These are the most popular specializations of `LOAD_ATTR` and `STORE_ATTR`
that weren't already viable uops:
* Split LOAD_ATTR_METHOD_WITH_VALUES
* Split LOAD_ATTR_METHOD_NO_DICT
* Split LOAD_ATTR_SLOT
* Split STORE_ATTR_SLOT
* Split STORE_ATTR_INSTANCE_VALUE
Also:
* Add `-v` flag to code generator which prints a list of non-viable uops
(easter-egg: it can print execution counts -- see source)
* Double _Py_UOP_MAX_TRACE_LENGTH to 128
I had dropped one of the DEOPT_IF() calls! :-(
PyImport_GetImporter() now sets RuntimeError if it fails to get sys.path_hooks
or sys.path_importer_cache or they are not list and dict correspondingly.
Previously it could return NULL without setting error in obscure cases,
crash or raise SystemError if these attributes have wrong type.
PyMutex is a one byte lock with fast, inlineable lock and unlock functions for the common uncontended case. The design is based on WebKit's WTF::Lock.
PyMutex is built using the _PyParkingLot APIs, which provides a cross-platform futex-like API (based on WebKit's WTF::ParkingLot). This internal API will be used for building other synchronization primitives used to implement PEP 703, such as one-time initialization and events.
This also includes tests and a mini benchmark in Tools/lockbench/lockbench.py to compare with the existing PyThread_type_lock.
Uncontended acquisition + release:
* Linux (x86-64): PyMutex: 11 ns, PyThread_type_lock: 44 ns
* macOS (arm64): PyMutex: 13 ns, PyThread_type_lock: 18 ns
* Windows (x86-64): PyMutex: 13 ns, PyThread_type_lock: 38 ns
PR Overview:
The primary purpose of this PR is to implement PyMutex, but there are a number of support pieces (described below).
* PyMutex: A 1-byte lock that doesn't require memory allocation to initialize and is generally faster than the existing PyThread_type_lock. The API is internal only for now.
* _PyParking_Lot: A futex-like API based on the API of the same name in WebKit. Used to implement PyMutex.
* _PyRawMutex: A word sized lock used to implement _PyParking_Lot.
* PyEvent: A one time event. This was used a bunch in the "nogil" fork and is useful for testing the PyMutex implementation, so I've included it as part of the PR.
* pycore_llist.h: Defines common operations on doubly-linked list. Not strictly necessary (could do the list operations manually), but they come up frequently in the "nogil" fork. ( Similar to https://man.freebsd.org/cgi/man.cgi?queue)
---------
Co-authored-by: Eric Snow <ericsnowcurrently@gmail.com>
There is a WIP proposal to enable webassembly stack switching which have been
implemented in v8:
https://github.com/WebAssembly/js-promise-integration
It is not possible to switch stacks that contain JS frames so the Emscripten JS
trampolines that allow calling functions with the wrong number of arguments
don't work in this case. However, the js-promise-integration proposal requires
the [type reflection for Wasm/JS API](https://github.com/WebAssembly/js-types)
proposal, which allows us to actually count the number of arguments a function
expects.
For better compatibility with stack switching, this PR checks if type reflection
is available, and if so we use a switch block to decide the appropriate
signature. If type reflection is unavailable, we should use the current EMJS
trampoline.
We cache the function argument counts since when I didn't cache them performance
was negatively affected.
Co-authored-by: T. Wouters <thomas@python.org>
Co-authored-by: Brett Cannon <brett@python.org>
I must have overlooked this when refactoring the code generator.
The Tier 1 interpreter contained a few silly things like
```
goto resume_frame;
STACK_SHRINK(1);
```
(and other variations, some where the unconditional `goto` was hidden in a macro).
* Rename SAVE_IP to _SET_IP
* Rename EXIT_TRACE to _EXIT_TRACE
* Rename SAVE_CURRENT_IP to _SAVE_CURRENT_IP
* Rename INSERT to _INSERT (This is for Ken Jin's abstract interpreter)
* Rename IS_NONE to _IS_NONE
* Rename JUMP_TO_TOP to _JUMP_TO_TOP
This adds a 16-bit inline cache entry to the conditional branch instructions POP_JUMP_IF_{FALSE,TRUE,NONE,NOT_NONE} and their instrumented variants, which is used to keep track of the branch direction.
