mirror of https://github.com/python/cpython
csv is a module again
This commit is contained in:
parent
04ae7056cf
commit
da4ec5a7bc
|
@ -1 +0,0 @@
|
|||
from csv import *
|
138
Lib/csv/csv.py
138
Lib/csv/csv.py
|
@ -1,138 +0,0 @@
|
|||
from _csv import Error, __version__, writer, reader, register_dialect, \
|
||||
unregister_dialect, get_dialect, list_dialects, \
|
||||
QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
|
||||
__doc__
|
||||
|
||||
__all__ = [ "QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
|
||||
"Error", "Dialect", "excel", "excel_tab", "reader", "writer",
|
||||
"register_dialect", "get_dialect", "list_dialects",
|
||||
"unregister_dialect", "__version__", "DictReader", "DictWriter" ]
|
||||
|
||||
class Dialect:
|
||||
_name = ""
|
||||
_valid = False
|
||||
# placeholders
|
||||
delimiter = None
|
||||
quotechar = None
|
||||
escapechar = None
|
||||
doublequote = None
|
||||
skipinitialspace = None
|
||||
lineterminator = None
|
||||
quoting = None
|
||||
|
||||
def __init__(self):
|
||||
if self.__class__ != Dialect:
|
||||
self._valid = True
|
||||
errors = self._validate()
|
||||
if errors != []:
|
||||
raise Error, "Dialect did not validate: %s" % ", ".join(errors)
|
||||
|
||||
def _validate(self):
|
||||
errors = []
|
||||
if not self._valid:
|
||||
errors.append("can't directly instantiate Dialect class")
|
||||
|
||||
if self.delimiter is None:
|
||||
errors.append("delimiter character not set")
|
||||
elif (not isinstance(self.delimiter, str) or
|
||||
len(self.delimiter) > 1):
|
||||
errors.append("delimiter must be one-character string")
|
||||
|
||||
if self.quotechar is None:
|
||||
if self.quoting != QUOTE_NONE:
|
||||
errors.append("quotechar not set")
|
||||
elif (not isinstance(self.quotechar, str) or
|
||||
len(self.quotechar) > 1):
|
||||
errors.append("quotechar must be one-character string")
|
||||
|
||||
if self.lineterminator is None:
|
||||
errors.append("lineterminator not set")
|
||||
elif not isinstance(self.lineterminator, str):
|
||||
errors.append("lineterminator must be a string")
|
||||
|
||||
if self.doublequote not in (True, False):
|
||||
errors.append("doublequote parameter must be True or False")
|
||||
|
||||
if self.skipinitialspace not in (True, False):
|
||||
errors.append("skipinitialspace parameter must be True or False")
|
||||
|
||||
if self.quoting is None:
|
||||
errors.append("quoting parameter not set")
|
||||
|
||||
if self.quoting is QUOTE_NONE:
|
||||
if (not isinstance(self.escapechar, (unicode, str)) or
|
||||
len(self.escapechar) > 1):
|
||||
errors.append("escapechar must be a one-character string or unicode object")
|
||||
|
||||
return errors
|
||||
|
||||
class excel(Dialect):
|
||||
delimiter = ','
|
||||
quotechar = '"'
|
||||
doublequote = True
|
||||
skipinitialspace = False
|
||||
lineterminator = '\r\n'
|
||||
quoting = QUOTE_MINIMAL
|
||||
register_dialect("excel", excel)
|
||||
|
||||
class excel_tab(excel):
|
||||
delimiter = '\t'
|
||||
register_dialect("excel-tab", excel_tab)
|
||||
|
||||
|
||||
class DictReader:
|
||||
def __init__(self, f, fieldnames, restkey=None, restval=None,
|
||||
dialect="excel", *args):
|
||||
self.fieldnames = fieldnames # list of keys for the dict
|
||||
self.restkey = restkey # key to catch long rows
|
||||
self.restval = restval # default value for short rows
|
||||
self.reader = reader(f, dialect, *args)
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def next(self):
|
||||
row = self.reader.next()
|
||||
# unlike the basic reader, we prefer not to return blanks,
|
||||
# because we will typically wind up with a dict full of None
|
||||
# values
|
||||
while row == []:
|
||||
row = self.reader.next()
|
||||
