/* Tuple object implementation */ #include "Python.h" #include "pycore_abstract.h" // _PyIndex_Check() #include "pycore_gc.h" // _PyObject_GC_IS_TRACKED() #include "pycore_initconfig.h" // _PyStatus_OK() #include "pycore_modsupport.h" // _PyArg_NoKwnames() #include "pycore_object.h" // _PyObject_GC_TRACK(), _Py_FatalRefcountError(), _PyDebugAllocatorStats() /*[clinic input] class tuple "PyTupleObject *" "&PyTuple_Type" [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=f051ba3cfdf9a189]*/ #include "clinic/tupleobject.c.h" static inline PyTupleObject * maybe_freelist_pop(Py_ssize_t); static inline int maybe_freelist_push(PyTupleObject *); /* Allocate an uninitialized tuple object. Before making it public, following steps must be done: - Initialize its items. - Call _PyObject_GC_TRACK() on it. Because the empty tuple is always reused and it's already tracked by GC, this function must not be called with size == 0 (unless from PyTuple_New() which wraps this function). */ static PyTupleObject * tuple_alloc(Py_ssize_t size) { if (size < 0) { PyErr_BadInternalCall(); return NULL; } #ifdef Py_DEBUG assert(size != 0); // The empty tuple is statically allocated. #endif PyTupleObject *op = maybe_freelist_pop(size); if (op == NULL) { /* Check for overflow */ if ((size_t)size > ((size_t)PY_SSIZE_T_MAX - (sizeof(PyTupleObject) - sizeof(PyObject *))) / sizeof(PyObject *)) { return (PyTupleObject *)PyErr_NoMemory(); } op = PyObject_GC_NewVar(PyTupleObject, &PyTuple_Type, size); if (op == NULL) return NULL; } return op; } // The empty tuple singleton is not tracked by the GC. // It does not contain any Python object. // Note that tuple subclasses have their own empty instances. static inline PyObject * tuple_get_empty(void) { return (PyObject *)&_Py_SINGLETON(tuple_empty); } PyObject * PyTuple_New(Py_ssize_t size) { PyTupleObject *op; if (size == 0) { return tuple_get_empty(); } op = tuple_alloc(size); if (op == NULL) { return NULL; } for (Py_ssize_t i = 0; i < size; i++) { op->ob_item[i] = NULL; } _PyObject_GC_TRACK(op); return (PyObject *) op; } Py_ssize_t PyTuple_Size(PyObject *op) { if (!PyTuple_Check(op)) { PyErr_BadInternalCall(); return -1; } else return Py_SIZE(op); } PyObject * PyTuple_GetItem(PyObject *op, Py_ssize_t i) { if (!PyTuple_Check(op)) { PyErr_BadInternalCall(); return NULL; } if (i < 0 || i >= Py_SIZE(op)) { PyErr_SetString(PyExc_IndexError, "tuple index out of range"); return NULL; } return ((PyTupleObject *)op) -> ob_item[i]; } int PyTuple_SetItem(PyObject *op, Py_ssize_t i, PyObject *newitem) { PyObject **p; if (!PyTuple_Check(op) || Py_REFCNT(op) != 1) { Py_XDECREF(newitem); PyErr_BadInternalCall(); return -1; } if (i < 0 || i >= Py_SIZE(op)) { Py_XDECREF(newitem); PyErr_SetString(PyExc_IndexError, "tuple assignment index out of range"); return -1; } p = ((PyTupleObject *)op) -> ob_item + i; Py_XSETREF(*p, newitem); return 0; } void _PyTuple_MaybeUntrack(PyObject *op) { PyTupleObject *t; Py_ssize_t i, n; if (!PyTuple_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op)) return; t = (PyTupleObject *) op; n = Py_SIZE(t); for (i = 0; i < n; i++) { PyObject *elt = PyTuple_GET_ITEM(t, i); /* Tuple with NULL elements aren't fully constructed, don't untrack them yet. */ if (!elt || _PyObject_GC_MAY_BE_TRACKED(elt)) return; } _PyObject_GC_UNTRACK(op); } PyObject * PyTuple_Pack(Py_ssize_t n, ...) { Py_ssize_t i; PyObject *o; PyObject **items; va_list