:mod:`!fractions` --- Rational numbers ====================================== .. module:: fractions :synopsis: Rational numbers. .. moduleauthor:: Jeffrey Yasskin .. sectionauthor:: Jeffrey Yasskin **Source code:** :source:`Lib/fractions.py` -------------- The :mod:`fractions` module provides support for rational number arithmetic. A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string. .. index:: single: as_integer_ratio() .. class:: Fraction(numerator=0, denominator=1) Fraction(number) Fraction(string) The first version requires that *numerator* and *denominator* are instances of :class:`numbers.Rational` and returns a new :class:`Fraction` instance with value ``numerator/denominator``. If *denominator* is ``0``, it raises a :exc:`ZeroDivisionError`. The second version requires that *number* is an instance of :class:`numbers.Rational` or has the :meth:`!as_integer_ratio` method (this includes :class:`float` and :class:`decimal.Decimal`). It returns a :class:`Fraction` instance with exactly the same value. Assumed, that the :meth:`!as_integer_ratio` method returns a pair of coprime integers and last one is positive. Note that due to the usual issues with binary point (see :ref:`tut-fp-issues`), the argument to ``Fraction(1.1)`` is not exactly equal to 11/10, and so ``Fraction(1.1)`` does *not* return ``Fraction(11, 10)`` as one might expect. (But see the documentation for the :meth:`limit_denominator` method below.) The last version of the constructor expects a string. The usual form for this instance is:: [sign] numerator ['/' denominator] where the optional ``sign`` may be either '+' or '-' and ``numerator`` and ``denominator`` (if present) are strings of decimal digits (underscores may be used to delimit digits as with integral literals in code). In addition, any string that represents a finite value and is accepted by the :class:`float` constructor is also accepted by the :class:`Fraction` constructor. In either form the input string may also have leading and/or trailing whitespace. Here are some examples:: >>> from fractions import Fraction >>> Fraction(16, -10) Fraction(-8, 5) >>> Fraction(123) Fraction(123, 1) >>> Fraction() Fraction(0, 1) >>> Fraction('3/7') Fraction(3, 7) >>> Fraction(' -3/7 ') Fraction(-3, 7) >>> Fraction('1.414213 \t\n') Fraction(1414213, 1000000) >>> Fraction('-.125') Fraction(-1, 8) >>> Fraction('7e-6') Fraction(7, 1000000) >>> Fraction(2.25) Fraction(9, 4) >>> Fraction(1.1) Fraction(2476979795053773, 2251799813685248) >>> from decimal import Decimal >>> Fraction(Decimal('1.1')) Fraction(11, 10) The :class:`Fraction` class inherits from the abstract base class :class:`numbers.Rational`, and implements all of the methods and operations from that class. :class:`Fraction` instances are :term:`hashable`, and should be treated as immutable. In addition, :class:`Fraction` has the following properties and methods: .. versionchanged:: 3.2 The :class:`Fraction` constructor now accepts :class:`float` and :class:`decimal.Decimal` instances. .. versionchanged:: 3.9 The :func:`math.gcd` function is now used to normalize the *numerator* and *denominator*. :func:`math.gcd` always returns an :class:`int` type. Previously, the GCD type depended on *numerator* and *denominator*. .. versionchanged:: 3.11 Underscores are now permitted when creating a :class:`Fraction` instance from a string, following :PEP:`515` rules. .. versionchanged:: 3.11 :class:`Fraction` implements ``__int__`` now to satisfy ``typing.SupportsInt`` instance checks. .. versionchanged:: 3.12 Space is allowed around the slash for string inputs: ``Fraction('2 / 3')``. .. versionchanged:: 3.12 :class:`Fraction` instances now support float-style formatting, with presentation types ``"e"``, ``"E"``, ``"f"``, ``"F"``, ``"g"``, ``"G"`` and ``"%""``. .. versionchanged:: 3.13 Formatting of :class:`Fraction` instances without a presentation type now supports fill, alignment, sign handling, minimum width and grouping. .. versionchanged:: 3.14 The :class:`Fraction` constructor now accepts any objects with the :meth:`!as_integer_ratio` method. .. attribute:: numerator