Each time we encounter these instructions we shift the cache entry left by one and set the bottom bit to whether we jumped.
Then when it's time to translate such a branch to Tier 2 uops, we use the bit count from the cache entry to decided whether to continue translating the "didn't jump" branch or the "jumped" branch.
The counter is initialized to a pattern of alternating ones and zeros to avoid bias.
The .pyc file magic number is updated. There's a new test, some fixes for existing tests, and a few miscellaneous cleanups.
Fix _thread.start_new_thread() race condition. If a thread is created
during Python finalization, the newly spawned thread now exits
immediately instead of trying to access freed memory and lead to a
crash.
thread_run() calls PyEval_AcquireThread() which checks if the thread
must exit. The problem was that tstate was dereferenced earlier in
_PyThreadState_Bind() which leads to a crash most of the time.
Move _PyThreadState_CheckConsistency() from thread_run() to
_PyThreadState_Bind().
thread_run() of _threadmodule.c now calls
_PyThreadState_CheckConsistency() to check if tstate is a dangling
pointer when Python is built in debug mode.
Rename ceval_gil.c is_tstate_valid() to
_PyThreadState_CheckConsistency() to reuse it in _threadmodule.c.
Symbols of the C API should be prefixed by "Py_" to avoid conflict
with existing names in 3rd party C extensions on "#include <Python.h>".
test.pythoninfo now logs Py_C_RECURSION_LIMIT constant and other
_testcapi and _testinternalcapi constants.
Statistics gathering is now off by default. Use the "-X pystats"
command line option or set the new PYTHONSTATS environment variable
to 1 to turn statistics gathering on at Python startup.
Statistics are no longer dumped at exit if statistics gathering was
off or statistics have been cleared.
Changes:
* Add PYTHONSTATS environment variable.
* sys._stats_dump() now returns False if statistics are not dumped
because they are all equal to zero.
* Add PyConfig._pystats member.
* Add tests on sys functions and on setting PyConfig._pystats to 1.
* Add Include/cpython/pystats.h and Include/internal/pycore_pystats.h
header files.
* Rename '_py_stats' variable to '_Py_stats'.
* Exclude Include/cpython/pystats.h from the Py_LIMITED_API.
* Move pystats.h include from object.h to Python.h.
* Add _Py_StatsOn() and _Py_StatsOff() functions. Remove
'_py_stats_struct' variable from the API: make it static in
specialize.c.
* Document API in Include/pystats.h and Include/cpython/pystats.h.
* Complete pystats documentation in Doc/using/configure.rst.
* Don't write "all zeros" stats: if _stats_off() and _stats_clear()
or _stats_dump() were called.
* _PyEval_Fini() now always call _Py_PrintSpecializationStats() which
does nothing if stats are all zeros.
Co-authored-by: Michael Droettboom <mdboom@gmail.com>
Move the private _PyErr_WriteUnraisableMsg() functions to the
internal C API (pycore_pyerrors.h).
Move write_unraisable_exc() from _testcapi to _testinternalcapi.
Remove <ctype.h> in C files which don't use it; only sre.c and
_decimal.c still use it.
Remove _PY_PORT_CTYPE_UTF8_ISSUE code from pyport.h:
* Code added by commit b5047fd019
in 2004 for MacOSX and FreeBSD.
* Test removed by commit 52ddaefb6b
in 2007, since Python str type now uses locale independent
functions like Py_ISALPHA() and Py_TOLOWER() and the Unicode
database.
Modules/_sre/sre.c replaces _PY_PORT_CTYPE_UTF8_ISSUE with new
functions: sre_isalnum(), sre_tolower(), sre_toupper().
Remove unused includes:
* _localemodule.c: remove <stdio.h>.
* getargs.c: remove <float.h>.