d = dict(zip(self.fieldnames, row))
|
||||
lf = len(self.fieldnames)
|
||||
lr = len(row)
|
||||
if lf < lr:
|
||||
d[self.restkey] = row[lf:]
|
||||
elif lf > lr:
|
||||
for key in self.fieldnames[lr:]:
|
||||
d[key] = self.restval
|
||||
return d
|
||||
|
||||
|
||||
class DictWriter:
|
||||
def __init__(self, f, fieldnames, restval="", extrasaction="raise",
|
||||
dialect="excel", *args):
|
||||
self.fieldnames = fieldnames # list of keys for the dict
|
||||
self.restval = restval # for writing short dicts
|
||||
if extrasaction.lower() not in ("raise", "ignore"):
|
||||
raise ValueError, \
|
||||
("extrasaction (%s) must be 'raise' or 'ignore'" %
|
||||
extrasaction)
|
||||
self.extrasaction = extrasaction
|
||||
self.writer = writer(f, dialect, *args)
|
||||
|
||||
def _dict_to_list(self, rowdict):
|
||||
if self.extrasaction == "raise":
|
||||
for k in rowdict.keys():
|
||||
if k not in self.fieldnames:
|
||||
raise ValueError, "dict contains fields not in fieldnames"
|
||||
return [rowdict.get(key, self.restval) for key in self.fieldnames]
|
||||
|
||||
def writerow(self, rowdict):
|
||||
return self.writer.writerow(self._dict_to_list(rowdict))
|
||||
|
||||
def writerows(self, rowdicts):
|
||||
rows = []
|
||||
for rowdict in rowdicts:
|
||||
rows.append(self._dict_to_list(rowdict))
|
||||
return self.writer.writerows(rows)
|
|
@ -1,286 +0,0 @@
|
|||
"""
|
||||
dialect = Sniffer().sniff(file('csv/easy.csv'))
|
||||
print "delimiter", dialect.delimiter
|
||||
print "quotechar", dialect.quotechar
|
||||
print "skipinitialspace", dialect.skipinitialspace
|
||||
"""
|
||||
|
||||
from csv import csv
|
||||
import re
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
class Sniffer:
|
||||
"""
|
||||
"Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
|
||||
Returns a csv.Dialect object.
|
||||
"""
|
||||
def __init__(self, sample = 16 * 1024):
|
||||
# in case there is more than one possible delimiter
|
||||
self.preferred = [',', '\t', ';', ' ', ':']
|
||||
|
||||
# amount of data (in bytes) to sample
|
||||
self.sample = sample
|
||||
|
||||
|
||||
def sniff(self, fileobj):
|
||||
"""
|
||||
Takes a file-like object and returns a dialect (or None)
|
||||
"""
|
||||
|
||||
self.fileobj = fileobj
|
||||
|
||||
data = fileobj.read(self.sample)
|
||||
|
||||
quotechar, delimiter, skipinitialspace = self._guessQuoteAndDelimiter(data)
|
||||
if delimiter is None:
|
||||
delimiter, skipinitialspace = self._guessDelimiter(data)
|
||||
|
||||
class Dialect(csv.Dialect):
|
||||
_name = "sniffed"
|
||||
lineterminator = '\r\n'
|
||||
quoting = csv.QUOTE_MINIMAL
|
||||
# escapechar = ''
|
||||
doublequote = False
|
||||
Dialect.delimiter = delimiter
|
||||
Dialect.quotechar = quotechar
|
||||
Dialect.skipinitialspace = skipinitialspace
|
||||
|
||||
self.dialect = Dialect
|
||||
return self.dialect
|
||||
|
||||
|
||||
def hasHeaders(self):
|
||||
return self._hasHeaders(self.fileobj, self.dialect)
|
||||
|
||||
|
||||
def register_dialect(self, name = 'sniffed'):
|
||||
csv.register_dialect(name, self.dialect)
|
||||
|
||||
|
||||
def _guessQuoteAndDelimiter(self, data):
|
||||
"""
|
||||
Looks for text enclosed between two identical quotes
|
||||
(the probable quotechar) which are preceded and followed
|
||||
by the same character (the probable delimiter).
|
||||
For example:
|
||||
,'some text',
|
||||
The quote with the most wins, same with the delimiter.
|
||||
If there is no quotechar the delimiter can't be determined
|
||||
this way.
|
||||
"""
|
||||
|
||||
matches = []
|
||||
for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
|
||||
'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?",
|
||||
'(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?"
