/* Tuple object implementation */ #include "Python.h" #include "accu.h" /* Speed optimization to avoid frequent malloc/free of small tuples */ #ifndef PyTuple_MAXSAVESIZE #define PyTuple_MAXSAVESIZE 20 /* Largest tuple to save on free list */ #endif #ifndef PyTuple_MAXFREELIST #define PyTuple_MAXFREELIST 2000 /* Maximum number of tuples of each size to save */ #endif #if PyTuple_MAXSAVESIZE > 0 /* Entries 1 up to PyTuple_MAXSAVESIZE are free lists, entry 0 is the empty tuple () of which at most one instance will be allocated. */ static PyTupleObject *free_list[PyTuple_MAXSAVESIZE]; static int numfree[PyTuple_MAXSAVESIZE]; #endif #ifdef COUNT_ALLOCS Py_ssize_t fast_tuple_allocs; Py_ssize_t tuple_zero_allocs; #endif /* Debug statistic to count GC tracking of tuples. Please note that tuples are only untracked when considered by the GC, and many of them will be dead before. Therefore, a tracking rate close to 100% does not necessarily prove that the heuristic is inefficient. */ #ifdef SHOW_TRACK_COUNT static Py_ssize_t count_untracked = 0; static Py_ssize_t count_tracked = 0; static void show_track(void) { PyObject *xoptions, *value; _Py_IDENTIFIER(showalloccount); xoptions = PySys_GetXOptions(); if (xoptions == NULL) return; value = _PyDict_GetItemId(xoptions, &PyId_showalloccount); if (value != Py_True) return; fprintf(stderr, "Tuples created: %" PY_FORMAT_SIZE_T "d\n", count_tracked + count_untracked); fprintf(stderr, "Tuples tracked by the GC: %" PY_FORMAT_SIZE_T "d\n", count_tracked); fprintf(stderr, "%.2f%% tuple tracking rate\n\n", (100.0*count_tracked/(count_untracked+count_tracked))); } #endif /* Print summary info about the state of the optimized allocator */ void _PyTuple_DebugMallocStats(FILE *out) { #if PyTuple_MAXSAVESIZE > 0 int i; char buf[128]; for (i = 1; i < PyTuple_MAXSAVESIZE; i++) { PyOS_snprintf(buf, sizeof(buf), "free %d-sized PyTupleObject", i); _PyDebugAllocatorStats(out, buf, numfree[i], _PyObject_VAR_SIZE(&PyTuple_Type, i)); } #endif } PyObject * PyTuple_New(Py_ssize_t size) { PyTupleObject *op; Py_ssize_t i; if (size < 0) { PyErr_BadInternalCall(); return NULL; } #if PyTuple_MAXSAVESIZE > 0 if (size == 0 && free_list[0]) { op = free_list[0]; Py_INCREF(op); #ifdef COUNT_ALLOCS tuple_zero_allocs++; #endif return (PyObject *) op; } if (size < PyTuple_MAXSAVESIZE && (op = free_list[size]) != NULL) { free_list[size] = (PyTupleObject *) op->ob_item[0]; numfree[size]--; #ifdef COUNT_ALLOCS fast_tuple_allocs++; #endif /* Inline PyObject_InitVar */ #ifdef Py_TRACE_REFS Py_SIZE(op) = size; Py_TYPE(op) = &PyTuple_Type; #endif _Py_NewReference((PyObject *)op); } else #endif { /* Check for overflow */ if ((size_t)size > ((size_t)PY_SSIZE_T_MAX - sizeof(PyTupleObject) - sizeof(PyObject *)) / sizeof(PyObject *)) { return PyErr_NoMemory(); } op = PyObject_GC_NewVar(PyTupleObject, &PyTuple_Type, size); if (op == NULL) return NULL; } for (i=0; i < size; i++) op->ob_item[i] = NULL; #if PyTuple_MAXSAVESIZE > 0 if (size == 0) { free_list[0] = op; ++numfree[0]; Py_INCREF(op); /* extra INCREF so that this is never freed */ } #endif #ifdef SHOW_TRACK_COUNT count_tracked++; #endif _PyObject_GC_TRACK(op); return (PyObject *) op; } Py_ssize_t PyTuple_Size(PyObject *op) { if (!PyTuple_Check(op)) { PyErr_BadInternalCall(); return -1; } else return Py_SIZE(op); } PyObject * PyTuple_GetItem(PyObject *op, Py_ssize_t i) { if (!PyTuple_Check(op)) { PyErr_BadInternalCall(); return NULL; } if (i < 0 || i >= Py_SIZE(op)) { PyErr_SetString(PyExc_IndexError, "tuple index out of range"); return NULL; } return ((PyTupleObject *)op) -> ob_item[i]; } int PyTuple_SetItem(PyObject *op, Py_ssize_t i, PyObject *newitem) { PyObject **p; if (!PyTuple_Check(op) || op->ob_refcnt != 1) { Py_XDECREF(newitem); PyErr_BadInternalCall(); return -1; } if (i < 0 || i >= Py_SIZE(op)) { Py_XDECREF(newitem); PyErr_SetString(PyExc_IndexError, "tuple assignment index out of range"); return -1; } p = ((PyTupleObject *)op) -> ob_item + i; Py_XSETREF(*p, newitem); return 0; } void _PyTuple_MaybeUntrack(PyObject *op) { PyTupleObject *t; Py_ssize_t i, n; if (!PyTuple_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op)) return; t = (PyTupleObject *) op; n = Py_SIZE(t); for (i = 0; i < n; i++) { PyObject *elt = PyTuple_GET_ITEM(t, i); /* Tuple with NULL elements aren't fully constructed, don't untrack them yet. */ if (!elt || _PyObject_GC_MAY_BE_TRACKED(elt)) return; } #ifdef SHOW_TRACK_COUNT count_tracked--; count_untracked++; #endif _PyObject_GC_UNTRACK(op); } PyObject * PyTuple_Pack(Py_ssize_t n, ...) { Py_ssize_t i; PyObject *o; PyObject *result; PyObject **items; va_list vargs; va_start(vargs, n); result = PyTuple_New(n); if (result == NULL) { va_end(vargs); return NULL; } items = ((PyTupleObject *)result)->ob_item; for (i = 0; i < n; i++) { o = va_arg(vargs, PyObject *); Py_INCREF(o); items[i] = o; } va_end(vargs); return result; } /* Methods */ static void tupledealloc(PyTupleObject *op) { Py_ssize_t i; Py_ssize_t len = Py_SIZE(op); PyObject_GC_UnTrack(op); Py_TRASHCAN_SAFE_BEGIN(op) if (len > 0) { i = len; while (--i >= 0) Py_XDECREF(op->ob_item[i]); #if PyTuple_MAXSAVESIZE > 0 if (len < PyTuple_MAXSAVESIZE && numfree[len] < PyTuple_MAXFREELIST && Py_TYPE(op) == &PyTuple_Type) { op->ob_item[0] = (PyObject *) free_list[len]; numfree[len]++; free_list[len] = op; goto done; /* return */ } #endif } Py_TYPE(op)->tp_free((PyObject *)op); done: Py_TRASHCAN_SAFE_END(op) } static PyObject * tuplerepr(PyTupleObject *v) { Py_ssize_t i, n; _PyUnicodeWriter writer; n = Py_SIZE(v); if (n == 0) return PyUnicode_FromString("()"); /* While not mutable, it is still possible to end up with a cycle in a tuple through an object that stores itself within a tuple (and thus infinitely asks for the repr of itself). This should only be possible within a type. */ i = Py_ReprEnter((PyObject *)v); if (i != 0) { return i > 0 ? PyUnicode_FromString("(...)") : NULL; } _PyUnicodeWriter_Init(&writer); writer.overallocate = 1; if (Py_SIZE(v) > 1) { /* "(" + "1" + ", 2" * (len - 1) + ")" */ writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1; } else { /* "(1,)" */ writer.min_length = 4; } if (_PyUnicodeWriter_WriteChar(&writer, '(') < 0) goto error; /* Do repr() on each element. */ for (i = 0; i < n; ++i) { PyObject *s; if (i > 0) { if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0) goto error; } if (Py_EnterRecursiveCall(" while getting the repr of a tuple")) goto error; s = PyObject_Repr(v->ob_item[i]); Py_LeaveRecursiveCall(); if (s == NULL) goto