* dynload_win.c: remove <direct.h>, it no longer calls _getcwd()
since commit fb1f68ed7c (in 2001).
Python.h no longer includes <time.h>, <sys/select.h> and <sys/time.h>
standard header files.
* Add <time.h> include to xxsubtype.c.
* Add <sys/time.h> include to posixmodule.c and semaphore.c.
* readline.c includes <sys/select.h> instead of <sys/time.h>.
* resource.c no longer includes <time.h> and <sys/time.h>.
Replace <ctype.h> locale dependent functions with Python "pyctype.h"
locale independent functions:
* Replace isalpha() with Py_ISALPHA().
* Replace isdigit() with Py_ISDIGIT().
* Replace isxdigit() with Py_ISXDIGIT().
* Replace tolower() with Py_TOLOWER().
Leave Modules/_sre/sre.c unchanged, it uses locale dependent
functions on purpose.
Include explicitly <ctype.h> in _decimal.c to get isascii().
pycore_create_interpreter() now returns a status, rather than
calling Py_FatalError().
* PyInterpreterState_New() now calls Py_ExitStatusException() instead
of calling Py_FatalError() directly.
* Replace Py_FatalError() with PyStatus in init_interpreter() and
_PyObject_InitState().
* _PyErr_SetFromPyStatus() now raises RuntimeError, instead of
ValueError. It can now call PyErr_NoMemory(), raise MemoryError,
if it detects _PyStatus_NO_MEMORY() error message.
Argument Clinic now only includes pycore_gc.h if PyGC_Head is needed,
and only includes pycore_runtime.h if _Py_ID() is needed.
* Add 'condition' optional argument to Clinic.add_include().
* deprecate_keyword_use() includes pycore_runtime.h when using
the _PyID() function.
* Fix rendering of includes: comments start at the column 35.
* Mark PC/clinic/_wmimodule.cpp.h and
"Objects/stringlib/clinic/*.h.h" header files as generated in
.gitattributes.
Effects:
* 42 header files generated by AC no longer include the internal C
API, instead of 4 header files before. For example,
Modules/clinic/_abc.c.h no longer includes the internal C API.
* Fix _testclinic_depr.c.h: it now always includes pycore_runtime.h
to get _Py_ID().
Python built with "configure --with-trace-refs" (tracing references)
is now ABI compatible with Python release build and debug build.
Moreover, it now also supports the Limited API.
Change Py_TRACE_REFS build:
* Remove _PyObject_EXTRA_INIT macro.
* The PyObject structure no longer has two extra members (_ob_prev
and _ob_next).
* Use a hash table (_Py_hashtable_t) to trace references (all
objects): PyInterpreterState.object_state.refchain.
* Py_TRACE_REFS build is now ABI compatible with release build and
debug build.
* Limited C API extensions can now be built with Py_TRACE_REFS:
xxlimited, xxlimited_35, _testclinic_limited.
* No longer rename PyModule_Create2() and PyModule_FromDefAndSpec2()
functions to PyModule_Create2TraceRefs() and
PyModule_FromDefAndSpec2TraceRefs().
* _Py_PrintReferenceAddresses() is now called before
finalize_interp_delete() which deletes the refchain hash table.
* test_tracemalloc find_trace() now also filters by size to ignore
the memory allocated by _PyRefchain_Trace().
Test changes for Py_TRACE_REFS:
* Add test.support.Py_TRACE_REFS constant.
* Add test_sys.test_getobjects() to test sys.getobjects() function.
* test_exceptions skips test_recursion_normalizing_with_no_memory()
and test_memory_error_in_PyErr_PrintEx() if Python is built with
Py_TRACE_REFS.
* test_repl skips test_no_memory().
* test_capi skisp test_set_nomemory().
Move PyUnstable_ExecutableKinds and associated macros from the
internal C API to the public C API.
Rename constants: replace "PY_" prefix with "PyUnstable_" prefix.
This mis-initialization caused the executor optimization to kick in sooner than intended. It also set the lower 4 bits of the counter to `1` -- those bits are supposed to be reserved (the actual counter is in the upper 12 bits).
Also remove NOP instructions.