|
||||
'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space)
|
||||
regexp = re.compile(restr, re.S | re.M)
|
||||
matches = regexp.findall(data)
|
||||
if matches:
|
||||
break
|
||||
|
||||
if not matches:
|
||||
return ('', None, 0) # (quotechar, delimiter, skipinitialspace)
|
||||
|
||||
quotes = {}
|
||||
delims = {}
|
||||
spaces = 0
|
||||
for m in matches:
|
||||
n = regexp.groupindex['quote'] - 1
|
||||
key = m[n]
|
||||
if key:
|
||||
quotes[key] = quotes.get(key, 0) + 1
|
||||
try:
|
||||
n = regexp.groupindex['delim'] - 1
|
||||
key = m[n]
|
||||
except KeyError:
|
||||
continue
|
||||
if key:
|
||||
delims[key] = delims.get(key, 0) + 1
|
||||
try:
|
||||
n = regexp.groupindex['space'] - 1
|
||||
except KeyError:
|
||||
continue
|
||||
if m[n]:
|
||||
spaces += 1
|
||||
|
||||
quotechar = reduce(lambda a, b, quotes = quotes:
|
||||
(quotes[a] > quotes[b]) and a or b, quotes.keys())
|
||||
|
||||
if delims:
|
||||
delim = reduce(lambda a, b, delims = delims:
|
||||
(delims[a] > delims[b]) and a or b, delims.keys())
|
||||
skipinitialspace = delims[delim] == spaces
|
||||
if delim == '\n': # most likely a file with a single column
|
||||
delim = ''
|
||||
else:
|
||||
# there is *no* delimiter, it's a single column of quoted data
|
||||
delim = ''
|
||||
skipinitialspace = 0
|
||||
|
||||
return (quotechar, delim, skipinitialspace)
|
||||
|
||||
|
||||
def _guessDelimiter(self, data):
|
||||
"""
|
||||
The delimiter /should/ occur the same number of times on
|
||||
each row. However, due to malformed data, it may not. We don't want
|
||||
an all or nothing approach, so we allow for small variations in this
|
||||
number.
|
||||
1) build a table of the frequency of each character on every line.
|
||||
2) build a table of freqencies of this frequency (meta-frequency?),
|
||||
e.g. "x occurred 5 times in 10 rows, 6 times in 1000 rows,
|
||||
7 times in 2 rows"
|
||||
3) use the mode of the meta-frequency to determine the /expected/
|
||||
frequency for that character
|
||||
4) find out how often the character actually meets that goal
|
||||
5) the character that best meets its goal is the delimiter
|
||||
For performance reasons, the data is evaluated in chunks, so it can
|
||||
try and evaluate the smallest portion of the data possible, evaluating
|
||||
additional chunks as necessary.
|
||||
"""
|
||||
|
||||
data = filter(None, data.split('\n'))
|
||||
|
||||
ascii = [chr(c) for c in range(127)] # 7-bit ASCII
|
||||
|
||||
# build frequency tables
|
||||
chunkLength = min(10, len(data))
|
||||
iteration = 0
|
||||
charFrequency = {}
|
||||
modes = {}
|
||||
delims = {}
|
||||
start, end = 0, min(chunkLength, len(data))
|
||||
while start < len(data):
|
||||
iteration += 1
|
||||
for line in data[start:end]:
|
||||
for char in ascii:
|
||||
metafrequency = charFrequency.get(char, {})
|
||||
freq = line.strip().count(char) # must count even if frequency is 0
|
||||
metafrequency[freq] = metafrequency.get(freq, 0) + 1 # value is the mode
|
||||
charFrequency[char] = metafrequency
|
||||
|
||||
for char in charFrequency.keys():
|
||||
items = charFrequency[char].items()
|
||||
if len(items) == 1 and items[0][0] == 0:
|
||||
continue
|
||||
# get the mode of the frequencies
|
||||
if len(items) > 1:
|
||||
modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b, items)
|
||||
# adjust the mode - subtract the sum of all other frequencies
|
||||
items.remove(modes[char])
|
||||
modes[char] = (modes[char][0], modes[char][1]
|
||||
- reduce(lambda a, b: (0, a[1] + b[1]), items)[1])
|
||||
else:
|
||||
modes[char] = items[0]
|
||||
|
||||
# build a list of possible delimiters
|
||||
modeList = modes.items()
|
||||
total = float(chunkLength * iteration)
|
||||
consistency = 1.0 # (rows of consistent data) / (number of rows) = 100%
|
||||