vargs; if (n == 0) { return tuple_get_empty(); } va_start(vargs, n); PyTupleObject *result = tuple_alloc(n); if (result == NULL) { va_end(vargs); return NULL; } items = result->ob_item; for (i = 0; i < n; i++) { o = va_arg(vargs, PyObject *); items[i] = Py_NewRef(o); } va_end(vargs); _PyObject_GC_TRACK(result); return (PyObject *)result; } /* Methods */ static void tupledealloc(PyTupleObject *op) { if (Py_SIZE(op) == 0) { /* The empty tuple is statically allocated. */ if (op == &_Py_SINGLETON(tuple_empty)) { #ifdef Py_DEBUG _Py_FatalRefcountError("deallocating the empty tuple singleton"); #else return; #endif } #ifdef Py_DEBUG /* tuple subclasses have their own empty instances. */ assert(!PyTuple_CheckExact(op)); #endif } PyObject_GC_UnTrack(op); Py_TRASHCAN_BEGIN(op, tupledealloc) Py_ssize_t i = Py_SIZE(op); while (--i >= 0) { Py_XDECREF(op->ob_item[i]); } // This will abort on the empty singleton (if there is one). if (!maybe_freelist_push(op)) { Py_TYPE(op)->tp_free((PyObject *)op); } Py_TRASHCAN_END } static PyObject * tuplerepr(PyTupleObject *v) { Py_ssize_t i, n; _PyUnicodeWriter writer; n = Py_SIZE(v); if (n == 0) return PyUnicode_FromString("()"); /* While not mutable, it is still possible to end up with a cycle in a tuple through an object that stores itself within a tuple (and thus infinitely asks for the repr of itself). This should only be possible within a type. */ i = Py_ReprEnter((PyObject *)v); if (i != 0) { return i > 0 ? PyUnicode_FromString("(...)") : NULL; } _PyUnicodeWriter_Init(&writer); writer.overallocate = 1; if (Py_SIZE(v) > 1) { /* "(" + "1" + ", 2" * (len - 1) + ")" */ writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1; } else { /* "(1,)" */ writer.min_length = 4; } if (_PyUnicodeWriter_WriteChar(&writer, '(') < 0) goto error; /* Do repr() on each element. */ for (i = 0; i < n; ++i) { PyObject *s; if (i > 0) { if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0) goto error; } s = PyObject_Repr(v->ob_item[i]); if (s == NULL) goto error; if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) { Py_DECREF(s); goto error; } Py_DECREF(s); } writer.overallocate = 0; if (n > 1) { if (_PyUnicodeWriter_WriteChar(&writer, ')') < 0) goto error; } else { if (_PyUnicodeWriter_WriteASCIIString(&writer, ",)", 2) < 0) goto error; } Py_ReprLeave((PyObject *)v); return _PyUnicodeWriter_Finish(&writer); error: _PyUnicodeWriter_Dealloc(&writer); Py_ReprLeave((PyObject *)v); return NULL; } /* Hash for tuples. This is a slightly simplified version of the xxHash non-cryptographic hash: - we do not use any parallelism, there is only 1 accumulator. - we drop the final mixing since this is just a permutation of the output space: it does not help against collisions. - at the end, we mangle the length with a single constant. For the xxHash specification, see https://github.com/Cyan4973/xxHash/blob/master/doc/xxhash_spec.md Below are the official constants from the xxHash specification. Optimizing compilers should emit a single "rotate" instruction for the _PyHASH_XXROTATE() expansion. If that doesn't happen for some important platform, the macro could be changed to expand to a platform-specific rotate spelling instead. */ #if SIZEOF_PY_UHASH_T > 4 #define _PyHASH_XXPRIME_1 ((Py_uhash_t)11400714785074694791ULL) #define _PyHASH_XXPRIME_2 ((Py_uhash_t)14029467366897019727ULL) #define _PyHASH_XXPRIME_5 ((Py_uhash_t)2870177450012600261ULL) #define _PyHASH_XXROTATE(x) ((x << 31) | (x >> 33)) /* Rotate left 31 bits */ #else #define _PyHASH_XXPRIME_1 ((Py_uhash_t)2654435761UL) #define _PyHASH_XXPRIME_2 ((Py_uhash_t)2246822519UL) #define _PyHASH_XXPRIME_5 ((Py_uhash_t)374761393UL) #define _PyHASH_XXROTATE(x) ((x << 13) | (x >> 19)) /* Rotate left 13 bits */ #endif /* Tests have shown that it's not worth to cache the hash value, see https://bugs.python.org/issue9685 */ static Py_hash_t tuplehash(PyTupleObject *v) { Py_ssize_t i, len = Py_SIZE(v); PyObject **item = v->ob_item; Py_uhash_t acc = _PyHASH_XXPRIME_5; for (i = 0; i < len; i++) { Py_uhash_t lane = PyObject_Hash(item[i]); if (lane == (Py_uhash_t)-1) { return -1; } acc += lane * _PyHASH_XXPRIME_2; acc = _PyHASH_XXROTATE(acc); acc *= _PyHASH_XXPRIME_1; } /* Add input length, mangled to keep the historical value of hash(()). */ acc += len ^ (_PyHASH_XXPRIME_5 ^ 3527539UL); if (acc == (Py_uhash_t)-1) { return 1546275796; } return acc; } static Py_ssize_t tuplelength(PyTupleObject *a) { return Py_SIZE(a); } static int tuplecontains(PyTupleObject *a, PyObject *el) { Py_ssize_t i; int cmp; for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i) cmp = PyObject_RichCompareBool(PyTuple_GET_ITEM(a, i), el, Py_EQ); return cmp; } static PyObject * tupleitem(PyTupleObject *a, Py_ssize_t i) { if (i < 0 || i >= Py_SIZE(a)) { PyErr_SetString(PyExc_IndexError, "tuple index out of range"); return NULL; } return Py_NewRef(a->ob_item[i]); } PyObject * _PyTuple_FromArray(PyObject *const *src, Py_ssize_t n) { if (n == 0) { return tuple_get_empty(); } PyTupleObject *tuple = tuple_alloc(n); if (tuple == NULL) { return NULL; } PyObject **dst = tuple->ob_item; for (Py_ssize_t i = 0; i < n; i++) { PyObject *item = src[i]; dst[i] = Py_NewRef(item); } _PyObject_GC_TRACK(tuple); return (PyObject *)tuple; } PyObject * _PyTuple_FromArraySteal(PyObject *const *src, Py_ssize_t n) { if (n == 0) { return tuple_get_empty(); } PyTupleObject *tuple = tuple_alloc(n); if (tuple == NULL) { for (Py_ssize_t i = 0; i < n; i++) { Py_DECREF(src[i]); } return NULL; } PyObject **dst = tuple->ob_item; for (Py_ssize_t i = 0; i < n; i++) { PyObject *item = src[i]; dst[i] = item; } _PyObject_GC_TRACK(tuple); return (PyObject *)tuple; } static PyObject * tupleslice(PyTupleObject *a, Py_ssize_t ilow, Py_ssize_t ihigh) { if (ilow < 0) ilow = 0; if (ihigh > Py_SIZE(a)) ihigh = Py_SIZE(a); if (ihigh < ilow) ihigh = ilow; if (ilow == 0 && ihigh == Py_SIZE(a) && PyTuple_CheckExact(a)) { return Py_NewRef(a); } return _PyTuple_FromArray(a->ob_item + ilow, ihigh - ilow); } PyObject * PyTuple_GetSlice(PyObject *op, Py_ssize_t i, Py_ssize_t j) { if (op == NULL || !PyTuple_Check(op)) { PyErr_BadInternalCall(); return NULL; } return tupleslice((PyTupleObject *)op, i, j); } static PyObject * tupleconcat(PyTupleObject *a, PyObject *bb) { Py_ssize_t size; Py_ssize_t i; PyObject **src, **dest; PyTupleObject *np; if (Py_SIZE(a) == 0 && PyTuple_CheckExact(bb)) { return Py_NewRef(bb); } if (!PyTuple_Check(bb)) { PyErr_Format(PyExc_TypeError, "can only concatenate tuple (not \"%.200s\") to tuple", Py_TYPE(bb)->tp_name); return NULL; } PyTupleObject *b = (PyTupleObject *)bb; if (Py_SIZE(b) == 0 && PyTuple_CheckExact(a)) { return Py_NewRef(a); } assert((size_t)Py_SIZE(a) + (size_t)Py_SIZE(b) < PY_SSIZE_T_MAX); size = Py_SIZE(a) + Py_SIZE(b); if (size == 0) { return tuple_get_empty(); } np = tuple_alloc(size); if (np == NULL) { return NULL; } src = a->ob_item; dest = np->ob_item; for (i = 0; i < Py_SIZE(a); i++) { PyObject *v = src[i]; dest[i] = Py_NewRef(v); } src = b->ob_item; dest = np->ob_item + Py_SIZE(a); for (i = 0; i < Py_SIZE(b); i++) { PyObject *v = src[i]; dest[i] = Py_NewRef(v); } _PyObject_GC_TRACK(np); return (PyObject *)np; } static PyObject * tuplerepeat(PyTupleObject *a, Py_ssize_t n) { const Py_ssize_t input_size = Py_SIZE(a); if (input_size == 0 || n == 1) { if (PyTuple_CheckExact(a)) { /* Since tuples are immutable, we can return a shared copy in this case */ return Py_NewRef(a); } } if (input_size == 0 || n <= 0) { return tuple_get_empty(); } assert(n>0); if (input_size > PY_SSIZE_T_MAX / n) return PyErr_NoMemory(); Py_ssize_t output_size = input_size * n; PyTupleObject *np = tuple_alloc(output_size); if (np == NULL) return NULL; PyObject **dest = np->ob_item; if (input_size == 1) { PyObject *elem = a->ob_item[0]; _Py_RefcntAdd(elem, n); PyObject **dest_end = dest + output_size; while (dest < dest_end) { *dest++ = elem; } } else { PyObject **src = a->ob_item; PyObject **src_end = src + input_size; while (src < src_end) { _Py_RefcntAdd(*src, n); *dest++ = *src++; } _Py_memory_repeat((char *)np->ob_item, sizeof(PyObject *)*output_size, sizeof(PyObject *)*input_size); } _PyObject_GC_TRACK(np); return (PyObject *) np; } /*[clinic input] tuple.index value: object start: slice_index(accept={int}) = 0 stop: slice_index(accept={int}, c_default="PY_SSIZE_T_MAX") = sys.maxsize / Return first index of value. Raises ValueError if the value is not present. [clinic start generated code]*/ static PyObject * tuple_index_impl(PyTupleObject *self, PyObject *value, Py_ssize_t start, Py_ssize_t stop) /*[clinic end generated code: output=07b6f9f3cb5c33eb input=fb39e9874a21fe3f]*/ { Py_ssize_t i; if (start < 0) { start += Py_SIZE(self); if (start < 0) start = 0; } if (stop < 0) { stop += Py_SIZE(self); } else if (stop > Py_SIZE(self)) { stop = Py_SIZE(self); } for (i = start; i < stop; i++) { int cmp = PyObject_RichCompareBool(self->ob_item[i], value, Py_EQ); if (cmp > 0) return PyLong_FromSsize_t(i); else if (cmp < 0) return NULL; } PyErr_SetString(PyExc_ValueError, "tuple.index(x): x not in tuple"); return NULL; } /*[clinic input] tuple.count value: object / Return number of occurrences of value. [clinic start generated code]*/ static PyObject * tuple_count(PyTupleObject *self, PyObject *value) /*[clinic end generated code: output=aa927affc5a97605 input=531721aff65bd772]*/ { Py_ssize_t count = 0; Py_ssize_t i; for (i = 0; i < Py_SIZE(self); i++) { int cmp = PyObject_RichCompareBool(self->ob_item[i], value, Py_EQ); if (cmp > 0) count++; else if (cmp < 0) return NULL; } return PyLong_FromSsize_t(count); } static int tupletraverse(PyTupleObject *o, visitproc visit, void *arg) { Py_ssize_t i; for (i = Py_SIZE(o); --i >= 0; ) Py_VISIT(o->ob_item[i]); return 0; } static PyObject * tuplerichcompare(PyObject *v, PyObject *w, int op) { PyTupleObject *vt, *wt; Py_ssize_t i; Py_ssize_t vlen, wlen; if (!PyTuple_Check(v) || !PyTuple_Check(w)) Py_RETURN_NOTIMPLEMENTED; vt = (PyTupleObject *)v; wt = (PyTupleObject *)w; vlen = Py_SIZE(vt); wlen = Py_SIZE(wt); /* Note: the corresponding code for lists has an "early out" test * here when op is EQ or NE and the lengths differ. That pays there, * but Tim was unable to find any real code where EQ/NE tuple * compares