/* ---------------------------------------------------------------------------- Copyright (c) 2018-2020, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #include "mimalloc.h" #include "mimalloc/internal.h" #include "mimalloc/atomic.h" #include // memset #include #define MI_PAGE_HUGE_ALIGN (256*1024) static void mi_segment_try_purge(mi_segment_t* segment, bool force, mi_stats_t* stats); // ------------------------------------------------------------------- // commit mask // ------------------------------------------------------------------- static bool mi_commit_mask_all_set(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm) { for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { if ((commit->mask[i] & cm->mask[i]) != cm->mask[i]) return false; } return true; } static bool mi_commit_mask_any_set(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm) { for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { if ((commit->mask[i] & cm->mask[i]) != 0) return true; } return false; } static void mi_commit_mask_create_intersect(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm, mi_commit_mask_t* res) { for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { res->mask[i] = (commit->mask[i] & cm->mask[i]); } } static void mi_commit_mask_clear(mi_commit_mask_t* res, const mi_commit_mask_t* cm) { for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { res->mask[i] &= ~(cm->mask[i]); } } static void mi_commit_mask_set(mi_commit_mask_t* res, const mi_commit_mask_t* cm) { for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { res->mask[i] |= cm->mask[i]; } } static void mi_commit_mask_create(size_t bitidx, size_t bitcount, mi_commit_mask_t* cm) { mi_assert_internal(bitidx < MI_COMMIT_MASK_BITS); mi_assert_internal((bitidx + bitcount) <= MI_COMMIT_MASK_BITS); if (bitcount == MI_COMMIT_MASK_BITS) { mi_assert_internal(bitidx==0); mi_commit_mask_create_full(cm); } else if (bitcount == 0) { mi_commit_mask_create_empty(cm); } else { mi_commit_mask_create_empty(cm); size_t i = bitidx / MI_COMMIT_MASK_FIELD_BITS; size_t ofs = bitidx % MI_COMMIT_MASK_FIELD_BITS; while (bitcount > 0) { mi_assert_internal(i < MI_COMMIT_MASK_FIELD_COUNT); size_t avail = MI_COMMIT_MASK_FIELD_BITS - ofs; size_t count = (bitcount > avail ? avail : bitcount); size_t mask = (count >= MI_COMMIT_MASK_FIELD_BITS ? ~((size_t)0) : (((size_t)1 << count) - 1) << ofs); cm->mask[i] = mask; bitcount -= count; ofs = 0; i++; } } } size_t _mi_commit_mask_committed_size(const mi_commit_mask_t* cm, size_t total) { mi_assert_internal((total%MI_COMMIT_MASK_BITS)==0); size_t count = 0; for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { size_t mask = cm->mask[i]; if (~mask == 0) { count += MI_COMMIT_MASK_FIELD_BITS; } else { for (; mask != 0; mask >>= 1) { // todo: use popcount if ((mask&1)!=0) count++; } } } // we use total since for huge segments each commit bit may represent a larger size return ((total / MI_COMMIT_MASK_BITS) * count); } size_t _mi_commit_mask_next_run(const mi_commit_mask_t* cm, size_t* idx) { size_t i = (*idx) / MI_COMMIT_MASK_FIELD_BITS; size_t ofs = (*idx) % MI_COMMIT_MASK_FIELD_BITS; size_t mask = 0; // find first ones while (i < MI_COMMIT_MASK_FIELD_COUNT) { mask = cm->mask[i]; mask >>= ofs; if (mask != 0) { while ((mask&1) == 0) { mask >>= 1; ofs++; } break; } i++; ofs = 0; } if (i >= MI_COMMIT_MASK_FIELD_COUNT) { // not found *idx = MI_COMMIT_MASK_BITS; return 0; } else { // found, count ones size_t count = 0; *idx = (i*MI_COMMIT_MASK_FIELD_BITS) + ofs; do { mi_assert_internal(ofs < MI_COMMIT_MASK_FIELD_BITS && (mask&1) == 1); do { count++; mask >>= 1; } while ((mask&1) == 1); if ((((*idx + count) % MI_COMMIT_MASK_FIELD_BITS) == 0)) { i++; if (i >= MI_COMMIT_MASK_FIELD_COUNT) break; mask = cm->mask[i]; ofs = 0; } } while ((mask&1) == 1); mi_assert_internal(count > 0); return count; } } /* -------------------------------------------------------------------------------- Segment allocation If a thread ends, it "abandons" pages with used blocks and there is an abandoned segment list whose segments can be reclaimed by still running threads, much like work-stealing. -------------------------------------------------------------------------------- */ /* ----------------------------------------------------------- Slices ----------------------------------------------------------- */ static const mi_slice_t* mi_segment_slices_end(const mi_segment_t* segment) { return &segment->slices[segment->slice_entries]; } static uint8_t* mi_slice_start(const mi_slice_t* slice) { mi_segment_t* segment = _mi_ptr_segment(slice); mi_assert_internal(slice >= segment->slices && slice < mi_segment_slices_end(segment)); return ((uint8_t*)segment + ((slice - segment->slices)*MI_SEGMENT_SLICE_SIZE)); } /* ----------------------------------------------------------- Bins ----------------------------------------------------------- */ // Use bit scan forward to quickly find the first zero bit if it is available static inline size_t mi_slice_bin8(size_t slice_count) { if (slice_count<=1) return slice_count; mi_assert_internal(slice_count <= MI_SLICES_PER_SEGMENT); slice_count--; size_t s = mi_bsr(slice_count); // slice_count > 1 if (s <= 2) return slice_count + 1; size_t bin = ((s << 2) | ((slice_count >> (s - 2))&0x03)) - 4; return bin; } static inline size_t mi_slice_bin(size_t slice_count) { mi_assert_internal(slice_count*MI_SEGMENT_SLICE_SIZE <= MI_SEGMENT_SIZE); mi_assert_internal(mi_slice_bin8(MI_SLICES_PER_SEGMENT) <= MI_SEGMENT_BIN_MAX); size_t bin = mi_slice_bin8(slice_count); mi_assert_internal(bin <= MI_SEGMENT_BIN_MAX); return bin; } static inline size_t mi_slice_index(const mi_slice_t* slice) { mi_segment_t* segment = _mi_ptr_segment(slice); ptrdiff_t index = slice - segment->slices; mi_assert_internal(index >= 0 && index < (ptrdiff_t)segment->slice_entries); return index; } /* ----------------------------------------------------------- Slice span queues ----------------------------------------------------------- */ static void mi_span_queue_push(mi_span_queue_t* sq, mi_slice_t* slice) { // todo: or push to the end? mi_assert_internal(slice->prev == NULL && slice->next==NULL); slice->prev = NULL; // paranoia slice->next = sq->first; sq->first = slice; if (slice->next != NULL) slice->next->prev = slice; else sq->last = slice; slice->xblock_size = 0; // free } static mi_span_queue_t* mi_span_queue_for(size_t slice_count, mi_segments_tld_t* tld) { size_t bin = mi_slice_bin(slice_count); mi_span_queue_t* sq = &tld->spans[bin]; mi_assert_internal(sq->slice_count >= slice_count); return sq; } static void mi_span_queue_delete(mi_span_queue_t* sq, mi_slice_t* slice) { mi_assert_internal(slice->xblock_size==0 && slice->slice_count>0 && slice->slice_offset==0); // should work too if the queue does not contain slice (which can happen during reclaim) if (slice->prev != NULL) slice->prev->next = slice->next; if (slice == sq->first) sq->first = slice->next; if (slice->next != NULL) slice->next->prev = slice->prev; if (slice == sq->last) sq->last = slice->prev; slice->prev = NULL; slice->next = NULL; slice->xblock_size = 1; // no more free } /* ----------------------------------------------------------- Invariant checking ----------------------------------------------------------- */ static bool mi_slice_is_used(const mi_slice_t* slice) { return (slice->xblock_size > 0); } #if (MI_DEBUG>=3) static bool mi_span_queue_contains(mi_span_queue_t* sq, mi_slice_t* slice) { for (mi_slice_t* s = sq->first; s != NULL; s = s->next) { if (s==slice) return true; } return false; } static bool mi_segment_is_valid(mi_segment_t* segment, mi_segments_tld_t* tld) { mi_assert_internal(segment != NULL); mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie); mi_assert_internal(segment->abandoned <= segment->used); mi_assert_internal(segment->thread_id == 0 || segment->thread_id == _mi_thread_id()); mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->purge_mask)); // can only decommit committed blocks //mi_assert_internal(segment->segment_info_size % MI_SEGMENT_SLICE_SIZE == 0); mi_slice_t* slice = &segment->slices[0]; const mi_slice_t* end = mi_segment_slices_end(segment); size_t used_count = 0; mi_span_queue_t* sq; while(slice < end) { mi_assert_internal(slice->slice_count > 0); mi_assert_internal(slice->slice_offset == 0); size_t index = mi_slice_index(slice); size_t maxindex = (index + slice->slice_count >= segment->slice_entries ? segment->slice_entries : index + slice->slice_count) - 1; if (mi_slice_is_used(slice)) { // a page in use, we need at least MAX_SLICE_OFFSET valid back offsets used_count++; for (size_t i = 0; i <= MI_MAX_SLICE_OFFSET && index + i <= maxindex; i++) { mi_assert_internal(segment->slices[index + i].slice_offset == i*sizeof(mi_slice_t)); mi_assert_internal(i==0 || segment->slices[index + i].slice_count == 0); mi_assert_internal(i==0 || segment->slices[index + i].xblock_size == 1); } // and the last entry as well (for coalescing) const mi_slice_t* last = slice + slice->slice_count - 1; if (last > slice && last < mi_segment_slices_end(segment)) { mi_assert_internal(last->slice_offset == (slice->slice_count-1)*sizeof(mi_slice_t)); mi_assert_internal(last->slice_count == 0); mi_assert_internal(last->xblock_size == 1); } } else { // free range of slices; only last slice needs a valid back offset mi_slice_t* last = &segment->slices[maxindex]; if (segment->kind != MI_SEGMENT_HUGE || slice->slice_count <= (segment->slice_entries - segment->segment_info_slices)) { mi_assert_internal((uint8_t*)slice == (uint8_t*)last - last->slice_offset); } mi_assert_internal(slice == last || last->slice_count == 0 ); mi_assert_internal(last->xblock_size == 0 || (segment->kind==MI_SEGMENT_HUGE && last->xblock_size==1)); if (segment->kind != MI_SEGMENT_HUGE && segment->thread_id != 0) { // segment is not huge or abandoned sq = mi_span_queue_for(slice->slice_count,tld); mi_assert_internal(mi_span_queue_contains(sq,slice)); } } slice = &segment->slices[maxindex+1]; } mi_assert_internal(slice == end); mi_assert_internal(used_count == segment->used + 1); return true; } #endif /* ----------------------------------------------------------- Segment size calculations ----------------------------------------------------------- */ static size_t mi_segment_info_size(mi_segment_t* segment) { return segment->segment_info_slices * MI_SEGMENT_SLICE_SIZE; } static uint8_t* _mi_segment_page_start_from_slice(const mi_segment_t* segment, const mi_slice_t* slice, size_t xblock_size, size_t* page_size) { ptrdiff_t idx = slice - segment->slices; size_t psize = (size_t)slice->slice_count * MI_SEGMENT_SLICE_SIZE; // make the start not OS page aligned for smaller blocks to avoid page/cache effects // note: the offset must always be an xblock_size multiple since we assume small allocations // are aligned (see `mi_heap_malloc_aligned`). size_t start_offset = 0; if (xblock_size >= MI_INTPTR_SIZE) { if (xblock_size <= 64) { start_offset = 3*xblock_size; } else if (xblock_size <= 512) { start_offset = xblock_size; } } if (page_size != NULL) { *page_size = psize - start_offset; } return (uint8_t*)segment + ((idx*MI_SEGMENT_SLICE_SIZE) + start_offset); } // Start of the page available memory; can be used on uninitialized pages uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) { const mi_slice_t* slice = mi_page_to_slice((mi_page_t*)page); uint8_t* p = _mi_segment_page_start_from_slice(segment, slice, page->xblock_size, page_size); mi_assert_internal(page->xblock_size > 0 || _mi_ptr_page(p) == page); mi_assert_internal(_mi_ptr_segment(p) == segment); return p; } static size_t mi_segment_calculate_slices(size_t required, size_t* pre_size, size_t* info_slices) { size_t page_size = _mi_os_page_size(); size_t isize = _mi_align_up(sizeof(mi_segment_t), page_size); size_t guardsize = 0; if (MI_SECURE>0) { // in secure mode, we set up a protected page in between the segment info // and the page data (and one at the end of the segment) guardsize = page_size; if (required > 0) { required = _mi_align_up(required, MI_SEGMENT_SLICE_SIZE) + page_size; } } if (pre_size != NULL) *pre_size = isize; isize = _mi_align_up(isize + guardsize, MI_SEGMENT_SLICE_SIZE); if (info_slices != NULL) *info_slices = isize / MI_SEGMENT_SLICE_SIZE; size_t segment_size = (required==0 ? MI_SEGMENT_SIZE : _mi_align_up( required + isize + guardsize, MI_SEGMENT_SLICE_SIZE) ); mi_assert_internal(segment_size % MI_SEGMENT_SLICE_SIZE == 0); return (segment_size / MI_SEGMENT_SLICE_SIZE); } /* ---------------------------------------------------------------------------- Segment caches We keep a small segment cache per thread to increase local reuse and avoid setting/clearing guard pages in secure mode. ------------------------------------------------------------------------------- */ static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) { if (segment_size>=0) _mi_stat_increase(&tld->stats->segments,1); else _mi_stat_decrease(&tld->stats->segments,1); tld->count += (segment_size >= 0 ? 1 : -1); if (tld->count > tld->peak_count) tld->peak_count = tld->count; tld->current_size += segment_size; if (tld->current_size > tld->peak_size) tld->peak_size = tld->current_size; } static void mi_segment_os_free(mi_segment_t* segment, mi_segments_tld_t* tld) { segment->thread_id = 0; _mi_segment_map_freed_at(segment); mi_segments_track_size(-((long)mi_segment_size(segment)),tld); if (MI_SECURE>0) { // _mi_os_unprotect(segment, mi_segment_size(segment)); // ensure no more guard pages are set // unprotect the guard pages; we cannot just unprotect the whole segment size as part may be decommitted size_t os_pagesize = _mi_os_page_size(); _mi_os_unprotect((uint8_t*)segment + mi_segment_info_size(segment) - os_pagesize, os_pagesize); uint8_t* end = (uint8_t*)segment + mi_segment_size(segment) - os_pagesize; _mi_os_unprotect(end, os_pagesize); } // purge delayed decommits now? (no, leave it to the arena) // mi_segment_try_purge(segment,true,tld->stats); const size_t size = mi_segment_size(segment); const size_t csize = _mi_commit_mask_committed_size(&segment->commit_mask, size); _mi_abandoned_await_readers(tld->abandoned); // wait until safe to free _mi_arena_free(segment, mi_segment_size(segment), csize, segment->memid, tld->stats); } // called by threads that are terminating void _mi_segment_thread_collect(mi_segments_tld_t* tld) { MI_UNUSED(tld); // nothing to do } /* ----------------------------------------------------------- Commit/Decommit ranges ----------------------------------------------------------- */ static void mi_segment_commit_mask(mi_segment_t* segment, bool conservative, uint8_t* p, size_t size, uint8_t** start_p, size_t* full_size, mi_commit_mask_t* cm) { mi_assert_internal(_mi_ptr_segment(p + 1) == segment); mi_assert_internal(segment->kind != MI_SEGMENT_HUGE); mi_commit_mask_create_empty(cm); if (size == 0 || size > MI_SEGMENT_SIZE || segment->kind == MI_SEGMENT_HUGE) return; const size_t segstart = mi_segment_info_size(segment); const size_t segsize = mi_segment_size(segment); if (p >= (uint8_t*)segment + segsize) return; size_t pstart = (p - (uint8_t*)segment); mi_assert_internal(pstart + size <= segsize); size_t start; size_t end; if (conservative) { // decommit conservative start = _mi_align_up(pstart, MI_COMMIT_SIZE); end = _mi_align_down(pstart + size, MI_COMMIT_SIZE); mi_assert_internal(start >= segstart); mi_assert_internal(end <= segsize); } else { // commit liberal start = _mi_align_down(pstart, MI_MINIMAL_COMMIT_SIZE); end = _mi_align_up(pstart + size, MI_MINIMAL_COMMIT_SIZE); } if (pstart >= segstart && start < segstart) { // note: the mask is also calculated for an initial commit of the info area start = segstart; } if (end > segsize) { end = segsize; } mi_assert_internal(start <= pstart && (pstart + size) <= end); mi_assert_internal(start % MI_COMMIT_SIZE==0 && end % MI_COMMIT_SIZE == 0); *start_p = (uint8_t*)segment + start; *full_size = (end > start ? end - start : 0); if (*full_size == 0) return; size_t bitidx = start / MI_COMMIT_SIZE; mi_assert_internal(bitidx < MI_COMMIT_MASK_BITS); size_t bitcount = *full_size / MI_COMMIT_SIZE; // can be 0 if (bitidx + bitcount > MI_COMMIT_MASK_BITS) { _mi_warning_message("commit mask overflow: idx=%zu count=%zu start=%zx end=%zx p=0x%p size=%zu fullsize=%zu\n", bitidx, bitcount, start, end, p, size, *full_size); } mi_assert_internal((bitidx + bitcount) <= MI_COMMIT_MASK_BITS); mi_commit_mask_create(bitidx, bitcount, cm); } static bool mi_segment_commit(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) { mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->purge_mask)); // commit liberal uint8_t* start = NULL; size_t full_size = 0; mi_commit_mask_t mask; mi_segment_commit_mask(segment, false /* conservative? */, p, size, &start, &full_size, &mask); if (mi_commit_mask_is_empty(&mask) || full_size == 0) return true; if (!mi_commit_mask_all_set(&segment->commit_mask, &mask)) { // committing bool is_zero = false; mi_commit_mask_t cmask; mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask); _mi_stat_decrease(&_mi_stats_main.committed, _mi_commit_mask_committed_size(&cmask, MI_SEGMENT_SIZE)); // adjust for overlap if (!