threshold = 0.9 # minimum consistency threshold
|
||||
while len(delims) == 0 and consistency >= threshold:
|
||||
for k, v in modeList:
|
||||
if v[0] > 0 and v[1] > 0:
|
||||
if (v[1]/total) >= consistency:
|
||||
delims[k] = v
|
||||
consistency -= 0.01
|
||||
|
||||
if len(delims) == 1:
|
||||
delim = delims.keys()[0]
|
||||
skipinitialspace = data[0].count(delim) == data[0].count("%c " % delim)
|
||||
return (delim, skipinitialspace)
|
||||
|
||||
# analyze another chunkLength lines
|
||||
start = end
|
||||
end += chunkLength
|
||||
|
||||
if not delims:
|
||||
return ('', 0)
|
||||
|
||||
# if there's more than one, fall back to a 'preferred' list
|
||||
if len(delims) > 1:
|
||||
for d in self.preferred:
|
||||
if d in delims.keys():
|
||||
skipinitialspace = data[0].count(d) == data[0].count("%c " % d)
|
||||
return (d, skipinitialspace)
|
||||
|
||||
# finally, just return the first damn character in the list
|
||||
delim = delims.keys()[0]
|
||||
skipinitialspace = data[0].count(delim) == data[0].count("%c " % delim)
|
||||
return (delim, skipinitialspace)
|
||||
|
||||
|
||||
def _hasHeaders(self, fileobj, dialect):
|
||||
# Creates a dictionary of types of data in each column. If any column
|
||||
# is of a single type (say, integers), *except* for the first row, then the first
|
||||
# row is presumed to be labels. If the type can't be determined, it is assumed to
|
||||
# be a string in which case the length of the string is the determining factor: if
|
||||
# all of the rows except for the first are the same length, it's a header.
|
||||
# Finally, a 'vote' is taken at the end for each column, adding or subtracting from
|
||||
# the likelihood of the first row being a header.
|
||||
|
||||
def seval(item):
|
||||
"""
|
||||
Strips parens from item prior to calling eval in an attempt to make it safer
|
||||
"""
|
||||
return eval(item.replace('(', '').replace(')', ''))
|
||||
|
||||
fileobj.seek(0) # rewind the fileobj - this might not work for some file-like objects...
|
||||
|
||||
reader = csv.reader(fileobj,
|
||||
delimiter = dialect.delimiter,
|
||||
quotechar = dialect.quotechar,
|
||||
skipinitialspace = dialect.skipinitialspace)
|
||||
|
||||
header = reader.next() # assume first row is header
|
||||
|
||||
columns = len(header)
|
||||
columnTypes = {}
|
||||
for i in range(columns): columnTypes[i] = None
|
||||
|
||||
checked = 0
|
||||
for row in reader:
|
||||
if checked > 20: # arbitrary number of rows to check, to keep it sane
|
||||
break
|
||||
checked += 1
|
||||
|
||||
if len(row) != columns:
|
||||
continue # skip rows that have irregular number of columns
|
||||
|
||||
for col in columnTypes.keys():
|
||||
try:
|
||||
try:
|
||||
# is it a built-in type (besides string)?
|
||||
thisType = type(seval(row[col]))
|
||||
except OverflowError:
|
||||
# a long int?
|
||||
thisType = type(seval(row[col] + 'L'))
|
||||
thisType = type(0) # treat long ints as int
|
||||
except:
|
||||
# fallback to length of string
|
||||
thisType = len(row[col])
|
||||
|
||||
if thisType != columnTypes[col]:
|
||||
if columnTypes[col] is None: # add new column type
|
||||
columnTypes[col] = thisType
|
||||
else: # type is inconsistent, remove column from consideration
|
||||
del columnTypes[col]
|
||||
|
||||
# finally, compare results against first row and "vote" on whether it's a header
|
||||
hasHeader = 0
|
||||
for col, colType in columnTypes.items():
|
||||
if type(colType) == type(0): # it's a length
|
||||
if len(header[col]) != colType:
|
||||
hasHeader += 1
|
||||
else:
|
||||
hasHeader -= 1
|
||||
else: # attempt typecast
|
||||
try:
|
||||
eval("%s(%s)" % (colType.__name__, header[col]))
|
||||
except:
|
||||
hasHeader += 1
|
||||
else:
|
||||
hasHeader -= 1
|
||||
|
||||
return hasHeader > 0
|
Loading…
Reference in New Issue