error; if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) { Py_DECREF(s); goto error; } Py_DECREF(s); } writer.overallocate = 0; if (n > 1) { if (_PyUnicodeWriter_WriteChar(&writer, ')') < 0) goto error; } else { if (_PyUnicodeWriter_WriteASCIIString(&writer, ",)", 2) < 0) goto error; } Py_ReprLeave((PyObject *)v); return _PyUnicodeWriter_Finish(&writer); error: _PyUnicodeWriter_Dealloc(&writer); Py_ReprLeave((PyObject *)v); return NULL; } /* The addend 82520, was selected from the range(0, 1000000) for generating the greatest number of prime multipliers for tuples upto length eight: 1082527, 1165049, 1082531, 1165057, 1247581, 1330103, 1082533, 1330111, 1412633, 1165069, 1247599, 1495177, 1577699 Tests have shown that it's not worth to cache the hash value, see issue #9685. */ static Py_hash_t tuplehash(PyTupleObject *v) { Py_uhash_t x; /* Unsigned for defined overflow behavior. */ Py_hash_t y; Py_ssize_t len = Py_SIZE(v); PyObject **p; Py_uhash_t mult = _PyHASH_MULTIPLIER; x = 0x345678UL; p = v->ob_item; while (--len >= 0) { y = PyObject_Hash(*p++); if (y == -1) return -1; x = (x ^ y) * mult; /* the cast might truncate len; that doesn't change hash stability */ mult += (Py_hash_t)(82520UL + len + len); } x += 97531UL; if (x == (Py_uhash_t)-1) x = -2; return x; } static Py_ssize_t tuplelength(PyTupleObject *a) { return Py_SIZE(a); } static int tuplecontains(PyTupleObject *a, PyObject *el) { Py_ssize_t i; int cmp; for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i) cmp = PyObject_RichCompareBool(el, PyTuple_GET_ITEM(a, i), Py_EQ); return cmp; } static PyObject * tupleitem(PyTupleObject *a, Py_ssize_t i) { if (i < 0 || i >= Py_SIZE(a)) { PyErr_SetString(PyExc_IndexError, "tuple index out of range"); return NULL; } Py_INCREF(a->ob_item[i]); return a->ob_item[i]; } static PyObject * tupleslice(PyTupleObject *a, Py_ssize_t ilow, Py_ssize_t ihigh) { PyTupleObject *np; PyObject **src, **dest; Py_ssize_t i; Py_ssize_t len; if (ilow < 0) ilow = 0; if (ihigh > Py_SIZE(a)) ihigh = Py_SIZE(a); if (ihigh < ilow) ihigh = ilow; if (ilow == 0 && ihigh == Py_SIZE(a) && PyTuple_CheckExact(a)) { Py_INCREF(a); return (PyObject *)a; } len = ihigh - ilow; np = (PyTupleObject *)PyTuple_New(len); if (np == NULL) return NULL; src = a->ob_item + ilow; dest = np->ob_item; for (i = 0; i < len; i++) { PyObject *v = src[i]; Py_INCREF(v); dest[i] = v; } return (PyObject *)np; } PyObject * PyTuple_GetSlice(PyObject *op, Py_ssize_t i, Py_ssize_t j) { if (op == NULL || !PyTuple_Check(op)) { PyErr_BadInternalCall(); return NULL; } return tupleslice((PyTupleObject *)op, i, j); } static PyObject * tupleconcat(PyTupleObject *a, PyObject *bb) { Py_ssize_t size; Py_ssize_t i; PyObject **src, **dest; PyTupleObject *np; if (Py_SIZE(a) == 0 && PyTuple_CheckExact(bb)) { Py_INCREF(bb); return bb; } if (!PyTuple_Check(bb)) { PyErr_Format(PyExc_TypeError, "can only concatenate tuple (not \"%.200s\") to tuple", Py_TYPE(bb)->tp_name); return NULL; } #define b ((PyTupleObject *)bb) if (Py_SIZE(b) == 0 && PyTuple_CheckExact(a)) { Py_INCREF(a); return (PyObject *)a; } if (Py_SIZE(a) > PY_SSIZE_T_MAX - Py_SIZE(b)) return PyErr_NoMemory(); size = Py_SIZE(a) + Py_SIZE(b); np = (PyTupleObject *) PyTuple_New(size); if (np == NULL) { return NULL; } src = a->ob_item; dest = np->ob_item; for (i = 0; i < Py_SIZE(a); i++) { PyObject *v = src[i]; Py_INCREF(v); dest[i] = v; } src = b->ob_item; dest = np->ob_item + Py_SIZE(a); for (i = 0; i < Py_SIZE(b); i++) { PyObject *v = src[i]; Py_INCREF(v); dest[i] = v; } return (PyObject *)np; #undef b } static PyObject * tuplerepeat(PyTupleObject *a, Py_ssize_t n) { Py_ssize_t i, j; Py_ssize_t size; PyTupleObject *np; PyObject **p, **items; if (n < 0) n = 0; if (Py_SIZE(a) == 0 || n == 1) { if (PyTuple_CheckExact(a)) { /* Since tuples are immutable, we can return a shared copy in this case */ Py_INCREF(a); return (PyObject *)a; } if (Py_SIZE(a) == 0) return PyTuple_New(0); } if (n > PY_SSIZE_T_MAX / Py_SIZE(a)) return PyErr_NoMemory(); size = Py_SIZE(a) * n; np = (PyTupleObject *) PyTuple_New(size); if (np == NULL) return NULL; p = np->ob_item; items = a->ob_item; for (i = 0; i < n; i++) { for (j = 0; j < Py_SIZE(a); j++) { *p = items[j]; Py_INCREF(*p); p++; } } return (PyObject *) np; } static PyObject * tupleindex(PyTupleObject *self, PyObject *args) { Py_ssize_t i, start=0, stop=Py_SIZE(self); PyObject *v; if (!PyArg_ParseTuple(args, "O|O&O&:index", &v, _PyEval_SliceIndex, &start, _PyEval_SliceIndex, &stop)) return NULL; if (start < 0) { start += Py_SIZE(self); if (start < 0) start = 0; } if (stop < 0) { stop += Py_SIZE(self); if (stop < 0) stop = 0; } for (i = start; i < stop && i < Py_SIZE(self); i++) { int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ); if (cmp > 0) return PyLong_FromSsize_t(i); else if (cmp < 0) return NULL; } PyErr_SetString(PyExc_ValueError, "tuple.index(x): x not in tuple"); return NULL; } static PyObject * tuplecount(PyTupleObject *self, PyObject *v) { Py_ssize_t count = 0; Py_ssize_t i; for (i = 0; i < Py_SIZE(self); i++) { int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ); if (cmp > 0) count++; else if (cmp < 0) return NULL; } return PyLong_FromSsize_t(count); } static int tupletraverse(PyTupleObject *o, visitproc visit, void *arg) { Py_ssize_t i; for (i = Py_SIZE(o); --i >= 0; ) Py_VISIT(o->ob_item[i]); return 0; } static PyObject * tuplerichcompare(PyObject *v, PyObject *w, int op) { PyTupleObject *vt, *wt; Py_ssize_t i; Py_ssize_t vlen, wlen; if (!PyTuple_Check(v) || !PyTuple_Check(w)) Py_RETURN_NOTIMPLEMENTED; vt = (PyTupleObject *)v; wt = (PyTupleObject *)w; vlen = Py_SIZE(vt); wlen = Py_SIZE(wt); /* Note: the corresponding code for lists has an "early out" test * here when op is EQ or NE and the lengths differ. That pays there, * but Tim was unable to find any real code where EQ/NE tuple * compares don't have the same length, so testing for it here would * have cost without benefit. */ /* Search for the first index where items are different. * Note that because tuples are immutable, it's safe to reuse * vlen and wlen across the comparison calls. */ for (i = 0; i < vlen && i < wlen; i++) { int k = PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_EQ); if (k < 0) return NULL; if (!k) break; } if (i >= vlen || i >= wlen) { /* No more items to compare -- compare sizes */ int cmp; PyObject *res; switch (op) { case Py_LT: cmp = vlen < wlen; break; case Py_LE: cmp = vlen <= wlen; break; case Py_EQ: cmp = vlen == wlen; break; case Py_NE: cmp = vlen != wlen; break; case