_mi_os_commit(start, full_size, &is_zero, stats)) return false; mi_commit_mask_set(&segment->commit_mask, &mask); } // increase purge expiration when using part of delayed purges -- we assume more allocations are coming soon. if (mi_commit_mask_any_set(&segment->purge_mask, &mask)) { segment->purge_expire = _mi_clock_now() + mi_option_get(mi_option_purge_delay); } // always clear any delayed purges in our range (as they are either committed now) mi_commit_mask_clear(&segment->purge_mask, &mask); return true; } static bool mi_segment_ensure_committed(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) { mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->purge_mask)); // note: assumes commit_mask is always full for huge segments as otherwise the commit mask bits can overflow if (mi_commit_mask_is_full(&segment->commit_mask) && mi_commit_mask_is_empty(&segment->purge_mask)) return true; // fully committed mi_assert_internal(segment->kind != MI_SEGMENT_HUGE); return mi_segment_commit(segment, p, size, stats); } static bool mi_segment_purge(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) { mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->purge_mask)); if (!segment->allow_purge) return true; // purge conservative uint8_t* start = NULL; size_t full_size = 0; mi_commit_mask_t mask; mi_segment_commit_mask(segment, true /* conservative? */, p, size, &start, &full_size, &mask); if (mi_commit_mask_is_empty(&mask) || full_size==0) return true; if (mi_commit_mask_any_set(&segment->commit_mask, &mask)) { // purging mi_assert_internal((void*)start != (void*)segment); mi_assert_internal(segment->allow_decommit); const bool decommitted = _mi_os_purge(start, full_size, stats); // reset or decommit if (decommitted) { mi_commit_mask_t cmask; mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask); _mi_stat_increase(&_mi_stats_main.committed, full_size - _mi_commit_mask_committed_size(&cmask, MI_SEGMENT_SIZE)); // adjust for double counting mi_commit_mask_clear(&segment->commit_mask, &mask); } } // always clear any scheduled purges in our range mi_commit_mask_clear(&segment->purge_mask, &mask); return true; } static void mi_segment_schedule_purge(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) { if (!segment->allow_purge) return; if (mi_option_get(mi_option_purge_delay) == 0) { mi_segment_purge(segment, p, size, stats); } else { // register for future purge in the purge mask uint8_t* start = NULL; size_t full_size = 0; mi_commit_mask_t mask; mi_segment_commit_mask(segment, true /*conservative*/, p, size, &start, &full_size, &mask); if (mi_commit_mask_is_empty(&mask) || full_size==0) return; // update delayed commit mi_assert_internal(segment->purge_expire > 0 || mi_commit_mask_is_empty(&segment->purge_mask)); mi_commit_mask_t cmask; mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask); // only purge what is committed; span_free may try to decommit more mi_commit_mask_set(&segment->purge_mask, &cmask); mi_msecs_t now = _mi_clock_now(); if (segment->purge_expire == 0) { // no previous purgess, initialize now segment->purge_expire = now + mi_option_get(mi_option_purge_delay); } else if (segment->purge_expire <= now) { // previous purge mask already expired if (segment->purge_expire + mi_option_get(mi_option_purge_extend_delay) <= now) { mi_segment_try_purge(segment, true, stats); } else { segment->purge_expire = now + mi_option_get(mi_option_purge_extend_delay); // (mi_option_get(mi_option_purge_delay) / 8); // wait a tiny bit longer in case there is a series of free's } } else { // previous purge mask is not yet expired, increase the expiration by a bit. segment->purge_expire += mi_option_get(mi_option_purge_extend_delay); } } } static void mi_segment_try_purge(mi_segment_t* segment, bool force, mi_stats_t* stats) { if (!segment->allow_purge || mi_commit_mask_is_empty(&segment->purge_mask)) return; mi_msecs_t now = _mi_clock_now(); if (!force && now < segment->purge_expire) return; mi_commit_mask_t mask = segment->purge_mask; segment->purge_expire = 0; mi_commit_mask_create_empty(&segment->purge_mask); size_t idx; size_t count; mi_commit_mask_foreach(&mask, idx, count) { // if found, decommit that sequence if (count > 0) { uint8_t* p = (uint8_t*)segment + (idx*MI_COMMIT_SIZE); size_t size = count * MI_COMMIT_SIZE; mi_segment_purge(segment, p, size, stats); } } mi_commit_mask_foreach_end() mi_assert_internal(mi_commit_mask_is_empty(&segment->purge_mask)); } /* ----------------------------------------------------------- Span free ----------------------------------------------------------- */ static bool mi_segment_is_abandoned(mi_segment_t* segment) { return (segment->thread_id == 0); } // note: can be called on abandoned segments static void mi_segment_span_free(mi_segment_t* segment, size_t slice_index, size_t slice_count, bool allow_purge, mi_segments_tld_t* tld) { mi_assert_internal(slice_index < segment->slice_entries); mi_span_queue_t* sq = (segment->kind == MI_SEGMENT_HUGE || mi_segment_is_abandoned(segment) ? NULL : mi_span_queue_for(slice_count,tld)); if (slice_count==0) slice_count = 1; mi_assert_internal(slice_index + slice_count - 1 < segment->slice_entries); // set first and last slice (the intermediates can be undetermined) mi_slice_t* slice = &segment->slices[slice_index]; slice->slice_count = (uint32_t)slice_count; mi_assert_internal(slice->slice_count == slice_count); // no overflow? slice->slice_offset = 0; if (slice_count > 1) { mi_slice_t* last = &segment->slices[slice_index + slice_count - 1]; last->slice_count = 0; last->slice_offset = (uint32_t)(sizeof(mi_page_t)*(slice_count - 1)); last->xblock_size = 0; } // perhaps decommit if (allow_purge) { mi_segment_schedule_purge(segment, mi_slice_start(slice), slice_count * MI_SEGMENT_SLICE_SIZE, tld->stats); } // and push it on the free page queue (if it was not a huge page) if (sq != NULL) mi_span_queue_push( sq, slice ); else slice->xblock_size = 0; // mark huge page as free anyways } /* // called from reclaim to add existing free spans static void mi_segment_span_add_free(mi_slice_t* slice, mi_segments_tld_t* tld) { mi_segment_t* segment = _mi_ptr_segment(slice); mi_assert_internal(slice->xblock_size==0 && slice->slice_count>0 && slice->slice_offset==0); size_t slice_index = mi_slice_index(slice); mi_segment_span_free(segment,slice_index,slice->slice_count,tld); } */ static void mi_segment_span_remove_from_queue(mi_slice_t* slice, mi_segments_tld_t* tld) { mi_assert_internal(slice->slice_count > 0 && slice->slice_offset==0 && slice->xblock_size==0); mi_assert_internal(_mi_ptr_segment(slice)->kind != MI_SEGMENT_HUGE); mi_span_queue_t* sq = mi_span_queue_for(slice->slice_count, tld); mi_span_queue_delete(sq, slice); } // note: can be called on abandoned segments static mi_slice_t* mi_segment_span_free_coalesce(mi_slice_t* slice, mi_segments_tld_t* tld) { mi_assert_internal(slice != NULL && slice->slice_count > 0 && slice->slice_offset == 0); mi_segment_t* segment = _mi_ptr_segment(slice); bool is_abandoned = mi_segment_is_abandoned(segment); // for huge pages, just mark as free but don't add to the queues if (segment->kind == MI_SEGMENT_HUGE) { // issue #691: segment->used can be 0 if the huge page block was freed while abandoned (reclaim will get