Numerator of the Fraction in lowest term. .. attribute:: denominator Denominator of the Fraction in lowest term. .. method:: as_integer_ratio() Return a tuple of two integers, whose ratio is equal to the original Fraction. The ratio is in lowest terms and has a positive denominator. .. versionadded:: 3.8 .. method:: is_integer() Return ``True`` if the Fraction is an integer. .. versionadded:: 3.12 .. classmethod:: from_float(flt) Alternative constructor which only accepts instances of :class:`float` or :class:`numbers.Integral`. Beware that ``Fraction.from_float(0.3)`` is not the same value as ``Fraction(3, 10)``. .. note:: From Python 3.2 onwards, you can also construct a :class:`Fraction` instance directly from a :class:`float`. .. classmethod:: from_decimal(dec) Alternative constructor which only accepts instances of :class:`decimal.Decimal` or :class:`numbers.Integral`. .. note:: From Python 3.2 onwards, you can also construct a :class:`Fraction` instance directly from a :class:`decimal.Decimal` instance. .. method:: limit_denominator(max_denominator=1000000) Finds and returns the closest :class:`Fraction` to ``self`` that has denominator at most max_denominator. This method is useful for finding rational approximations to a given floating-point number: >>> from fractions import Fraction >>> Fraction('3.1415926535897932').limit_denominator(1000) Fraction(355, 113) or for recovering a rational number that's represented as a float: >>> from math import pi, cos >>> Fraction(cos(pi/3)) Fraction(4503599627370497, 9007199254740992) >>> Fraction(cos(pi/3)).limit_denominator() Fraction(1, 2) >>> Fraction(1.1).limit_denominator() Fraction(11, 10) .. method:: __floor__() Returns the greatest :class:`int` ``<= self``. This method can also be accessed through the :func:`math.floor` function: >>> from math import floor >>> floor(Fraction(355, 113)) 3 .. method:: __ceil__() Returns the least :class:`int` ``>= self``. This method can also be accessed through the :func:`math.ceil` function. .. method:: __round__() __round__(ndigits) The first version returns the nearest :class:`int` to ``self``, rounding half to even. The second version rounds ``self`` to the nearest multiple of ``Fraction(1, 10**ndigits)`` (logically, if ``ndigits`` is negative), again rounding half toward even. This method can also be accessed through the :func:`round` function. .. method:: __format__(format_spec, /) Provides support for formatting of :class:`Fraction` instances via the :meth:`str.format` method, the :func:`format` built-in function, or :ref:`Formatted string literals `. If the ``format_spec`` format specification string does not end with one of the presentation types ``'e'``, ``'E'``, ``'f'``, ``'F'``, ``'g'``, ``'G'`` or ``'%'`` then formatting follows the general rules for fill, alignment, sign handling, minimum width, and grouping as described in the :ref:`format specification mini-language `. The "alternate form" flag ``'#'`` is supported: if present, it forces the output string to always include an explicit denominator, even when the value being formatted is an exact integer. The zero-fill flag ``'0'`` is not supported. If the ``format_spec`` format specification string ends with one of the presentation types ``'e'``, ``'E'``, ``'f'``, ``'F'``, ``'g'``, ``'G'`` or ``'%'`` then formatting follows the rules outlined for the :class:`float` type in the :ref:`formatspec` section. Here are some examples:: >>> from fractions import Fraction >>> format(Fraction(103993, 33102), '_') '103_993/33_102' >>> format(Fraction(1, 7), '.^+10') '...+1/7...' >>> format(Fraction(3, 1), '') '3' >>> format(Fraction(3, 1), '#') '3/1' >>> format(Fraction(1, 7), '.40g') '0.1428571428571428571428571428571428571429' >>> format(Fraction('1234567.855'), '_.2f') '1_234_567.86' >>> f"{Fraction(355, 113):*>20.6e}" '********3.141593e+00' >>> old_price, new_price = 499, 672 >>> "{:.2%} price increase".format(Fraction(new_price, old_price) - 1) '34.67% price increase' .. seealso:: Module :mod:`numbers` The abstract base classes making up the numeric tower.