don't have the same length, so testing for it here would * have cost without benefit. */ /* Search for the first index where items are different. * Note that because tuples are immutable, it's safe to reuse * vlen and wlen across the comparison calls. */ for (i = 0; i < vlen && i < wlen; i++) { int k = PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_EQ); if (k < 0) return NULL; if (!k) break; } if (i >= vlen || i >= wlen) { /* No more items to compare -- compare sizes */ Py_RETURN_RICHCOMPARE(vlen, wlen, op); } /* We have an item that differs -- shortcuts for EQ/NE */ if (op == Py_EQ) { Py_RETURN_FALSE; } if (op == Py_NE) { Py_RETURN_TRUE; } /* Compare the final item again using the proper operator */ return PyObject_RichCompare(vt->ob_item[i], wt->ob_item[i], op); } static PyObject * tuple_subtype_new(PyTypeObject *type, PyObject *iterable); /*[clinic input] @classmethod tuple.__new__ as tuple_new iterable: object(c_default="NULL") = () / Built-in immutable sequence. If no argument is given, the constructor returns an empty tuple. If iterable is specified the tuple is initialized from iterable's items. If the argument is a tuple, the return value is the same object. [clinic start generated code]*/ static PyObject * tuple_new_impl(PyTypeObject *type, PyObject *iterable) /*[clinic end generated code: output=4546d9f0d469bce7 input=86963bcde633b5a2]*/ { if (type != &PyTuple_Type) return tuple_subtype_new(type, iterable); if (iterable == NULL) { return tuple_get_empty(); } else { return PySequence_Tuple(iterable); } } static PyObject * tuple_vectorcall(PyObject *type, PyObject * const*args, size_t nargsf, PyObject *kwnames) { if (!_PyArg_NoKwnames("tuple", kwnames)) { return NULL; } Py_ssize_t nargs = PyVectorcall_NARGS(nargsf); if (!_PyArg_CheckPositional("tuple", nargs, 0, 1)) { return NULL; } if (nargs) { return tuple_new_impl(_PyType_CAST(type), args[0]); } else { return tuple_get_empty(); } } static PyObject * tuple_subtype_new(PyTypeObject *type, PyObject *iterable) { PyObject *tmp, *newobj, *item; Py_ssize_t i, n; assert(PyType_IsSubtype(type, &PyTuple_Type)); // tuple subclasses must implement the GC protocol assert(_PyType_IS_GC(type)); tmp = tuple_new_impl(&PyTuple_Type, iterable); if (tmp == NULL) return NULL; assert(PyTuple_Check(tmp)); /* This may allocate an empty tuple that is not the global one. */ newobj = type->tp_alloc(type, n = PyTuple_GET_SIZE(tmp)); if (newobj == NULL) { Py_DECREF(tmp); return NULL; } for (i = 0; i < n; i++) { item = PyTuple_GET_ITEM(tmp, i); PyTuple_SET_ITEM(newobj, i, Py_NewRef(item)); } Py_DECREF(tmp); // Don't track if a subclass tp_alloc is PyType_GenericAlloc() if (!_PyObject_GC_IS_TRACKED(newobj)) { _PyObject_GC_TRACK(newobj); } return newobj; } static PySequenceMethods tuple_as_sequence = { (lenfunc)tuplelength, /* sq_length */ (binaryfunc)tupleconcat, /* sq_concat */ (ssizeargfunc)tuplerepeat, /* sq_repeat */ (ssizeargfunc)tupleitem, /* sq_item */ 0, /* sq_slice */ 0, /* sq_ass_item */ 0, /* sq_ass_slice */ (objobjproc)tuplecontains, /* sq_contains */ }; static PyObject* tuplesubscript(PyTupleObject* self, PyObject* item) { if (_PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return NULL; if (i < 0) i += PyTuple_GET_SIZE(self); return tupleitem(self, i); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength, i; size_t cur; PyObject* it; PyObject **src, **dest; if (PySlice_Unpack(item, &start, &stop, &step) < 