here in that case) mi_assert_internal((segment->used==0 && slice->xblock_size==0) || segment->used == 1); // decreased right after this call in `mi_segment_page_clear` slice->xblock_size = 0; // mark as free anyways // we should mark the last slice `xblock_size=0` now to maintain invariants but we skip it to // avoid a possible cache miss (and the segment is about to be freed) return slice; } // otherwise coalesce the span and add to the free span queues size_t slice_count = slice->slice_count; mi_slice_t* next = slice + slice->slice_count; mi_assert_internal(next <= mi_segment_slices_end(segment)); if (next < mi_segment_slices_end(segment) && next->xblock_size==0) { // free next block -- remove it from free and merge mi_assert_internal(next->slice_count > 0 && next->slice_offset==0); slice_count += next->slice_count; // extend if (!is_abandoned) { mi_segment_span_remove_from_queue(next, tld); } } if (slice > segment->slices) { mi_slice_t* prev = mi_slice_first(slice - 1); mi_assert_internal(prev >= segment->slices); if (prev->xblock_size==0) { // free previous slice -- remove it from free and merge mi_assert_internal(prev->slice_count > 0 && prev->slice_offset==0); slice_count += prev->slice_count; if (!is_abandoned) { mi_segment_span_remove_from_queue(prev, tld); } slice = prev; } } // and add the new free page mi_segment_span_free(segment, mi_slice_index(slice), slice_count, true, tld); return slice; } /* ----------------------------------------------------------- Page allocation ----------------------------------------------------------- */ // Note: may still return NULL if committing the memory failed static mi_page_t* mi_segment_span_allocate(mi_segment_t* segment, size_t slice_index, size_t slice_count, mi_segments_tld_t* tld) { mi_assert_internal(slice_index < segment->slice_entries); mi_slice_t* const slice = &segment->slices[slice_index]; mi_assert_internal(slice->xblock_size==0 || slice->xblock_size==1); // commit before changing the slice data if (!mi_segment_ensure_committed(segment, _mi_segment_page_start_from_slice(segment, slice, 0, NULL), slice_count * MI_SEGMENT_SLICE_SIZE, tld->stats)) { return NULL; // commit failed! } // convert the slices to a page slice->slice_offset = 0; slice->slice_count = (uint32_t)slice_count; mi_assert_internal(slice->slice_count == slice_count); const size_t bsize = slice_count * MI_SEGMENT_SLICE_SIZE; slice->xblock_size = (uint32_t)(bsize >= MI_HUGE_BLOCK_SIZE ? MI_HUGE_BLOCK_SIZE : bsize); mi_page_t* page = mi_slice_to_page(slice); mi_assert_internal(mi_page_block_size(page) == bsize); // set slice back pointers for the first MI_MAX_SLICE_OFFSET entries size_t extra = slice_count-1; if (extra > MI_MAX_SLICE_OFFSET) extra = MI_MAX_SLICE_OFFSET; if (slice_index + extra >= segment->slice_entries) extra = segment->slice_entries - slice_index - 1; // huge objects may have more slices than available entries in the segment->slices mi_slice_t* slice_next = slice + 1; for (size_t i = 1; i <= extra; i++, slice_next++) { slice_next->slice_offset = (uint32_t)(sizeof(mi_slice_t)*i); slice_next->slice_count = 0; slice_next->xblock_size = 1; } // and also for the last one (if not set already) (the last one is needed for coalescing and for large alignments) // note: the cast is needed for ubsan since the index can be larger than MI_SLICES_PER_SEGMENT for huge allocations (see #543) mi_slice_t* last = slice + slice_count - 1; mi_slice_t* end = (mi_slice_t*)mi_segment_slices_end(segment); if (last > end) last = end; if (last > slice) { last->slice_offset = (uint32_t)(sizeof(mi_slice_t) * (last - slice)); last->slice_count = 0; last->xblock_size = 1; } // and initialize the page page->is_committed = true; segment->used++; return page; } static void mi_segment_slice_split(mi_segment_t* segment, mi_slice_t* slice, size_t slice_count, mi_segments_tld_t* tld) { mi_assert_internal(_mi_ptr_segment(slice) == segment); mi_assert_internal(slice->slice_count >= slice_count); mi_assert_internal(slice->xblock_size > 0); // no more in free queue if (slice->slice_count <= slice_count) return; mi_assert_internal(segment->kind != MI_SEGMENT_HUGE); size_t next_index = mi_slice_index(slice) + slice_count; size_t next_count = slice->slice_count - slice_count; mi_segment_span_free(segment, next_index, next_count, false /* don't purge left-over part */, tld); slice->slice_count = (uint32_t)slice_count; } static mi_page_t* mi_segments_page_find_and_allocate(size_t slice_count, mi_arena_id_t req_arena_id, mi_segments_tld_t* tld) { mi_assert_internal(slice_count*MI_SEGMENT_SLICE_SIZE <= MI_LARGE_OBJ_SIZE_MAX); // search from best fit up mi_span_queue_t* sq = mi_span_queue_for(slice_count, tld); if (slice_count == 0) slice_count = 1; while (sq <= &tld->spans[MI_SEGMENT_BIN_MAX]) { for (mi_slice_t* slice = sq->first; slice != NULL; slice = slice->next) { if (slice->slice_count >= slice_count) { // found one mi_segment_t* segment = _mi_ptr_segment(slice); if (_mi_arena_memid_is_suitable(segment->memid, req_arena_id)) { // found a suitable page span mi_span_queue_delete(sq, slice); if (slice->slice_count > slice_count) { mi_segment_slice_split(segment, slice, slice_count, tld); } mi_assert_internal(slice != NULL && slice->slice_count == slice_count && slice->xblock_size > 0); mi_page_t* page = mi_segment_span_allocate(segment, mi_slice_index(slice), slice->slice_count, tld); if (page == NULL) { // commit failed; return NULL but first restore the slice mi_segment_span_free_coalesce(slice, tld); return NULL; } return page; } } } sq++; } // could not find a page.. return NULL; } /* ----------------------------------------------------------- Segment allocation ----------------------------------------------------------- */ static mi_segment_t* mi_segment_os_alloc( size_t required, size_t page_alignment, bool eager_delayed, mi_arena_id_t req_arena_id, size_t* psegment_slices, size_t* ppre_size, size_t* pinfo_slices, bool commit, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { mi_memid_t memid; bool allow_large = (!eager_delayed && (MI_SECURE == 0)); // only allow large OS pages once we are no longer lazy size_t align_offset = 0; size_t alignment = MI_SEGMENT_ALIGN; if (page_alignment > 0) { // mi_assert_internal(huge_page != NULL); mi_assert_internal(page_alignment >= MI_SEGMENT_ALIGN); alignment = page_alignment; const size_t info_size = (*pinfo_slices) * MI_SEGMENT_SLICE_SIZE; align_offset = _mi_align_up( info_size, MI_SEGMENT_ALIGN ); const size_t extra = align_offset - info_size; // recalculate due to potential guard pages *psegment_slices = mi_segment_calculate_slices(required + extra, ppre_size, pinfo_slices); // mi_page_t.slice_count type is uint32_t if (*psegment_slices > (size_t)UINT32_MAX) return NULL; } const size_t segment_size = (*psegment_slices) * MI_SEGMENT_SLICE_SIZE; mi_segment_t* segment = (mi_segment_t*)_mi_arena_alloc_aligned(segment_size, alignment, align_offset, commit, allow_large, req_arena_id, &memid, os_tld); if (segment == NULL) { return NULL; // failed to allocate } // ensure metadata part of the segment is committed mi_commit_mask_t commit_mask; if (memid.initially_committed) { mi_commit_mask_create_full(&commit_mask); } else { // at least commit the info slices const size_t commit_needed = _mi_divide_up((*pinfo_slices)*MI_SEGMENT_SLICE_SIZE, MI_COMMIT_SIZE); mi_assert_internal(commit_needed>0); mi_commit_mask_create(0, commit_needed, &commit_mask); mi_assert_internal(commit_needed*MI_COMMIT_SIZE >= (*pinfo_slices)*MI_SEGMENT_SLICE_SIZE); if (!