main()