The "stubs" are not optimized in this fashion (their SAVE_IP should always be preserved since it's where to jump next, and they don't contain NOPs by their nature).
Remove these private functions from the public C API:
* _PyRun_AnyFileObject()
* _PyRun_InteractiveLoopObject()
* _PyRun_SimpleFileObject()
* _Py_SourceAsString()
Move them to the internal C API: add a new pycore_pythonrun.h header
file. No longer export these functions.
* Rename _PyUnstable_GetUnaryIntrinsicName() to
PyUnstable_GetUnaryIntrinsicName()
* Rename _PyUnstable_GetBinaryIntrinsicName()
to PyUnstable_GetBinaryIntrinsicName().
Functions like PyErr_SetFromErrno() and SetFromWindowsErr() should be
called immediately after using the C API which sets errno or the Windows
error code.
Move these private functions to the internal C API
(pycore_abstract.h):
* _Py_convert_optional_to_ssize_t()
* _PyNumber_Index()
Argument Clinic now emits #include "pycore_abstract.h" when these
functions are used.
The parser of the c-analyzer tool now uses a list of files which use
the limited C API, rather than a list of files using the internal C
API.
Instead of using `GO_TO_INSTRUCTION(CALL_PY_EXACT_ARGS)` we just add the macro elements of the latter to the macro for the former. This requires lengthening the uops array in struct opcode_macro_expansion. (It also required changes to stacking.py that were merged already.)
Move private functions to the internal C API (pycore_sysmodule.h):
* _PySys_GetAttr()
* _PySys_GetSizeOf()
No longer export most of these functions.
Fix also a typo in Include/cpython/optimizer.h: add a missing space.
Move private functions to the internal C API (pycore_dict.h):
* _PyDictView_Intersect()
* _PyDictView_New()
* _PyDict_ContainsId()
* _PyDict_DelItemId()
* _PyDict_DelItem_KnownHash()
* _PyDict_GetItemIdWithError()
* _PyDict_GetItem_KnownHash()
* _PyDict_HasSplitTable()
* _PyDict_NewPresized()
* _PyDict_Next()
* _PyDict_Pop()
* _PyDict_SetItemId()
* _PyDict_SetItem_KnownHash()
* _PyDict_SizeOf()
No longer export most of these functions.
Move also the _PyDictViewObject structure to the internal C API.
Move dict_getitem_knownhash() function from _testcapi to the
_testinternalcapi extension. Update test_capi.test_dict for this
change.
I was comparing the last preceding poke with the *last* peek,
rather than the *first* peek.
Unfortunately this bug obscured another bug:
When the last preceding poke is UNUSED, the first peek disappears,
leaving the variable unassigned. This is how I fixed it:
- Rename CopyEffect to CopyItem.
- Change CopyItem to contain StackItems instead of StackEffects.
- Update those StackItems when adjusting the manager higher or lower.
- Assert that those StackItems' offsets are equivalent.
- Other clever things.
---------
Co-authored-by: Irit Katriel <1055913+iritkatriel@users.noreply.github.com>
Remove the internal _PyDict_GetItemStringWithError() function. It can
now be replaced with the new public PyDict_ContainsString() and
PyDict_GetItemStringRef() functions.
getargs.c now now uses a strong reference for current_arg.
find_keyword() returns a strong reference.
Replace _PyDict_GetItemStringWithError() calls with
PyDict_GetItemStringRef() which returns a strong reference to the
item.
Co-authored-by: Serhiy Storchaka <storchaka@gmail.com>
Replace PyDict_GetItem() calls with PyDict_GetItemRef()
or PyDict_GetItemWithError() to handle errors.
* Replace PyLong_AS_LONG() with _PyLong_AsInt()
and check for errors.
* Check for PyDict_Contains() error.
* pycore_init_builtins() checks for _PyType_Lookup() failure.
Remove private _PyDict_GetItemStringWithError() function of the
public C API: the new PyDict_GetItemStringRef() can be used instead.
* Move private _PyDict_GetItemStringWithError() to the internal C API.