_mi_os_commit(segment, commit_needed*MI_COMMIT_SIZE, NULL, tld->stats)) { _mi_arena_free(segment,segment_size,0,memid,tld->stats); return NULL; } } mi_assert_internal(segment != NULL && (uintptr_t)segment % MI_SEGMENT_SIZE == 0); segment->memid = memid; segment->allow_decommit = !memid.is_pinned; segment->allow_purge = segment->allow_decommit && (mi_option_get(mi_option_purge_delay) >= 0); segment->segment_size = segment_size; segment->commit_mask = commit_mask; segment->purge_expire = 0; mi_commit_mask_create_empty(&segment->purge_mask); mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL); // tsan mi_segments_track_size((long)(segment_size), tld); _mi_segment_map_allocated_at(segment); return segment; } // Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` . static mi_segment_t* mi_segment_alloc(size_t required, size_t page_alignment, mi_arena_id_t req_arena_id, mi_segments_tld_t* tld, mi_os_tld_t* os_tld, mi_page_t** huge_page) { mi_assert_internal((required==0 && huge_page==NULL) || (required>0 && huge_page != NULL)); // calculate needed sizes first size_t info_slices; size_t pre_size; size_t segment_slices = mi_segment_calculate_slices(required, &pre_size, &info_slices); // mi_page_t.slice_count type is uint32_t if (segment_slices > (size_t)UINT32_MAX) return NULL; // Commit eagerly only if not the first N lazy segments (to reduce impact of many threads that allocate just a little) const bool eager_delay = (// !_mi_os_has_overcommit() && // never delay on overcommit systems _mi_current_thread_count() > 1 && // do not delay for the first N threads tld->count < (size_t)mi_option_get(mi_option_eager_commit_delay)); const bool eager = !eager_delay && mi_option_is_enabled(mi_option_eager_commit); bool commit = eager || (required > 0); // Allocate the segment from the OS mi_segment_t* segment = mi_segment_os_alloc(required, page_alignment, eager_delay, req_arena_id, &segment_slices, &pre_size, &info_slices, commit, tld, os_tld); if (segment == NULL) return NULL; // zero the segment info? -- not always needed as it may be zero initialized from the OS if (!segment->memid.initially_zero) { ptrdiff_t ofs = offsetof(mi_segment_t, next); size_t prefix = offsetof(mi_segment_t, slices) - ofs; size_t zsize = prefix + (sizeof(mi_slice_t) * (segment_slices + 1)); // one more _mi_memzero((uint8_t*)segment + ofs, zsize); } // initialize the rest of the segment info const size_t slice_entries = (segment_slices > MI_SLICES_PER_SEGMENT ? MI_SLICES_PER_SEGMENT : segment_slices); segment->segment_slices = segment_slices; segment->segment_info_slices = info_slices; segment->thread_id = _mi_thread_id(); segment->cookie = _mi_ptr_cookie(segment); segment->slice_entries = slice_entries; segment->kind = (required == 0 ? MI_SEGMENT_NORMAL : MI_SEGMENT_HUGE); // _mi_memzero(segment->slices, sizeof(mi_slice_t)*(info_slices+1)); _mi_stat_increase(&tld->stats->page_committed, mi_segment_info_size(segment)); // set up guard pages size_t guard_slices = 0; if (MI_SECURE>0) { // in secure mode, we set up a protected page in between the segment info // and the page data, and at the end of the segment. size_t os_pagesize = _mi_os_page_size(); mi_assert_internal(mi_segment_info_size(segment) - os_pagesize >= pre_size); _mi_os_protect((uint8_t*)segment + mi_segment_info_size(segment) - os_pagesize, os_pagesize); uint8_t* end = (uint8_t*)segment + mi_segment_size(segment) - os_pagesize; mi_segment_ensure_committed(segment, end, os_pagesize, tld->stats); _mi_os_protect(end, os_pagesize); if (slice_entries == segment_slices) segment->slice_entries--; // don't use the last slice :-( guard_slices = 1; } // reserve first slices for segment info mi_page_t* page0 = mi_segment_span_allocate(segment, 0, info_slices, tld); mi_assert_internal(page0!=NULL); if (page0==NULL) return NULL; // cannot fail as we always commit in advance mi_assert_internal(segment->used == 1); segment->used = 0; // don't count our internal slices towards usage // initialize initial free pages if (segment->kind == MI_SEGMENT_NORMAL) { // not a huge page mi_assert_internal(huge_page==NULL); mi_segment_span_free(segment, info_slices, segment->slice_entries - info_slices, false /* don't purge */, tld); } else { mi_assert_internal(huge_page!=NULL); mi_assert_internal(mi_commit_mask_is_empty(&segment->purge_mask)); mi_assert_internal(mi_commit_mask_is_full(&segment->commit_mask)); *huge_page = mi_segment_span_allocate(segment, info_slices, segment_slices - info_slices - guard_slices, tld); mi_assert_internal(*huge_page != NULL); // cannot fail as we commit in advance } mi_assert_expensive(mi_segment_is_valid(segment,tld)); return segment; } static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t* tld) { MI_UNUSED(force); mi_assert_internal(segment != NULL); mi_assert_internal(segment->next == NULL); mi_assert_internal(segment->used == 0); // Remove the free pages mi_slice_t* slice = &segment->slices[0]; const mi_slice_t* end = mi_segment_slices_end(segment); #if MI_DEBUG>1 size_t page_count = 0; #endif while (slice < end) { mi_assert_internal(slice->slice_count > 0); mi_assert_internal(slice->slice_offset == 0); mi_assert_internal(mi_slice_index(slice)==0 || slice->xblock_size == 0); // no more used pages .. if (slice->xblock_size == 0 && segment->kind != MI_SEGMENT_HUGE) { mi_segment_span_remove_from_queue(slice, tld); } #if MI_DEBUG>1 page_count++; #endif slice = slice + slice->slice_count; } mi_assert_internal(page_count == 2); // first page is allocated by the segment itself // stats _mi_stat_decrease(&tld->stats->page_committed, mi_segment_info_size(segment)); // return it to the OS mi_segment_os_free(segment, tld); } /* ----------------------------------------------------------- Page Free ----------------------------------------------------------- */ static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld); // note: can be called on abandoned pages static mi_slice_t* mi_segment_page_clear(mi_page_t* page, mi_segments_tld_t* tld) { mi_assert_internal(page->xblock_size > 0); mi_assert_internal(mi_page_all_free(page)); mi_segment_t* segment = _mi_ptr_segment(page); mi_assert_internal(segment->used > 0); #ifdef Py_GIL_DISABLED mi_assert_internal(page->qsbr_goal == 0); mi_assert_internal(page->qsbr_node.next == NULL); #endif size_t inuse = page->capacity * mi_page_block_size(page); _mi_stat_decrease(&tld->stats->page_committed, inuse); _mi_stat_decrease(&tld->stats->pages, 1); // reset the page memory to reduce memory pressure? if (segment->allow_decommit && mi_option_is_enabled(mi_option_deprecated_page_reset)) { size_t psize; uint8_t* start = _mi_page_start(segment, page, &psize); _mi_os_reset(start, psize, tld->stats); } // zero the page data, but not the segment fields page->is_zero_init = false; ptrdiff_t ofs = offsetof(mi_page_t, capacity); _mi_memzero((uint8_t*)page + ofs, sizeof(*page) - ofs); page->xblock_size = 1; // and free it mi_slice_t* slice = mi_segment_span_free_coalesce(mi_page_to_slice(page), tld); segment->used--; // cannot assert segment valid as it is called during reclaim // mi_assert_expensive(mi_segment_is_valid(segment, tld)); return slice; } void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld) { mi_assert(page != NULL); mi_segment_t* segment = _mi_page_segment(page); mi_assert_expensive(mi_segment_is_valid(segment,tld)); // mark it as free now mi_segment_page_clear(page, tld); mi_assert_expensive(mi_segment_is_valid(segment, tld)); if (segment->used == 0) { // no more used pages; remove from the free list and free the segment mi_segment_free(segment, force, tld); } else if (segment->used == segment->abandoned) { // only abandoned pages; remove from free list and abandon mi_segment_abandon(segment,tld); } } /* ----------------------------------------------------------- Abandonment When threads terminate, they can leave segments with live blocks (reachable through other threads). Such segments are "abandoned" and will be reclaimed by other threads to reuse their pages and/or free them eventually We maintain a global list of abandoned segments that are reclaimed on demand. Since this is shared among threads the implementation needs to avoid the A-B-A problem on popping abandoned segments: We use tagged pointers to avoid accidentally identifying reused segments, much like stamped references in Java. Secondly, we maintain a reader counter to avoid resetting or decommitting segments that have a pending read operation. Note: the current implementation is one possible design; another way might be to keep track of abandoned segments in the arenas/segment_cache's. This would have the advantage of keeping all concurrent code in one place and not needing to deal with ABA issues. The drawback is that it is unclear how to scan abandoned segments efficiently