Rename private C API constants:
* Rename PY_MONITORING_UNGROUPED_EVENTS to _PY_MONITORING_UNGROUPED_EVENTS
* Rename PY_MONITORING_EVENTS to _PY_MONITORING_EVENTS
* No longer export most private _PyHash symbols, only export the ones
which are needed by shared extensions.
* Modules/_xxtestfuzz/fuzzer.c now uses the internal C API.
By turning `assert(kwnames == NULL)` into a macro that is not in the "forbidden" list, many instructions that formerly were skipped because they contained such an assert (but no other mention of `kwnames`) are now supported in Tier 2. This covers 10 instructions in total (all specializations of `CALL` that invoke some C code):
- `CALL_NO_KW_TYPE_1`
- `CALL_NO_KW_STR_1`
- `CALL_NO_KW_TUPLE_1`
- `CALL_NO_KW_BUILTIN_O`
- `CALL_NO_KW_BUILTIN_FAST`
- `CALL_NO_KW_LEN`
- `CALL_NO_KW_ISINSTANCE`
- `CALL_NO_KW_METHOD_DESCRIPTOR_O`
- `CALL_NO_KW_METHOD_DESCRIPTOR_NOARGS`
- `CALL_NO_KW_METHOD_DESCRIPTOR_FAST`
These aren't automatically translated because (ironically)
they are macros deferring to POP_JUMP_IF_{TRUE,FALSE},
which are not viable uops (being manually translated).
The hack is that we emit IS_NONE and then set opcode and
jump to the POP_JUMP_IF_{TRUE,FALSE} translation code.
The Tier 2 opcode _IS_ITER_EXHAUSTED_LIST (and _TUPLE)
didn't set it->it_seq to NULL, causing a subtle bug
that resulted in test_exhausted_iterator in list_tests.py
to fail when running all tests with -Xuops.
The bug was introduced in gh-106696.
Added this as an explicit test.
Also fixed the dependencies for ceval.o -- it depends on executor_cases.c.h.
This moves EXIT_TRACE, SAVE_IP, JUMP_TO_TOP, and
_POP_JUMP_IF_{FALSE,TRUE} from ceval.c to bytecodes.c.
They are no less special than before, but this way
they are discoverable o the copy-and-patch tooling.
During superblock generation, a JUMP_BACKWARD instruction is translated to either a JUMP_TO_TOP micro-op (when the target of the jump is exactly the beginning of the superblock, closing the loop), or a SAVE_IP + EXIT_TRACE pair, when the jump goes elsewhere.
The new JUMP_TO_TOP instruction includes a CHECK_EVAL_BREAKER() call, so a closed loop can still be interrupted.
* Convert PyObject_DelAttr() and PyObject_DelAttrString() macros to
functions.
* Add PyObject_DelAttr() and PyObject_DelAttrString() functions to
the stable ABI.
* Replace PyObject_SetAttr(obj, name, NULL) with
PyObject_DelAttr(obj, name).
- Hand-written uops JUMP_IF_{TRUE,FALSE}.
These peek at the top of the stack.
The jump target (in superblock space) is absolute.
- Hand-written translation for POP_JUMP_IF_{TRUE,FALSE},
assuming the jump is unlikely.
Once we implement jump-likelihood profiling,
we can implement the jump-unlikely case (in another PR).
- Tests (including some test cleanup).
- Improvements to len(ex) and ex[i] to expose the whole trace.
This adds several of unspecialized opcodes to superblocks:
TO_BOOL, BINARY_SUBSCR, STORE_SUBSCR,
UNPACK_SEQUENCE, LOAD_GLOBAL, LOAD_ATTR,
COMPARE_OP, BINARY_OP.
While we may not want that eventually, for now this helps finding bugs.
There is a rudimentary test checking for UNPACK_SEQUENCE.
Once we're ready to undo this, that would be simple:
just replace the call to variable_used_unspecialized
with a call to variable_used (as shown in a comment).
Or add individual opcdes to FORBIDDEN_NAMES_IN_UOPS.
Instead of special-casing specific instructions,
we add a few more special values to the 'size' field of expansions,
so in the future we can automatically handle
additional super-instructions in the generator.
The uops test wasn't testing anything by default,
and was failing when run with -Xuops.
Made the two executor-related context managers global,
so TestUops can use them (notably `with temporary_optimizer(opt)`).
Made clear_executor() a little more thorough.
Fixed a crash upon finalizing a uop optimizer,
by adding a `tp_dealloc` handler.
When `_PyOptimizer_BackEdge` returns `NULL`, we should restore `next_instr` (and `stack_pointer`). To accomplish this we should jump to `resume_with_error` instead of just `error`.
The problem this causes is subtle -- the only repro I have is in PR gh-106393, at commit d7df54b139bcc47f5ea094bfaa9824f79bc45adc. But the fix is real (as shown later in that PR).
While we're at it, also improve the debug output: the offsets at which traces are identified are now measured in bytes, and always show the start offset. This makes it easier to correlate executor calls with optimizer calls, and either with `dis` output.
<!-- gh-issue-number: gh-104584 -->
* Issue: gh-104584
<!-- /gh-issue-number -->