Py_GT: cmp = vlen > wlen; break; case Py_GE: cmp = vlen >= wlen; break; default: return NULL; /* cannot happen */ } if (cmp) res = Py_True; else res = Py_False; Py_INCREF(res); return res; } /* We have an item that differs -- shortcuts for EQ/NE */ if (op == Py_EQ) { Py_RETURN_FALSE; } if (op == Py_NE) { Py_RETURN_TRUE; } /* Compare the final item again using the proper operator */ return PyObject_RichCompare(vt->ob_item[i], wt->ob_item[i], op); } static PyObject * tuple_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); static PyObject * tuple_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *arg = NULL; if (type != &PyTuple_Type) return tuple_subtype_new(type, args, kwds); if (!_PyArg_NoKeywords("tuple()", kwds)) return NULL; if (!PyArg_UnpackTuple(args, "tuple", 0, 1, &arg)) return NULL; if (arg == NULL) return PyTuple_New(0); else return PySequence_Tuple(arg); } static PyObject * tuple_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *tmp, *newobj, *item; Py_ssize_t i, n; assert(PyType_IsSubtype(type, &PyTuple_Type)); tmp = tuple_new(&PyTuple_Type, args, kwds); if (tmp == NULL) return NULL; assert(PyTuple_Check(tmp)); newobj = type->tp_alloc(type, n = PyTuple_GET_SIZE(tmp)); if (newobj == NULL) return NULL; for (i = 0; i < n; i++) { item = PyTuple_GET_ITEM(tmp, i); Py_INCREF(item); PyTuple_SET_ITEM(newobj, i, item); } Py_DECREF(tmp); return newobj; } PyDoc_STRVAR(tuple_doc, "tuple() -> empty tuple\n\ tuple(iterable) -> tuple initialized from iterable's items\n\ \n\ If the argument is a tuple, the return value is the same object."); static PySequenceMethods tuple_as_sequence = { (lenfunc)tuplelength, /* sq_length */ (binaryfunc)tupleconcat, /* sq_concat */ (ssizeargfunc)tuplerepeat, /* sq_repeat */ (ssizeargfunc)tupleitem, /* sq_item */ 0, /* sq_slice */ 0, /* sq_ass_item */ 0, /* sq_ass_slice */ (objobjproc)tuplecontains, /* sq_contains */ }; static PyObject* tuplesubscript(PyTupleObject* self, PyObject* item) { if (PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return NULL; if (i < 0) i += PyTuple_GET_SIZE(self); return tupleitem(self, i); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength, cur, i; PyObject* result; PyObject* it; PyObject **src, **dest; if (PySlice_GetIndicesEx(item, PyTuple_GET_SIZE(self), &start, &stop, &step, &slicelength) < 0) { return NULL; } if (slicelength <= 0) { return PyTuple_New(0); } else if (start == 0 && step == 1 && slicelength == PyTuple_GET_SIZE(self) && PyTuple_CheckExact(self)) { Py_INCREF(self); return (PyObject *)self; } else { result = PyTuple_New(slicelength); if (!result) return NULL; src = self->ob_item; dest = ((PyTupleObject *)result)->ob_item; for (cur = start, i = 0; i < slicelength; cur += step, i++) { it = src[cur]; Py_INCREF(it); dest[i] = it; } return result; } } else { PyErr_Format(PyExc_TypeError, "tuple indices must be integers or slices, not %.200s", Py_TYPE(item)->tp_name); return NULL; } } static PyObject * tuple_getnewargs(PyTupleObject *v) { return Py_BuildValue("(N)", tupleslice(v, 0, Py_SIZE(v))); } PyDoc_STRVAR(index_doc, "T.index(value, [start, [stop]]) -> integer -- return first index of value.