in that case as they would be spread among all other segments in the arenas. ----------------------------------------------------------- */ // Use the bottom 20-bits (on 64-bit) of the aligned segment pointers // to put in a tag that increments on update to avoid the A-B-A problem. #define MI_TAGGED_MASK MI_SEGMENT_MASK static mi_segment_t* mi_tagged_segment_ptr(mi_tagged_segment_t ts) { return (mi_segment_t*)(ts & ~MI_TAGGED_MASK); } static mi_tagged_segment_t mi_tagged_segment(mi_segment_t* segment, mi_tagged_segment_t ts) { mi_assert_internal(((uintptr_t)segment & MI_TAGGED_MASK) == 0); uintptr_t tag = ((ts & MI_TAGGED_MASK) + 1) & MI_TAGGED_MASK; return ((uintptr_t)segment | tag); } mi_abandoned_pool_t _mi_abandoned_default; // Push on the visited list static void mi_abandoned_visited_push(mi_abandoned_pool_t *pool, mi_segment_t* segment) { mi_assert_internal(segment->thread_id == 0); mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t,&segment->abandoned_next) == NULL); mi_assert_internal(segment->next == NULL); mi_assert_internal(segment->used > 0); mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &pool->abandoned_visited); do { mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, anext); } while (!mi_atomic_cas_ptr_weak_release(mi_segment_t, &pool->abandoned_visited, &anext, segment)); mi_atomic_increment_relaxed(&pool->abandoned_visited_count); } // Move the visited list to the abandoned list. static bool mi_abandoned_visited_revisit(mi_abandoned_pool_t *pool) { // quick check if the visited list is empty if (mi_atomic_load_ptr_relaxed(mi_segment_t, &pool->abandoned_visited) == NULL) return false; // grab the whole visited list mi_segment_t* first = mi_atomic_exchange_ptr_acq_rel(mi_segment_t, &pool->abandoned_visited, NULL); if (first == NULL) return false; // first try to swap directly if the abandoned list happens to be NULL mi_tagged_segment_t afirst; mi_tagged_segment_t ts = mi_atomic_load_relaxed(&pool->abandoned); if (mi_tagged_segment_ptr(ts)==NULL) { size_t count = mi_atomic_load_relaxed(&pool->abandoned_visited_count); afirst = mi_tagged_segment(first, ts); if (mi_atomic_cas_strong_acq_rel(&pool->abandoned, &ts, afirst)) { mi_atomic_add_relaxed(&pool->abandoned_count, count); mi_atomic_sub_relaxed(&pool->abandoned_visited_count, count); return true; } } // find the last element of the visited list: O(n) mi_segment_t* last = first; mi_segment_t* next; while ((next = mi_atomic_load_ptr_relaxed(mi_segment_t, &last->abandoned_next)) != NULL) { last = next; } // and atomically prepend to the abandoned list // (no need to increase the readers as we don't access the abandoned segments) mi_tagged_segment_t anext = mi_atomic_load_relaxed(&pool->abandoned); size_t count; do { count = mi_atomic_load_relaxed(&pool->abandoned_visited_count); mi_atomic_store_ptr_release(mi_segment_t, &last->abandoned_next, mi_tagged_segment_ptr(anext)); afirst = mi_tagged_segment(first, anext); } while (!mi_atomic_cas_weak_release(&pool->abandoned, &anext, afirst)); mi_atomic_add_relaxed(&pool->abandoned_count, count); mi_atomic_sub_relaxed(&pool->abandoned_visited_count, count); return true; } // Push on the abandoned list. static void mi_abandoned_push(mi_abandoned_pool_t* pool, mi_segment_t* segment) { mi_assert_internal(segment->thread_id == 0); mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL); mi_assert_internal(segment->next == NULL); mi_assert_internal(segment->used > 0); mi_tagged_segment_t next; mi_tagged_segment_t ts = mi_atomic_load_relaxed(&pool->abandoned); do { mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, mi_tagged_segment_ptr(ts)); next = mi_tagged_segment(segment, ts); } while (!mi_atomic_cas_weak_release(&pool->abandoned, &ts, next)); mi_atomic_increment_relaxed(&pool->abandoned_count); } // Wait until there are no more pending reads on segments that used to be in the abandoned list // called for example from `arena.c` before decommitting void _mi_abandoned_await_readers(mi_abandoned_pool_t* pool) { size_t n; do { n = mi_atomic_load_acquire(&pool->abandoned_readers); if (n != 0) mi_atomic_yield(); } while (n != 0); } // Pop from the abandoned list static mi_segment_t* mi_abandoned_pop(mi_abandoned_pool_t* pool) { mi_segment_t* segment; // Check efficiently if it is empty (or if the visited list needs to be moved) mi_tagged_segment_t ts = mi_atomic_load_relaxed(&pool->abandoned); segment = mi_tagged_segment_ptr(ts); if mi_likely(segment == NULL) { if mi_likely(!mi_abandoned_visited_revisit(pool)) { // try to swap in the visited list on NULL return NULL; } } // Do a pop. We use a reader count to prevent // a segment to be decommitted while a read is still pending, // and a tagged pointer to prevent A-B-A link corruption. // (this is called from `region.c:_mi_mem_free` for example) mi_atomic_increment_relaxed(&pool->abandoned_readers); // ensure no segment gets decommitted mi_tagged_segment_t next = 0; ts = mi_atomic_load_acquire(&pool->abandoned); do { segment = mi_tagged_segment_ptr(ts); if (segment != NULL) { mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next); next = mi_tagged_segment(anext, ts); // note: reads the segment's `abandoned_next` field so should not be decommitted } } while (segment != NULL && !mi_atomic_cas_weak_acq_rel(&pool->abandoned, &ts, next)); mi_atomic_decrement_relaxed(&pool->abandoned_readers); // release reader lock if (segment != NULL) { mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL); mi_atomic_decrement_relaxed(&pool->abandoned_count); } return segment; } /* ----------------------------------------------------------- Abandon segment/page ----------------------------------------------------------- */ static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) { mi_assert_internal(segment->used == segment->abandoned); mi_assert_internal(segment->used > 0); mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL); mi_assert_internal(segment->abandoned_visits == 0); mi_assert_expensive(mi_segment_is_valid(segment,tld)); // remove the free pages from the free page queues mi_slice_t* slice = &segment->slices[0]; const mi_slice_t* end = mi_segment_slices_end(segment); while (slice < end) { mi_assert_internal(slice->slice_count > 0); mi_assert_internal(slice->slice_offset == 0); if (slice->xblock_size == 0) { // a free page mi_segment_span_remove_from_queue(slice,tld); slice->xblock_size = 0; // but keep it free } slice = slice + slice->slice_count; } // perform delayed decommits (forcing is much slower on mstress) mi_segment_try_purge(segment, mi_option_is_enabled(mi_option_abandoned_page_purge) /* force? */, tld->stats); // all pages in the segment are abandoned; add it to the abandoned list _mi_stat_increase(&tld->stats->segments_abandoned, 1); mi_segments_track_size(-((long)mi_segment_size(segment)), tld); segment->thread_id = 0; mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL); segment->abandoned_visits = 1; // from 0 to 1 to signify it is abandoned mi_abandoned_push(tld->abandoned, segment); } void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) { mi_assert(page != NULL); mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE); mi_assert_internal(mi_page_heap(page) == NULL); mi_segment_t* segment = _mi_page_segment(page); mi_assert_expensive(mi_segment_is_valid(segment,tld)); segment->abandoned++; _mi_stat_increase(&tld->stats->pages_abandoned, 1); mi_assert_internal(segment->abandoned <= segment->used); if (segment->used == segment->abandoned) { // all pages are abandoned, abandon the entire segment mi_segment_abandon(segment, tld); } } /* ----------------------------------------------------------- Reclaim abandoned pages ----------------------------------------------------------- */ static mi_slice_t* mi_slices_start_iterate(mi_segment_t* segment, const mi_slice_t** end) { mi_slice_t* slice = &segment->slices[0]; *end = mi_segment_slices_end(segment); mi_assert_internal(slice->slice_count>0 && slice->xblock_size>0); // segment allocated page slice = slice + slice->slice_count; // skip the first segment allocated page return slice; } // Possibly free pages and check if free space is available static