#ifdef _Py_JIT #include "Python.h" #include "pycore_abstract.h" #include "pycore_call.h" #include "pycore_ceval.h" #include "pycore_dict.h" #include "pycore_intrinsics.h" #include "pycore_long.h" #include "pycore_opcode_metadata.h" #include "pycore_opcode_utils.h" #include "pycore_optimizer.h" #include "pycore_pyerrors.h" #include "pycore_setobject.h" #include "pycore_sliceobject.h" #include "pycore_jit.h" #include "jit_stencils.h" // Memory management stuff: //////////////////////////////////////////////////// #ifndef MS_WINDOWS #include #endif static size_t get_page_size(void) { #ifdef MS_WINDOWS SYSTEM_INFO si; GetSystemInfo(&si); return si.dwPageSize; #else return sysconf(_SC_PAGESIZE); #endif } static void jit_error(const char *message) { #ifdef MS_WINDOWS int hint = GetLastError(); #else int hint = errno; #endif PyErr_Format(PyExc_RuntimeWarning, "JIT %s (%d)", message, hint); } static char * jit_alloc(size_t size) { assert(size); assert(size % get_page_size() == 0); #ifdef MS_WINDOWS int flags = MEM_COMMIT | MEM_RESERVE; char *memory = VirtualAlloc(NULL, size, flags, PAGE_READWRITE); int failed = memory == NULL; #else int flags = MAP_ANONYMOUS | MAP_PRIVATE; char *memory = mmap(NULL, size, PROT_READ | PROT_WRITE, flags, -1, 0); int failed = memory == MAP_FAILED; #endif if (failed) { jit_error("unable to allocate memory"); return NULL; } return memory; } static int jit_free(char *memory, size_t size) { assert(size); assert(size % get_page_size() == 0); #ifdef MS_WINDOWS int failed = !VirtualFree(memory, 0, MEM_RELEASE); #else int failed = munmap(memory, size); #endif if (failed) { jit_error("unable to free memory"); return -1; } return 0; } static int mark_executable(char *memory, size_t size) { if (size == 0) { return 0; } assert(size % get_page_size() == 0); // Do NOT ever leave the memory writable! Also, don't forget to flush the // i-cache (I cannot begin to tell you how horrible that is to debug): #ifdef MS_WINDOWS if (!FlushInstructionCache(GetCurrentProcess(), memory, size)) { jit_error("unable to flush instruction cache"); return -1; } int old; int failed = !VirtualProtect(memory, size, PAGE_EXECUTE_READ, &old); #else __builtin___clear_cache((char *)memory, (char *)memory + size); int failed = mprotect(memory, size, PROT_EXEC | PROT_READ); #endif if (failed) { jit_error("unable to protect executable memory"); return -1; } return 0; } static int mark_readable(char *memory, size_t size) { if (size == 0) { return 0; } assert(size % get_page_size() == 0); #ifdef MS_WINDOWS DWORD old; int failed = !VirtualProtect(memory, size, PAGE_READONLY, &old); #else int failed = mprotect(memory, size, PROT_READ); #endif if (failed) { jit_error("unable to protect readable memory"); return -1; } return 0; } // JIT compiler stuff: ///////////////////////////////////////////////////////// // Warning! AArch64 requires you to get your hands dirty. These are your gloves: // value[value_start : value_start + len] static uint32_t get_bits(uint64_t value, uint8_t value_start, uint8_t width) { assert(width <= 32); return (value >> value_start) & ((1ULL << width) - 1); } // *loc[loc_start : loc_start + width] = value[value_start : value_start + width] static void set_bits(uint32_t *loc, uint8_t loc_start, uint64_t value, uint8_t value_start, uint8_t width) { assert(loc_start + width <= 32); // Clear the bits we're about to patch: *loc &= ~(((1ULL << width) - 1) << loc_start); assert(get_bits(*loc, loc_start, width) == 0); // Patch the bits: *loc |= get_bits(value, value_start, width) << loc_start; assert(get_bits(*loc, loc_start, width) == get_bits(value, value_start, width)); } // See https://developer.arm.com/documentation/ddi0602/2023-09/Base-Instructions // for instruction encodings: #define IS_AARCH64_ADD_OR_SUB(I) (((I) & 0x11C00000) == 0x11000000) #define IS_AARCH64_ADRP(I) (((I) & 0x9F000000) == 0x90000000) #define IS_AARCH64_BRANCH(I) (((I) & 0x7C000000) == 0x14000000) #define IS_AARCH64_LDR_OR_STR(I) (((I) & 0x3B000000) == 0x39000000) #define IS_AARCH64_MOV(I) (((I) & 0x9F800000) == 0x92800000) // Fill all of stencil's holes in the memory pointed to by base, using the // values in patches. static void patch(char *base, const Stencil *stencil, uint64_t *patches) { for (uint64_t i = 0; i < stencil->holes_size; i++) { const Hole *hole = &stencil->holes[i]; void *location = base + hole->offset; uint64_t value = patches[hole->value] + (uint64_t)hole->symbol + hole->addend; uint32_t *loc32 = (uint32_t *)location; uint64_t *loc64 = (uint64_t *)location; // LLD is a great reference for performing relocations... just keep in // mind that Tools/jit/build.py does filtering and preprocessing for us! // Here's a good place to start for each platform: // - aarch64-apple-darwin: // - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.cpp // - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.h // - aarch64-unknown-linux-gnu: // - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/AArch64.cpp // - i686-pc-windows-msvc: // - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp // - x86_64-apple-darwin: // - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/X86_64.cpp // - x86_64-pc-windows-msvc: // - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp // - x86_64-unknown-linux-gnu: // - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/X86_64.cpp switch (hole->kind) { case HoleKind_IMAGE_REL_I386_DIR32: // 32-bit absolute address. // Check that we're not out of range of 32 unsigned bits: assert(value < (1ULL << 32)); *loc32 = (uint32_t)value; continue; case HoleKind_ARM64_RELOC_UNSIGNED: case HoleKind_IMAGE_REL_AMD64_ADDR64: case HoleKind_R_AARCH64_ABS64: case HoleKind_X86_64_RELOC_UNSIGNED: case HoleKind_R_X86_64_64: // 64-bit absolute address. *loc64 = value; continue; case HoleKind_R_AARCH64_CALL26: case HoleKind_R_AARCH64_JUMP26: // 28-bit relative branch. assert(IS_AARCH64_BRANCH(*loc32)); value -= (uint64_t)location; // Check that we're not out of range of 28 signed bits: assert((int64_t)value >= -(1 << 27)); assert((int64_t)value < (1 << 27)); // Since instructions are 4-byte aligned, only use 26 bits: assert(get_bits(value, 0, 2) == 0); set_bits(loc32, 0, value, 2, 26); continue; case HoleKind_R_AARCH64_MOVW_UABS_G0_NC: // 16-bit low part of an absolute address. assert(IS_AARCH64_MOV(*loc32)); // Check the implicit shift (this is "part 0 of 3"): assert(get_bits(*loc32, 21, 2) == 0); set_bits(loc32, 5, value, 0, 16); continue; case HoleKind_R_AARCH64_MOVW_UABS_G1_NC: // 16-bit middle-low part of an absolute address. assert(IS_AARCH64_MOV(*loc32)); // Check the implicit shift (this is "part 1 of 3"): assert(get_bits(*loc32, 21, 2) == 1); set_bits(loc32, 5, value, 16, 16); continue; case HoleKind_R_AARCH64_MOVW_UABS_G2_NC: // 16-bit middle-high part of an absolute address. assert(IS_AARCH64_MOV(*loc32)); // Check the implicit shift (this is "part 2 of 3"): assert(get_bits(*loc32, 21, 2) == 2); set_bits(loc32, 5, value, 32, 16); continue; case HoleKind_R_AARCH64_MOVW_UABS_G3: // 16-bit high part of an absolute address. assert(IS_AARCH64_MOV(*loc32)); // Check the implicit shift (this is "part 3 of 3"): assert(get_bits(*loc32, 21, 2) == 3); set_bits(loc32, 5, value, 48, 16); continue; case HoleKind_ARM64_RELOC_GOT_LOAD_PAGE21: // 21-bit count of pages between this page and an absolute address's // page... I know, I know, it's weird. Pairs nicely with // ARM64_RELOC_GOT_LOAD_PAGEOFF12 (below). assert(IS_AARCH64_ADRP(*loc32)); // Number of pages between this page and the value's page: value = (value >> 12) - ((uint64_t)location >> 12); // Check that we're not out of range of 21 signed bits: assert((int64_t)value >= -(1 << 20)); assert((int64_t)value < (1 << 20)); // value[0:2] goes in loc[29:31]: set_bits(loc32, 29, value, 0, 2); // value[2:21] goes in loc[5:26]: set_bits(loc32, 5, value, 2, 19); continue; case HoleKind_ARM64_RELOC_GOT_LOAD_PAGEOFF12: // 12-bit low part of an absolute address. Pairs nicely with // ARM64_RELOC_GOT_LOAD_PAGE21 (above). assert(IS_AARCH64_LDR_OR_STR(*loc32) || IS_AARCH64_ADD_OR_SUB(*loc32)); // There might be an implicit shift encoded in the instruction: uint8_t shift = 0; if (IS_AARCH64_LDR_OR_STR(*loc32)) { shift = (uint8_t)get_bits(*loc32, 30, 2); // If both of these are set, the shift is supposed to be 4. // That's pretty weird, and it's never actually been observed... assert(get_bits(*loc32, 23, 1) == 0 || get_bits(*loc32, 26, 1) == 0); } value = get_bits(value, 0, 12); assert(get_bits(value, 0, shift) == 0); set_bits(loc32, 10, value, shift, 12); continue; } Py_UNREACHABLE(); } } static void copy_and_patch(char *base, const Stencil *stencil, uint64_t *patches) { memcpy(base, stencil->body, stencil->body_size); patch(base, stencil, patches); } static void emit(const StencilGroup *group, uint64_t patches[]) { copy_and_patch((char *)patches[HoleValue_CODE], &group->code, patches); copy_and_patch((char *)patches[HoleValue_DATA], &group->data, patches); } // Compiles executor in-place. Don't forget to call _PyJIT_Free later! int _PyJIT_Compile(_PyExecutorObject *executor, _PyUOpInstruction *trace, size_t length) { // Loop once to find the total compiled size: size_t code_size = 0; size_t data_size = 0; for (size_t i = 0; i < length; i++) { _PyUOpInstruction *instruction = &trace[i]; const StencilGroup *group = &stencil_groups[instruction->opcode]; code_size += group->code.body_size; data_size += group->data.body_size; } // Round up to the nearest page (code and data need separate pages): size_t page_size = get_page_size(); assert((page_size & (page_size - 1)) == 0); code_size += page_size - (code_size & (page_size - 1)); data_size += page_size - (data_size & (page_size - 1)); char *memory = jit_alloc(code_size + data_size); if (memory == NULL) { return -1; } // Loop again to emit the code: char *code = memory; char *data = memory + code_size; for (size_t i = 0; i < length; i++) { _PyUOpInstruction *instruction = &trace[i]; const StencilGroup *group = &stencil_groups[instruction->opcode]; // Think of patches as a dictionary mapping HoleValue to uint64_t: uint64_t patches[] = GET_PATCHES(); patches[HoleValue_CODE] = (uint64_t)code; patches[HoleValue_CONTINUE] = (uint64_t)code + group->code.body_size; patches[HoleValue_DATA] = (uint64_t)data; patches[HoleValue_EXECUTOR] = (uint64_t)executor; patches[HoleValue_OPARG] = instruction->oparg; patches[HoleValue_OPERAND] = instruction->operand; patches[HoleValue_TARGET] = instruction->target; patches[HoleValue_TOP] = (uint64_t)memory; patches[HoleValue_ZERO] = 0; emit(group, patches); code += group->code.body_size; data += group->data.body_size; } if (mark_executable(memory, code_size) || mark_readable(memory + code_size, data_size)) { jit_free(memory, code_size + data_size); return -1; } executor->jit_code = memory; executor->jit_size = code_size + data_size; return 0; } void _PyJIT_Free(_PyExecutorObject *executor) { char *memory = (char *)executor->jit_code; size_t size = executor->jit_size; if (memory) { executor->jit_code = NULL; executor->jit_size = 0; if (jit_free(memory, size)) { PyErr_WriteUnraisable(NULL); } } } #endif // _Py_JIT