\n" "Raises ValueError if the value is not present." ); PyDoc_STRVAR(count_doc, "T.count(value) -> integer -- return number of occurrences of value"); static PyMethodDef tuple_methods[] = { {"__getnewargs__", (PyCFunction)tuple_getnewargs, METH_NOARGS}, {"index", (PyCFunction)tupleindex, METH_VARARGS, index_doc}, {"count", (PyCFunction)tuplecount, METH_O, count_doc}, {NULL, NULL} /* sentinel */ }; static PyMappingMethods tuple_as_mapping = { (lenfunc)tuplelength, (binaryfunc)tuplesubscript, 0 }; static PyObject *tuple_iter(PyObject *seq); PyTypeObject PyTuple_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "tuple", sizeof(PyTupleObject) - sizeof(PyObject *), sizeof(PyObject *), (destructor)tupledealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_reserved */ (reprfunc)tuplerepr, /* tp_repr */ 0, /* tp_as_number */ &tuple_as_sequence, /* tp_as_sequence */ &tuple_as_mapping, /* tp_as_mapping */ (hashfunc)tuplehash, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_TUPLE_SUBCLASS, /* tp_flags */ tuple_doc, /* tp_doc */ (traverseproc)tupletraverse, /* tp_traverse */ 0, /* tp_clear */ tuplerichcompare, /* tp_richcompare */ 0, /* tp_weaklistoffset */ tuple_iter, /* tp_iter */ 0, /* tp_iternext */ tuple_methods, /* tp_methods */ 0, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ 0, /* tp_init */ 0, /* tp_alloc */ tuple_new, /* tp_new */ PyObject_GC_Del, /* tp_free */ }; /* The following function breaks the notion that tuples are immutable: it changes the size of a tuple. We get away with this only if there is only one module referencing the object. You can also think of it as creating a new tuple object and destroying the old one, only more efficiently. In any case, don't use this if the tuple may already be known to some other part of the code. */ int _PyTuple_Resize(PyObject **pv, Py_ssize_t newsize) { PyTupleObject *v; PyTupleObject *sv; Py_ssize_t i; Py_ssize_t oldsize; v = (PyTupleObject *) *pv; if (v == NULL || Py_TYPE(v) != &PyTuple_Type || (Py_SIZE(v) != 0 && Py_REFCNT(v) != 1)) { *pv = 0; Py_XDECREF(v); PyErr_BadInternalCall(); return -1; } oldsize = Py_SIZE(v); if (oldsize == newsize) return 0; if (oldsize == 0) { /* Empty tuples are often shared, so we should never resize them in-place even if we do own the only (current) reference */ Py_DECREF(v); *pv = PyTuple_New(newsize); return *pv == NULL ? -1 : 0; } /* XXX UNREF/NEWREF interface should be more symmetrical */ _Py_DEC_REFTOTAL; if (_PyObject_GC_IS_TRACKED(v)) _PyObject_GC_UNTRACK(v); _Py_ForgetReference((PyObject *) v); /* DECREF items deleted by shrinkage */ for (i = newsize; i < oldsize; i++) { Py_CLEAR(v->ob_item[i]); } sv = PyObject_GC_Resize(PyTupleObject, v, newsize); if (sv == NULL) { *pv = NULL; PyObject_GC_Del(v); return -1; } _Py_NewReference((PyObject *) sv); /* Zero out items added by growing */ if (newsize > oldsize) memset(&sv->ob_item[oldsize], 0, sizeof(*sv->ob_item) * (newsize - oldsize)); *pv = (PyObject *) sv; _PyObject_GC_TRACK(sv); return 0; } int PyTuple_ClearFreeList(void) { int freelist_size = 0; #if PyTuple_MAXSAVESIZE > 0 int i; for (i = 1; i < PyTuple_MAXSAVESIZE; i++) { PyTupleObject *p, *q; p = free_list[i]; freelist_size += numfree[i]; free_list[i] = NULL; numfree[i] = 0; while (p) { q = p; p = (PyTupleObject *)(p->ob_item[0]); PyObject_GC_Del(q); } } #endif return freelist_size; } void PyTuple_Fini(void) { #if