bool mi_segment_check_free(mi_segment_t* segment, size_t slices_needed, size_t block_size, mi_segments_tld_t* tld) { mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE); mi_assert_internal(mi_segment_is_abandoned(segment)); bool has_page = false; // for all slices const mi_slice_t* end; mi_slice_t* slice = mi_slices_start_iterate(segment, &end); while (slice < end) { mi_assert_internal(slice->slice_count > 0); mi_assert_internal(slice->slice_offset == 0); if (mi_slice_is_used(slice)) { // used page // ensure used count is up to date and collect potential concurrent frees mi_page_t* const page = mi_slice_to_page(slice); _mi_page_free_collect(page, false); if (mi_page_all_free(page) && _PyMem_mi_page_is_safe_to_free(page)) { // if this page is all free now, free it without adding to any queues (yet) mi_assert_internal(page->next == NULL && page->prev==NULL); _mi_stat_decrease(&tld->stats->pages_abandoned, 1); #ifdef Py_GIL_DISABLED page->qsbr_goal = 0; #endif segment->abandoned--; slice = mi_segment_page_clear(page, tld); // re-assign slice due to coalesce! mi_assert_internal(!mi_slice_is_used(slice)); if (slice->slice_count >= slices_needed) { has_page = true; } } else { if (page->xblock_size == block_size && mi_page_has_any_available(page)) { // a page has available free blocks of the right size has_page = true; } } } else { // empty span if (slice->slice_count >= slices_needed) { has_page = true; } } slice = slice + slice->slice_count; } return has_page; } static mi_heap_t* mi_heap_by_tag(mi_heap_t* heap, uint8_t tag) { if (heap->tag == tag) { return heap; } for (mi_heap_t *curr = heap->tld->heaps; curr != NULL; curr = curr->next) { if (curr->tag == tag) { return curr; } } return NULL; } // Reclaim an abandoned segment; returns NULL if the segment was freed // set `right_page_reclaimed` to `true` if it reclaimed a page of the right `block_size` that was not full. static mi_segment_t* mi_segment_reclaim(mi_segment_t* segment, mi_heap_t* heap, size_t requested_block_size, bool* right_page_reclaimed, mi_segments_tld_t* tld) { mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL); mi_assert_expensive(mi_segment_is_valid(segment, tld)); if (right_page_reclaimed != NULL) { *right_page_reclaimed = false; } segment->thread_id = _mi_thread_id(); segment->abandoned_visits = 0; mi_segments_track_size((long)mi_segment_size(segment), tld); mi_assert_internal(segment->next == NULL); _mi_stat_decrease(&tld->stats->segments_abandoned, 1); // for all slices const mi_slice_t* end; mi_slice_t* slice = mi_slices_start_iterate(segment, &end); while (slice < end) { mi_assert_internal(slice->slice_count > 0); mi_assert_internal(slice->slice_offset == 0); if (mi_slice_is_used(slice)) { // in use: reclaim the page in our heap mi_page_t* page = mi_slice_to_page(slice); mi_heap_t* target_heap = mi_heap_by_tag(heap, page->tag); mi_assert_internal(page->is_committed); mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE); mi_assert_internal(mi_page_heap(page) == NULL); mi_assert_internal(page->next == NULL && page->prev==NULL); _mi_stat_decrease(&tld->stats->pages_abandoned, 1); segment->abandoned--; // set the heap again and allow delayed free again mi_page_set_heap(page, target_heap); _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, true); // override never (after heap is set) _mi_page_free_collect(page, false); // ensure used count is up to date if (mi_page_all_free(page) && _PyMem_mi_page_is_safe_to_free(page)) { // if everything free by now, free the page #ifdef Py_GIL_DISABLED page->qsbr_goal = 0; #endif slice = mi_segment_page_clear(page, tld); // set slice again due to coalesceing } else { // otherwise reclaim it into the heap _mi_page_reclaim(target_heap, page); if (requested_block_size == page->xblock_size && mi_page_has_any_available(page) && requested_block_size <= MI_MEDIUM_OBJ_SIZE_MAX && heap == target_heap) { if (right_page_reclaimed != NULL) { *right_page_reclaimed = true; } } } } else { // the span is free, add it to our page queues slice = mi_segment_span_free_coalesce(slice, tld); // set slice again due to coalesceing } mi_assert_internal(slice->slice_count>0 && slice->slice_offset==0); slice = slice + slice->slice_count; } mi_assert(segment->abandoned == 0); if (segment->used == 0) { // due to page_clear mi_assert_internal(right_page_reclaimed == NULL || !(*right_page_reclaimed)); mi_segment_free(segment, false, tld); return NULL; } else { return segment; } } void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld) { mi_segment_t* segment; while ((segment = mi_abandoned_pop(tld->abandoned)) != NULL) { mi_segment_reclaim(segment, heap, 0, NULL, tld); } } static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t needed_slices, size_t block_size, bool* reclaimed, mi_segments_tld_t* tld) { *reclaimed = false; mi_segment_t* segment; long max_tries = mi_option_get_clamp(mi_option_max_segment_reclaim, 8, 1024); // limit the work to bound allocation times while ((max_tries-- > 0) && ((segment = mi_abandoned_pop(tld->abandoned)) != NULL)) { segment->abandoned_visits++; // todo: an arena exclusive heap will potentially visit many abandoned unsuitable segments // and push them into the visited list and use many tries. Perhaps we can skip non-suitable ones in a better way? bool is_suitable = _mi_heap_memid_is_suitable(heap, segment->memid); bool has_page = mi_segment_check_free(segment,needed_slices,block_size,tld); // try to free up pages (due to concurrent frees) if (segment->used == 0) { // free the segment (by forced reclaim) to make it available to other threads. // note1: we prefer to free a segment as that might lead to reclaiming another // segment that is still partially used. // note2: we could in principle optimize this by skipping reclaim and directly // freeing but that would violate some invariants temporarily) mi_segment_reclaim(segment, heap, 0, NULL, tld); } else if (has_page && is_suitable) { // found a large enough free span, or a page of the right block_size with free space // we return the result of reclaim (which is usually `segment`) as it might free // the segment due to concurrent frees (in which case `NULL` is returned). return mi_segment_reclaim(segment, heap, block_size, reclaimed, tld); } else if (segment->abandoned_visits > 3 && is_suitable) { // always reclaim on 3rd visit to limit the abandoned queue length. mi_segment_reclaim(segment, heap, 0, NULL, tld); } else { // otherwise, push on the visited list so it gets not looked at too quickly again mi_segment_try_purge(segment, true /* force? */, tld->stats); // force purge if needed as we may not visit soon again mi_abandoned_visited_push(tld->abandoned, segment); } } return NULL; } void _mi_abandoned_collect(mi_heap_t* heap, bool force, mi_segments_tld_t* tld) { mi_segment_t* segment; mi_abandoned_pool_t* pool = tld->abandoned; int max_tries = (force ? 16*1024 : 1024); // limit latency if (force) { mi_abandoned_visited_revisit(pool); } while ((max_tries-- > 0) && ((segment = mi_abandoned_pop(pool)) != NULL)) { mi_segment_check_free(segment,0,0,tld); // try to free up pages (due to concurrent frees) if (segment->used == 0) { // free the segment (by forced reclaim) to make it available to other threads. // note: we could in principle optimize this by skipping reclaim and directly // freeing but that would violate some invariants temporarily) mi_segment_reclaim(segment, heap, 0, NULL, tld); } else { // otherwise, purge if needed and push on the visited list // note: forced purge can be expensive if many threads are destroyed/created as in mstress. mi_segment_try_purge(segment, force, tld->stats); mi_abandoned_visited_push(pool, segment); } } } /* ----------------------------------------------------------- Reclaim or allocate ----------------------------------------------------------- */ static mi_segment_t* mi_segment_reclaim_or_alloc(mi_heap_t* heap, size_t needed_slices, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE); mi_assert_internal(block_size <= MI_LARGE_OBJ_SIZE_MAX); // 1. try to reclaim an abandoned segment bool reclaimed; mi_segment_t* segment = mi_segment_try_reclaim(heap, needed_slices, block_size, &reclaimed, tld); if (reclaimed) { // reclaimed the right page right into the heap mi_assert_internal(segment != NULL); return NULL; // pretend out-of-memory as the page will be in the page queue of the heap with available blocks } else if (segment != NULL) { // reclaimed a segment with a large enough empty span in it return segment; } // 2. otherwise allocate a fresh segment return mi_segment_alloc(0, 0, heap->arena_id, tld, os_tld, NULL); } /* ----------------------------------------------------------- Page allocation ----------------------------------------------------------- */ static mi_page_t* mi_segments_page_alloc(mi_heap_t* heap, mi_page_kind_t page_kind, size_t required, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { mi_assert_internal(required <= MI_LARGE_OBJ_SIZE_MAX && page_kind <= MI_PAGE_LARGE); // find a free page size_t page_size = _mi_align_up(required, (required > MI_MEDIUM_PAGE_SIZE ? MI_MEDIUM_PAGE_SIZE : MI_SEGMENT_SLICE_SIZE)); size_t slices_needed = page_size / MI_SEGMENT_SLICE_SIZE; mi_assert_internal(slices_needed * MI_SEGMENT_SLICE_SIZE == page_size); mi_page_t* page = mi_segments_page_find_and_allocate(slices_needed, heap->arena_id, tld); //(required <= MI_SMALL_SIZE_MAX ? 0 : slices_needed), tld); if (page==NULL) { // no free page, allocate a new segment and try again if (mi_segment_reclaim_or_alloc(heap, slices_needed, block_size, tld, os_tld) == NULL) { // OOM or reclaimed a good page in the heap return NULL; } else { // otherwise try again return mi_segments_page_alloc(heap, page_kind, required, block_size, tld, os_tld); } } mi_assert_internal(page != NULL && page->slice_count*MI_SEGMENT_SLICE_SIZE == page_size); mi_assert_internal(_mi_ptr_segment(page)->thread_id == _mi_thread_id()); mi_segment_try_purge(_mi_ptr_segment(page), false, tld->stats); return page; } /* ----------------------------------------------------------- Huge page allocation ----------------------------------------------------------- */ static mi_page_t* mi_segment_huge_page_alloc(size_t size, size_t page_alignment, mi_arena_id_t req_arena_id, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { mi_page_t* page = NULL; mi_segment_t* segment = mi_segment_alloc(size,page_alignment,req_arena_id,tld,os_tld,&page); if (segment == NULL || page==NULL) return NULL; mi_assert_internal(segment->used==1); mi_assert_internal(mi_page_block_size(page) >= size); #if MI_HUGE_PAGE_ABANDON segment->thread_id = 0; // huge segments are immediately abandoned #endif // for huge pages we initialize the xblock_size as we may // overallocate to accommodate large alignments. size_t psize; uint8_t* start = _mi_segment_page_start(segment, page, &psize); page->xblock_size = (psize > MI_HUGE_BLOCK_SIZE ? MI_HUGE_BLOCK_SIZE : (uint32_t)psize); // decommit the part of the prefix of a page that will not be used; this can be quite large (close to MI_SEGMENT_SIZE) if (page_alignment > 0 && segment->allow_decommit) { uint8_t* aligned_p = (uint8_t*)_mi_align_up((uintptr_t)start, page_alignment); mi_assert_internal(_mi_is_aligned(aligned_p, page_alignment)); mi_assert_internal(psize - (aligned_p - start) >= size); uint8_t* decommit_start = start + sizeof(mi_block_t); // for the free list ptrdiff_t decommit_size = aligned_p - decommit_start; _mi_os_reset(decommit_start, decommit_size, &_mi_stats_main); // note: cannot use segment_decommit on huge segments } return page; } #if MI_HUGE_PAGE_ABANDON // free huge block from another thread void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) { // huge page segments are always abandoned and can be freed immediately by any thread mi_assert_internal(segment->kind==MI_SEGMENT_HUGE); mi_assert_internal(segment == _mi_page_segment(page)); mi_assert_internal(mi_atomic_load_relaxed(&segment->thread_id)==0); // claim it and free mi_heap_t* heap = mi_heap_get_default(); // issue #221; don't use the internal get_default_heap as we need to ensure the thread is initialized. // paranoia: if this it the last reference, the cas should always succeed size_t expected_tid = 0; if (mi_atomic_cas_strong_acq_rel(&segment->thread_id, &expected_tid, heap->thread_id)) { mi_block_set_next(page, block, page->free); page->free = block; page->used--; page->is_zero = false; mi_assert(page->used == 0); mi_tld_t* tld = heap->tld; _mi_segment_page_free(page, true, &tld->segments); } #if (MI_DEBUG!=0) else { mi_assert_internal(false); } #endif } #else // reset memory of a huge block from another thread void _mi_segment_huge_page_reset(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) { MI_UNUSED(page); mi_assert_internal(segment->kind == MI_SEGMENT_HUGE); mi_assert_internal(segment == _mi_page_segment(page)); mi_assert_internal(page->used == 1); // this is called just before the free mi_assert_internal(page->free == NULL); if (segment->allow_decommit) { size_t csize = mi_usable_size(block); if (csize > sizeof(mi_block_t)) { csize = csize - sizeof(mi_block_t); uint8_t* p = (uint8_t*)block + sizeof(mi_block_t); _mi_os_reset(p, csize, &_mi_stats_main); // note: cannot use segment_decommit on huge segments } } } #endif /* ----------------------------------------------------------- Page allocation and free ----------------------------------------------------------- */ mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, size_t page_alignment, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { mi_page_t* page; if mi_unlikely(page_alignment > MI_ALIGNMENT_MAX) { mi_assert_internal(_mi_is_power_of_two(page_alignment)); mi_assert_internal(page_alignment >= MI_SEGMENT_SIZE); if (page_alignment < MI_SEGMENT_SIZE) { page_alignment = MI_SEGMENT_SIZE; } page = mi_segment_huge_page_alloc(block_size,page_alignment,heap->arena_id,tld,os_tld); } else if (block_size <= MI_SMALL_OBJ_SIZE_MAX) { page = mi_segments_page_alloc(heap,MI_PAGE_SMALL,block_size,block_size,tld,os_tld); } else if (block_size <= MI_MEDIUM_OBJ_SIZE_MAX) { page = mi_segments_page_alloc(heap,MI_PAGE_MEDIUM,MI_MEDIUM_PAGE_SIZE,block_size,tld, os_tld); } else if (block_size <= MI_LARGE_OBJ_SIZE_MAX) { page = mi_segments_page_alloc(heap,MI_PAGE_LARGE,block_size,block_size,tld, os_tld); } else { page = mi_segment_huge_page_alloc(block_size,page_alignment,heap->arena_id,tld,os_tld); } mi_assert_internal(page == NULL || _mi_heap_memid_is_suitable(heap, _mi_page_segment(page)->memid)); mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld)); return page; } /* ----------------------------------------------------------- Visit blocks in abandoned segments ----------------------------------------------------------- */ static bool mi_segment_visit_page(mi_segment_t* segment, mi_page_t* page, bool visit_blocks, mi_block_visit_fun* visitor, void* arg) { mi_heap_area_t area; _mi_heap_area_init(&area, page); if (!visitor(NULL, &area, NULL, area.block_size, arg)) return false; if (visit_blocks) { return _mi_heap_area_visit_blocks(&area, page, visitor, arg); } else { return true; } } static bool mi_segment_visit_pages(mi_segment_t* segment, uint8_t page_tag, bool visit_blocks, mi_block_visit_fun* visitor, void* arg) { const mi_slice_t* end; mi_slice_t* slice = mi_slices_start_iterate(segment, &end); while (slice < end) { if (mi_slice_is_used(slice)) { mi_page_t* const page = mi_slice_to_page(slice); if (page->tag == page_tag) { if (!mi_segment_visit_page(segment, page, visit_blocks, visitor, arg)) return false; } } slice = slice + slice->slice_count; } return true; } // Visit all blocks in a abandoned segments bool _mi_abandoned_pool_visit_blocks(mi_abandoned_pool_t* pool, uint8_t page_tag, bool visit_blocks, mi_block_visit_fun* visitor, void* arg) { // Note: this is not safe in any other thread is abandoning or claiming segments from the pool mi_segment_t* segment = mi_tagged_segment_ptr(pool->abandoned); while (segment != NULL) { if (!mi_segment_visit_pages(segment, page_tag, visit_blocks, visitor, arg)) return false; segment = segment->abandoned_next; } segment = pool->abandoned_visited; while (segment != NULL) { if (!mi_segment_visit_pages(segment, page_tag, visit_blocks, visitor, arg)) return false; segment = segment->abandoned_next; } return true; }