* _testcapi get_code_extra_index() uses PyDict_GetItemStringRef().
Avoid using private functions in _testcapi which tests the public C
API.
Such C API functions as PyErr_SetString(), PyErr_Format(),
PyErr_SetFromErrnoWithFilename() and many others no longer crash or
ignore errors if it failed to format the error message or decode the
filename. Instead, they keep a corresponding error.
This finishes the work begun in gh-107760. When, while projecting a superblock, we encounter a call to a short, simple function, the superblock will now enter the function using `_PUSH_FRAME`, continue through it, and leave it using `_POP_FRAME`, and then continue through the original code. Multiple frame pushes and pops are even possible. It is also possible to stop appending to the superblock in the middle of a called function, when running out of space or encountering an unsupported bytecode.
* Split `CALL_PY_EXACT_ARGS` into uops
This is only the first step for doing `CALL` in Tier 2.
The next step involves tracing into the called code object and back.
After that we'll have to do the remaining `CALL` specialization.
Finally we'll have to deal with `KW_NAMES`.
Note: this moves setting `frame->return_offset` directly in front of
`DISPATCH_INLINED()`, to make it easier to move it into `_PUSH_FRAME`.
- The `dump_stack()` method could call a `__repr__` method implemented in Python,
causing (infinite) recursion.
I rewrote it to only print out the values for some fundamental types (`int`, `str`, etc.);
for everything else it just prints `<type_name @ 0xdeadbeef>`.
- The lltrace-like feature for uops wrote to `stderr`, while the one in `ceval.c` writes to `stdout`;
I changed the uops to write to stdout as well.
Introducing a new file, stacking.py, that takes over several responsibilities related to symbolic evaluation of push/pop operations, with more generality.
The linked list of objects was a global variable, which broke isolation between interpreters, causing crashes. To solve this, we've moved the linked list to each interpreter.
gh-107184 introduced a refleak in test_import.SubinterpImportTests (specifically test_singlephase_check_with_setting_and_override and test_single_init_extension_compat). We fix it here by making sure _testsinglephase is removed from sys.modules whenever we clear the runtime's internal state for the module.
The underlying problem is strictly contained in the internal function _PyImport_ClearExtension() (AKA _testinternalcapi.clear_extension()), which is only used in tests.
(This also fixes an intermittent segfault introduced in the same place, in test_disallowed_reimport.)
There's no need to use a dummy uop to skip unused cache entries. The macro syntax lets you write `unused/1` instead.
Similarly, move `unused/5` from op `_LOAD_ATTR_INSTANCE_VALUE` to macro `LOAD_ATTR_INSTANCE_VALUE`.
This fixes a crasher due to a race condition, triggered infrequently when two isolated (own GIL) subinterpreters simultaneously initialize their sys or builtins modules. The crash happened due the combination of the "detached" thread state we were using and the "last holder" logic we use for the GIL. It turns out it's tricky to use the same thread state for different threads. Who could have guessed?
We solve the problem by eliminating the one object we were still sharing between interpreters. We replace it with a low-level hashtable, using the "raw" allocator to avoid tying it to the main interpreter.
We also remove the accommodations for "detached" thread states, which were a dubious idea to start with.
The _xxsubinterpreters module should not rely on internal API. Some of the functions it uses were recently moved there however. Here we move them back (and expose them properly).
We tried this before with a dict and for all interned strings. That ran into problems due to interpreter isolation. However, exclusively using a per-interpreter cache caused some inconsistency that can eliminate the benefit of interning. Here we circle back to using a global cache, but only for statically allocated strings. We also use a more-basic _Py_hashtable_t for that global cache instead of a dict.
Ideally we would only have the global cache, but the optional isolation of each interpreter's allocator means that a non-static string object must not outlive its interpreter. Thus we would have to store a copy of each such interned string in the global cache, tied to the main interpreter.
Move private _PyDict functions to the internal C API (pycore_dict.h):
* _PyDict_Contains_KnownHash()
* _PyDict_DebugMallocStats()
* _PyDict_DelItemIf()
* _PyDict_GetItemWithError()
* _PyDict_HasOnlyStringKeys()
* _PyDict_MaybeUntrack()
* _PyDict_MergeEx()
No longer export these functions.