0) { return NULL; } slicelength = PySlice_AdjustIndices(PyTuple_GET_SIZE(self), &start, &stop, step); if (slicelength <= 0) { return tuple_get_empty(); } else if (start == 0 && step == 1 && slicelength == PyTuple_GET_SIZE(self) && PyTuple_CheckExact(self)) { return Py_NewRef(self); } else { PyTupleObject* result = tuple_alloc(slicelength); if (!result) return NULL; src = self->ob_item; dest = result->ob_item; for (cur = start, i = 0; i < slicelength; cur += step, i++) { it = Py_NewRef(src[cur]); dest[i] = it; } _PyObject_GC_TRACK(result); return (PyObject *)result; } } else { PyErr_Format(PyExc_TypeError, "tuple indices must be integers or slices, not %.200s", Py_TYPE(item)->tp_name); return NULL; } } /*[clinic input] tuple.__getnewargs__ [clinic start generated code]*/ static PyObject * tuple___getnewargs___impl(PyTupleObject *self) /*[clinic end generated code: output=25e06e3ee56027e2 input=1aeb4b286a21639a]*/ { return Py_BuildValue("(N)", tupleslice(self, 0, Py_SIZE(self))); } static PyMethodDef tuple_methods[] = { TUPLE___GETNEWARGS___METHODDEF TUPLE_INDEX_METHODDEF TUPLE_COUNT_METHODDEF {"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, PyDoc_STR("See PEP 585")}, {NULL, NULL} /* sentinel */ }; static PyMappingMethods tuple_as_mapping = { (lenfunc)tuplelength, (binaryfunc)tuplesubscript, 0 }; static PyObject *tuple_iter(PyObject *seq); PyTypeObject PyTuple_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "tuple", sizeof(PyTupleObject) - sizeof(PyObject *), sizeof(PyObject *), (destructor)tupledealloc, /* tp_dealloc */ 0, /* tp_vectorcall_offset */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_as_async */ (reprfunc)tuplerepr, /* tp_repr */ 0, /* tp_as_number */ &tuple_as_sequence, /* tp_as_sequence */ &tuple_as_mapping, /* tp_as_mapping */ (hashfunc)tuplehash, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_TUPLE_SUBCLASS | _Py_TPFLAGS_MATCH_SELF | Py_TPFLAGS_SEQUENCE, /* tp_flags */ tuple_new__doc__, /* tp_doc */ (traverseproc)tupletraverse, /* tp_traverse */ 0, /* tp_clear */ tuplerichcompare, /* tp_richcompare */ 0, /* tp_weaklistoffset */ tuple_iter, /* tp_iter */ 0, /* tp_iternext */ tuple_methods, /* tp_methods */ 0, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ 0, /* tp_init */ 0, /* tp_alloc */ tuple_new, /* tp_new */ PyObject_GC_Del, /* tp_free */ .tp_vectorcall = tuple_vectorcall, }; /* The following function breaks the notion that tuples are immutable: it changes the size of a tuple. We get away with this only if there is only one module referencing the object. You can also think of it as creating a new tuple object and destroying the old one, only more efficiently. In any case, don't use this if the tuple may already be known to some other part of the code. */ int _PyTuple_Resize(PyObject **pv, Py_ssize_t newsize) { PyTupleObject *v; PyTupleObject *sv; Py_ssize_t i; Py_ssize_t oldsize; v = (PyTupleObject *) *pv; if (v == NULL || !Py_IS_TYPE(v, &PyTuple_Type) || (Py_SIZE(v) != 0 && Py_REFCNT(v) != 1)) { *pv = 0; Py_XDECREF(v); PyErr_BadInternalCall(); return -1; } oldsize = Py_SIZE(v); if (oldsize == newsize) { return 0; } if (newsize == 0) { Py_DECREF(v); *pv = tuple_get_empty(); return 0; } if (oldsize == 0) { #ifdef Py_DEBUG assert(v == &_Py_SINGLETON(tuple_empty)); #endif /* The empty tuple is statically allocated so we never resize it in-place. */ Py_DECREF(v); *pv = PyTuple_New(newsize); return *pv == NULL ? -1 : 0; } if (_PyObject_GC_IS_TRACKED(v)) { _PyObject_GC_UNTRACK(v); } #ifdef Py_TRACE_REFS _Py_ForgetReference((PyObject *) v); #endif /* DECREF items deleted by shrinkage */ for (i = newsize; i < oldsize; i++) { Py_CLEAR(v->ob_item[i]); } sv = PyObject_GC_Resize(PyTupleObject, v, newsize); if (sv == NULL) { *pv = NULL; #ifdef Py_REF_DEBUG _Py_DecRefTotal(_PyInterpreterState_GET()); #endif PyObject_GC_Del(v); return -1; } _Py_NewReferenceNoTotal((PyObject *) sv); /* Zero out items added by growing */ if (newsize > oldsize) memset(&sv->ob_item[oldsize], 0, sizeof(*sv->ob_item) * (newsize - oldsize)); *pv = (PyObject *) sv; _PyObject_GC_TRACK(sv); return 0; } static void maybe_freelist_clear(PyInterpreterState *, int); void _PyTuple_Fini(PyInterpreterState *interp) { maybe_freelist_clear(interp, 1); } void _PyTuple_ClearFreeList(PyInterpreterState *interp) { maybe_freelist_clear(interp, 0); } /*********************** Tuple Iterator **************************/ static void tupleiter_dealloc(_PyTupleIterObject *it) { _PyObject_GC_UNTRACK(it); Py_XDECREF(it->it_seq); PyObject_GC_Del(it); } static int tupleiter_traverse(_PyTupleIterObject *it, visitproc visit, void *arg) { Py_VISIT(it->it_seq); return 0; } static PyObject * tupleiter_next(_PyTupleIterObject *it) { PyTupleObject *seq; PyObject *item; assert(it != NULL); seq = it->it_seq; if (seq == NULL) return NULL; assert(PyTuple_Check(seq)); if (it->it_index < PyTuple_GET_SIZE(seq)) { item = PyTuple_GET_ITEM(seq, it->it_index); ++it->it_index; return Py_NewRef(item); } it->it_seq = NULL; Py_DECREF(seq); return NULL; } static PyObject * tupleiter_len(_PyTupleIterObject *it, PyObject *Py_UNUSED(ignored)) { Py_ssize_t len = 0; if (it->it_seq) len = PyTuple_GET_SIZE(it->it_seq) - it->it_index; return PyLong_FromSsize_t(len); } PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it))."); static PyObject * tupleiter_reduce(_PyTupleIterObject *it, PyObject *Py_UNUSED(ignored)) { PyObject *iter = _PyEval_GetBuiltin(&_Py_ID(iter)); /* _PyEval_GetBuiltin can invoke arbitrary code, * call must be before access of iterator pointers. * see issue #101765 */ if (it->it_seq) return Py_BuildValue("N(O)n", iter, it->it_seq, it->it_index); else return Py_BuildValue("N(())", iter); } static PyObject * tupleiter_setstate(_PyTupleIterObject *it, PyObject *state) { Py_ssize_t index = PyLong_AsSsize_t(state); if (index == -1 && PyErr_Occurred()) return NULL; if (it->it_seq != NULL) { if (index < 0) index = 0; else if (index > PyTuple_GET_SIZE(it->it_seq)) index = PyTuple_GET_SIZE(it->it_seq); /* exhausted iterator */ it->it_index = index; } Py_RETURN_NONE; } PyDoc_STRVAR(reduce_doc, "Return state information for pickling."); PyDoc_STRVAR(setstate_doc, "Set state information for unpickling."); static PyMethodDef tupleiter_methods[] = { {"__length_hint__", (PyCFunction)tupleiter_len, METH_NOARGS, length_hint_doc}, {"__reduce__", (PyCFunction)tupleiter_reduce, METH_NOARGS, reduce_doc}, {"__setstate__", (PyCFunction)tupleiter_setstate, METH_O, setstate_doc}, {NULL, NULL} /* sentinel */ }; PyTypeObject PyTupleIter_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "tuple_iterator", /* tp_name */ sizeof(_PyTupleIterObject), /* tp_basicsize */ 0, /* tp_itemsize */ /* methods */ (destructor)tupleiter_dealloc, /* tp_dealloc */ 0, /* tp_vectorcall_offset */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_as_async */ 0, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ 0, /* tp_doc */ (traverseproc)tupleiter_traverse, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ PyObject_SelfIter, /* tp_iter */ (iternextfunc)tupleiter_next, /* tp_iternext */ tupleiter_methods, /* tp_methods */ 0, }; static PyObject * tuple_iter(PyObject *seq) { _PyTupleIterObject *it; if (!PyTuple_Check(seq)) { PyErr_BadInternalCall(); return NULL; } it = PyObject_GC_New(_PyTupleIterObject, &PyTupleIter_Type); if (it == NULL) return NULL; it->it_index = 0; it->it_seq = (PyTupleObject *)Py_NewRef(seq); _PyObject_GC_TRACK(it); return (PyObject *)it; } /************* * freelists * *************/ #define STATE (interp->tuple) #define FREELIST_FINALIZED (STATE.numfree[0] < 0) static inline PyTupleObject * maybe_freelist_pop(Py_ssize_t size) { #if PyTuple_NFREELISTS > 0 PyInterpreterState *interp = _PyInterpreterState_GET(); #ifdef Py_DEBUG /* maybe_freelist_pop() must not be called after maybe_freelist_fini(). */ assert(!FREELIST_FINALIZED); #endif if (size == 0) { return NULL; } assert(size > 0); if (size < PyTuple_MAXSAVESIZE) { Py_ssize_t index = size - 1; PyTupleObject *op = STATE.free_list[index]; if (op != NULL) { /* op is the head of a linked list, with the first item pointing to the next node. Here we pop off the old head. */ STATE.free_list[index] = (PyTupleObject *) op->ob_item[0]; STATE.numfree[index]--; /* Inlined _PyObject_InitVar() without _PyType_HasFeature() test */ #ifdef Py_TRACE_REFS /* maybe_freelist_push() ensures these were already set. */ // XXX Can we drop these? See commit 68055ce6fe01 (GvR, Dec 1998). Py_SET_SIZE(op, size); Py_SET_TYPE(op, &PyTuple_Type); #endif _Py_NewReference((PyObject *)op); /* END inlined _PyObject_InitVar() */ OBJECT_STAT_INC(from_freelist); return op; } } #endif return NULL; } static inline int maybe_freelist_push(PyTupleObject *op) { #if PyTuple_NFREELISTS > 0 PyInterpreterState *interp = _PyInterpreterState_GET(); #ifdef Py_DEBUG /* maybe_freelist_push() must not be called after maybe_freelist_fini(). */ assert(!FREELIST_FINALIZED); #endif if (Py_SIZE(op) == 0) { return 0; } Py_ssize_t index = Py_SIZE(op) - 1; if (index < PyTuple_NFREELISTS && STATE.numfree[index] < PyTuple_MAXFREELIST && Py_IS_TYPE(op, &PyTuple_Type)) { /* op is the head of a linked list, with the first item pointing to the next node. Here we set op as the new head. */ op->ob_item[0] = (PyObject *) STATE.free_list[index]; STATE.free_list[index] = op; STATE.numfree[index]++; OBJECT_STAT_INC(to_freelist); return 1; } #endif return 0; } static void maybe_freelist_clear(PyInterpreterState *interp, int fini) { #if PyTuple_NFREELISTS > 0 for (Py_ssize_t i = 0; i < PyTuple_NFREELISTS; i++) { PyTupleObject *p = STATE.free_list[i]; STATE.free_list[i] = NULL; STATE.numfree[i] = fini ? -1 : 0; while (p) { PyTupleObject *q = p; p = (PyTupleObject *)(p->ob_item[0]); PyObject_GC_Del(q); } } #endif } /* Print summary info about the state of the optimized allocator */ void _PyTuple_DebugMallocStats(FILE *out) { #if PyTuple_NFREELISTS > 0 PyInterpreterState *interp = _PyInterpreterState_GET(); for (int i = 0; i < PyTuple_NFREELISTS; i++) { int len = i + 1; char buf[128]; PyOS_snprintf(buf, sizeof(buf), "free %d-sized PyTupleObject", len); _PyDebugAllocatorStats(out, buf, STATE.numfree[i], _PyObject_VAR_SIZE(&PyTuple_Type, len)); } #endif } #undef STATE #undef FREELIST_FINALIZED