PyTuple_MAXSAVESIZE > 0 /* empty tuples are used all over the place and applications may * rely on the fact that an empty tuple is a singleton. */ Py_CLEAR(free_list[0]); (void)PyTuple_ClearFreeList(); #endif #ifdef SHOW_TRACK_COUNT show_track(); #endif } /*********************** Tuple Iterator **************************/ typedef struct { PyObject_HEAD Py_ssize_t it_index; PyTupleObject *it_seq; /* Set to NULL when iterator is exhausted */ } tupleiterobject; static void tupleiter_dealloc(tupleiterobject *it) { _PyObject_GC_UNTRACK(it); Py_XDECREF(it->it_seq); PyObject_GC_Del(it); } static int tupleiter_traverse(tupleiterobject *it, visitproc visit, void *arg) { Py_VISIT(it->it_seq); return 0; } static PyObject * tupleiter_next(tupleiterobject *it) { PyTupleObject *seq; PyObject *item; assert(it != NULL); seq = it->it_seq; if (seq == NULL) return NULL; assert(PyTuple_Check(seq)); if (it->it_index < PyTuple_GET_SIZE(seq)) { item = PyTuple_GET_ITEM(seq, it->it_index); ++it->it_index; Py_INCREF(item); return item; } it->it_seq = NULL; Py_DECREF(seq); return NULL; } static PyObject * tupleiter_len(tupleiterobject *it) { Py_ssize_t len = 0; if (it->it_seq) len = PyTuple_GET_SIZE(it->it_seq) - it->it_index; return PyLong_FromSsize_t(len); } PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it))."); static PyObject * tupleiter_reduce(tupleiterobject *it) { if (it->it_seq) return Py_BuildValue("N(O)n", _PyObject_GetBuiltin("iter"), it->it_seq, it->it_index); else return Py_BuildValue("N(())", _PyObject_GetBuiltin("iter")); } static PyObject * tupleiter_setstate(tupleiterobject *it, PyObject *state) { Py_ssize_t index = PyLong_AsSsize_t(state); if (index == -1 && PyErr_Occurred()) return NULL; if (it->it_seq != NULL) { if (index < 0) index = 0; else if (index > PyTuple_GET_SIZE(it->it_seq)) index = PyTuple_GET_SIZE(it->it_seq); /* exhausted iterator */ it->it_index = index; } Py_RETURN_NONE; } PyDoc_STRVAR(reduce_doc, "Return state information for pickling."); PyDoc_STRVAR(setstate_doc, "Set state information for unpickling."); static PyMethodDef tupleiter_methods[] = { {"__length_hint__", (PyCFunction)tupleiter_len, METH_NOARGS, length_hint_doc}, {"__reduce__", (PyCFunction)tupleiter_reduce, METH_NOARGS, reduce_doc}, {"__setstate__", (PyCFunction)tupleiter_setstate, METH_O, setstate_doc}, {NULL, NULL} /* sentinel */ }; PyTypeObject PyTupleIter_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "tuple_iterator", /* tp_name */ sizeof(tupleiterobject), /* tp_basicsize */ 0, /* tp_itemsize */ /* methods */ (destructor)tupleiter_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_reserved */ 0, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ 0, /* tp_doc */ (traverseproc)tupleiter_traverse, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ PyObject_SelfIter, /* tp_iter */ (iternextfunc)tupleiter_next, /* tp_iternext */ tupleiter_methods, /* tp_methods */ 0, }; static PyObject * tuple_iter(PyObject *seq) { tupleiterobject *it; if (!PyTuple_Check(seq)) { PyErr_BadInternalCall(); return NULL; } it = PyObject_GC_New(tupleiterobject, &PyTupleIter_Type); if (it == NULL) return NULL; it->it_index = 0; Py_INCREF(seq); it->it_seq = (PyTupleObject *)seq; _PyObject_GC_TRACK(it); return (PyObject *)it; }