Move private debug _PyObject functions to the internal C API
(pycore_object.h):
* _PyDebugAllocatorStats()
* _PyObject_CheckConsistency()
* _PyObject_DebugTypeStats()
* _PyObject_IsFreed()
No longer export most of these functions, except of
_PyObject_IsFreed().
Move test functions using _PyObject_IsFreed() from _testcapi to
_testinternalcapi. check_pyobject_is_freed() test no longer catch
_testcapi.error: the tested function cannot raise _testcapi.error.
Rename private C API constants:
* Rename PY_MONITORING_UNGROUPED_EVENTS to _PY_MONITORING_UNGROUPED_EVENTS
* Rename PY_MONITORING_EVENTS to _PY_MONITORING_EVENTS
* No longer export most private _PyHash symbols, only export the ones
which are needed by shared extensions.
* Modules/_xxtestfuzz/fuzzer.c now uses the internal C API.
By turning `assert(kwnames == NULL)` into a macro that is not in the "forbidden" list, many instructions that formerly were skipped because they contained such an assert (but no other mention of `kwnames`) are now supported in Tier 2. This covers 10 instructions in total (all specializations of `CALL` that invoke some C code):
- `CALL_NO_KW_TYPE_1`
- `CALL_NO_KW_STR_1`
- `CALL_NO_KW_TUPLE_1`
- `CALL_NO_KW_BUILTIN_O`
- `CALL_NO_KW_BUILTIN_FAST`
- `CALL_NO_KW_LEN`
- `CALL_NO_KW_ISINSTANCE`
- `CALL_NO_KW_METHOD_DESCRIPTOR_O`
- `CALL_NO_KW_METHOD_DESCRIPTOR_NOARGS`
- `CALL_NO_KW_METHOD_DESCRIPTOR_FAST`
These aren't automatically translated because (ironically)
they are macros deferring to POP_JUMP_IF_{TRUE,FALSE},
which are not viable uops (being manually translated).
The hack is that we emit IS_NONE and then set opcode and
jump to the POP_JUMP_IF_{TRUE,FALSE} translation code.
The Tier 2 opcode _IS_ITER_EXHAUSTED_LIST (and _TUPLE)
didn't set it->it_seq to NULL, causing a subtle bug
that resulted in test_exhausted_iterator in list_tests.py
to fail when running all tests with -Xuops.
The bug was introduced in gh-106696.
Added this as an explicit test.
Also fixed the dependencies for ceval.o -- it depends on executor_cases.c.h.
This moves EXIT_TRACE, SAVE_IP, JUMP_TO_TOP, and
_POP_JUMP_IF_{FALSE,TRUE} from ceval.c to bytecodes.c.
They are no less special than before, but this way
they are discoverable o the copy-and-patch tooling.
During superblock generation, a JUMP_BACKWARD instruction is translated to either a JUMP_TO_TOP micro-op (when the target of the jump is exactly the beginning of the superblock, closing the loop), or a SAVE_IP + EXIT_TRACE pair, when the jump goes elsewhere.
The new JUMP_TO_TOP instruction includes a CHECK_EVAL_BREAKER() call, so a closed loop can still be interrupted.
* Convert PyObject_DelAttr() and PyObject_DelAttrString() macros to
functions.
* Add PyObject_DelAttr() and PyObject_DelAttrString() functions to
the stable ABI.
* Replace PyObject_SetAttr(obj, name, NULL) with
PyObject_DelAttr(obj, name).
- Hand-written uops JUMP_IF_{TRUE,FALSE}.
These peek at the top of the stack.
The jump target (in superblock space) is absolute.
- Hand-written translation for POP_JUMP_IF_{TRUE,FALSE},
assuming the jump is unlikely.
Once we implement jump-likelihood profiling,
we can implement the jump-unlikely case (in another PR).
- Tests (including some test cleanup).
- Improvements to len(ex) and ex[i] to expose the whole trace.