This deprecates `st_ctime` fields on Windows, with the intent to change them to contain the correct value in 3.14. For now, they should keep returning the creation time as they always have.
Refactored the implementation of pty.fork to use os.login_tty.
A DeprecationWarning is now raised by pty.master_open() and pty.slave_open(). They were
undocumented and deprecated long long ago in the docstring in favor of pty.openpty.
Signed-off-by: Soumendra Ganguly <soumendraganguly@gmail.com>
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
Co-authored-by: Gregory P. Smith <greg@krypto.org>
This starts the process. Users who don't specify their own start method
and use the default on platforms where it is 'fork' will see a
DeprecationWarning upon multiprocessing.Pool() construction or upon
multiprocessing.Process.start() or concurrent.futures.ProcessPool use.
See the related issue and documentation within this change for details.
When testing element truth values, emit a DeprecationWarning in all implementations.
This had emitted a FutureWarning in the rarely used python-only implementation since ~2.7 and has always been documented as a behavior not to rely on.
Matching an element in a tree search but having it test False can be unexpected. Raising the warning enables making the choice to finally raise an exception for this ambiguous behavior in the future.
This PR adds support for float-style formatting for `Fraction` objects: it supports the `"e"`, `"E"`, `"f"`, `"F"`, `"g"`, `"G"` and `"%"` presentation types, and all the various bells and whistles of the formatting mini-language for those presentation types. The behaviour almost exactly matches that of `float`, but the implementation works with the exact `Fraction` value and does not do an intermediate conversion to `float`, and so avoids loss of precision or issues with numbers that are outside the dynamic range of the `float` type.
Note that the `"n"` presentation type is _not_ supported. That support could be added later if people have a need for it.
There's one corner-case where the behaviour differs from that of float: for the `float` type, if explicit alignment is specified with a fill character of `'0'` and alignment type `'='`, then thousands separators (if specified) are inserted into the padding string:
```python
>>> format(3.14, '0=11,.2f')
'0,000,003.14'
```
The exact same effect can be achieved by using the `'0'` flag:
```python
>>> format(3.14, '011,.2f')
'0,000,003.14'
```
For `Fraction`, only the `'0'` flag has the above behaviour with respect to thousands separators: there's no special-casing of the particular `'0='` fill-character/alignment combination. Instead, we treat the fill character `'0'` just like any other:
```python
>>> format(Fraction('3.14'), '0=11,.2f')
'00000003.14'
>>> format(Fraction('3.14'), '011,.2f')
'0,000,003.14'
```
The `Fraction` formatter is also stricter about combining these two things: it's not permitted to use both the `'0'` flag _and_ explicit alignment, on the basis that we should refuse the temptation to guess in the face of ambiguity. `float` is less picky:
```python
>>> format(3.14, '0<011,.2f')
'3.140000000'
>>> format(Fraction('3.14'), '0<011,.2f')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/mdickinson/Repositories/python/cpython/Lib/fractions.py", line 414, in __format__
raise ValueError(
ValueError: Invalid format specifier '0<011,.2f' for object of type 'Fraction'; can't use explicit alignment when zero-padding
```