From c52996785a45d4693857ea219e040777a14584f8 Mon Sep 17 00:00:00 2001 From: Mark Dickinson Date: Sun, 2 Jun 2019 10:24:06 +0100 Subject: [PATCH] bpo-36027: Extend three-argument pow to negative second argument (GH-13266) --- Doc/library/functions.rst | 21 ++- Doc/whatsnew/3.8.rst | 6 + Lib/test/test_builtin.py | 3 +- Lib/test/test_pow.py | 26 ++++ .../2019-05-12-18-46-50.bpo-36027.Q4YatQ.rst | 3 + Objects/longobject.c | 130 ++++++++++++++++-- 6 files changed, 173 insertions(+), 16 deletions(-) create mode 100644 Misc/NEWS.d/next/Core and Builtins/2019-05-12-18-46-50.bpo-36027.Q4YatQ.rst diff --git a/Doc/library/functions.rst b/Doc/library/functions.rst index d5c9f18c79b..415a65b4946 100644 --- a/Doc/library/functions.rst +++ b/Doc/library/functions.rst @@ -1277,9 +1277,24 @@ are always available. They are listed here in alphabetical order. operands, the result has the same type as the operands (after coercion) unless the second argument is negative; in that case, all arguments are converted to float and a float result is delivered. For example, ``10**2`` - returns ``100``, but ``10**-2`` returns ``0.01``. If the second argument is - negative, the third argument must be omitted. If *z* is present, *x* and *y* - must be of integer types, and *y* must be non-negative. + returns ``100``, but ``10**-2`` returns ``0.01``. + + For :class:`int` operands *x* and *y*, if *z* is present, *z* must also be + of integer type and *z* must be nonzero. If *z* is present and *y* is + negative, *x* must be relatively prime to *z*. In that case, ``pow(inv_x, + -y, z)`` is returned, where *inv_x* is an inverse to *x* modulo *z*. + + Here's an example of computing an inverse for ``38`` modulo ``97``:: + + >>> pow(38, -1, 97) + 23 + >>> 23 * 38 % 97 == 1 + True + + .. versionchanged:: 3.8 + For :class:`int` operands, the three-argument form of ``pow`` now allows + the second argument to be negative, permitting computation of modular + inverses. .. function:: print(*objects, sep=' ', end='\\n', file=sys.stdout, flush=False) diff --git a/Doc/whatsnew/3.8.rst b/Doc/whatsnew/3.8.rst index 591b4548837..74d0079a53d 100644 --- a/Doc/whatsnew/3.8.rst +++ b/Doc/whatsnew/3.8.rst @@ -304,6 +304,12 @@ Other Language Changes * Added new ``replace()`` method to the code type (:class:`types.CodeType`). (Contributed by Victor Stinner in :issue:`37032`.) +* For integers, the three-argument form of the :func:`pow` function now permits + the exponent to be negative in the case where the base is relatively prime to + the modulus. It then computes a modular inverse to the base when the exponent + is ``-1``, and a suitable power of that inverse for other negative exponents. + (Contributed by Mark Dickinson in :issue:`36027`.) + New Modules =========== diff --git a/Lib/test/test_builtin.py b/Lib/test/test_builtin.py index e32fb75d819..b536cec0648 100644 --- a/Lib/test/test_builtin.py +++ b/Lib/test/test_builtin.py @@ -1195,7 +1195,8 @@ class BuiltinTest(unittest.TestCase): self.assertAlmostEqual(pow(-1, 0.5), 1j) self.assertAlmostEqual(pow(-1, 1/3), 0.5 + 0.8660254037844386j) - self.assertRaises(ValueError, pow, -1, -2, 3) + # See test_pow for additional tests for three-argument pow. + self.assertEqual(pow(-1, -2, 3), 1) self.assertRaises(ValueError, pow, 1, 2, 0) self.assertRaises(TypeError, pow) diff --git a/Lib/test/test_pow.py b/Lib/test/test_pow.py index cac1ae5ea2d..660ff80bbf5 100644 --- a/Lib/test/test_pow.py +++ b/Lib/test/test_pow.py @@ -1,3 +1,4 @@ +import math import unittest class PowTest(unittest.TestCase): @@ -119,5 +120,30 @@ class PowTest(unittest.TestCase): eq(pow(a, -fiveto), expected) eq(expected, 1.0) # else we didn't push fiveto to evenness + def test_negative_exponent(self): + for a in range(-50, 50): + for m in range(-50, 50): + with self.subTest(a=a, m=m): + if m != 0 and math.gcd(a, m) == 1: + # Exponent -1 should give an inverse, with the + # same sign as m. + inv = pow(a, -1, m) + self.assertEqual(inv, inv % m) + self.assertEqual((inv * a - 1) % m, 0) + + # Larger exponents + self.assertEqual(pow(a, -2, m), pow(inv, 2, m)) + self.assertEqual(pow(a, -3, m), pow(inv, 3, m)) + self.assertEqual(pow(a, -1001, m), pow(inv, 1001, m)) + + else: + with self.assertRaises(ValueError): + pow(a, -1, m) + with self.assertRaises(ValueError): + pow(a, -2, m) + with self.assertRaises(ValueError): + pow(a, -1001, m) + + if __name__ == "__main__": unittest.main() diff --git a/Misc/NEWS.d/next/Core and Builtins/2019-05-12-18-46-50.bpo-36027.Q4YatQ.rst b/Misc/NEWS.d/next/Core and Builtins/2019-05-12-18-46-50.bpo-36027.Q4YatQ.rst new file mode 100644 index 00000000000..866309cddc6 --- /dev/null +++ b/Misc/NEWS.d/next/Core and Builtins/2019-05-12-18-46-50.bpo-36027.Q4YatQ.rst @@ -0,0 +1,3 @@ +Allow computation of modular inverses via three-argument ``pow``: the second +argument is now permitted to be negative in the case where the first and +third arguments are relatively prime. diff --git a/Objects/longobject.c b/Objects/longobject.c index 5d2b595621f..49f1420bf64 100644 --- a/Objects/longobject.c +++ b/Objects/longobject.c @@ -4174,6 +4174,98 @@ long_divmod(PyObject *a, PyObject *b) return z; } + +/* Compute an inverse to a modulo n, or raise ValueError if a is not + invertible modulo n. Assumes n is positive. The inverse returned + is whatever falls out of the extended Euclidean algorithm: it may + be either positive or negative, but will be smaller than n in + absolute value. + + Pure Python equivalent for long_invmod: + + def invmod(a, n): + b, c = 1, 0 + while n: + q, r = divmod(a, n) + a, b, c, n = n, c, b - q*c, r + + # at this point a is the gcd of the original inputs + if a == 1: + return b + raise ValueError("Not invertible") +*/ + +static PyLongObject * +long_invmod(PyLongObject *a, PyLongObject *n) +{ + PyLongObject *b, *c; + + /* Should only ever be called for positive n */ + assert(Py_SIZE(n) > 0); + + b = (PyLongObject *)PyLong_FromLong(1L); + if (b == NULL) { + return NULL; + } + c = (PyLongObject *)PyLong_FromLong(0L); + if (c == NULL) { + Py_DECREF(b); + return NULL; + } + Py_INCREF(a); + Py_INCREF(n); + + /* references now owned: a, b, c, n */ + while (Py_SIZE(n) != 0) { + PyLongObject *q, *r, *s, *t; + + if (l_divmod(a, n, &q, &r) == -1) { + goto Error; + } + Py_DECREF(a); + a = n; + n = r; + t = (PyLongObject *)long_mul(q, c); + Py_DECREF(q); + if (t == NULL) { + goto Error; + } + s = (PyLongObject *)long_sub(b, t); + Py_DECREF(t); + if (s == NULL) { + goto Error; + } + Py_DECREF(b); + b = c; + c = s; + } + /* references now owned: a, b, c, n */ + + Py_DECREF(c); + Py_DECREF(n); + if (long_compare(a, _PyLong_One)) { + /* a != 1; we don't have an inverse. */ + Py_DECREF(a); + Py_DECREF(b); + PyErr_SetString(PyExc_ValueError, + "base is not invertible for the given modulus"); + return NULL; + } + else { + /* a == 1; b gives an inverse modulo n */ + Py_DECREF(a); + return b; + } + + Error: + Py_DECREF(a); + Py_DECREF(b); + Py_DECREF(c); + Py_DECREF(n); + return NULL; +} + + /* pow(v, w, x) */ static PyObject * long_pow(PyObject *v, PyObject *w, PyObject *x) @@ -4207,20 +4299,14 @@ long_pow(PyObject *v, PyObject *w, PyObject *x) Py_RETURN_NOTIMPLEMENTED; } - if (Py_SIZE(b) < 0) { /* if exponent is negative */ - if (c) { - PyErr_SetString(PyExc_ValueError, "pow() 2nd argument " - "cannot be negative when 3rd argument specified"); - goto Error; - } - else { - /* else return a float. This works because we know + if (Py_SIZE(b) < 0 && c == NULL) { + /* if exponent is negative and there's no modulus: + return a float. This works because we know that this calls float_pow() which converts its arguments to double. */ - Py_DECREF(a); - Py_DECREF(b); - return PyFloat_Type.tp_as_number->nb_power(v, w, x); - } + Py_DECREF(a); + Py_DECREF(b); + return PyFloat_Type.tp_as_number->nb_power(v, w, x); } if (c) { @@ -4255,6 +4341,26 @@ long_pow(PyObject *v, PyObject *w, PyObject *x) goto Done; } + /* if exponent is negative, negate the exponent and + replace the base with a modular inverse */ + if (Py_SIZE(b) < 0) { + temp = (PyLongObject *)_PyLong_Copy(b); + if (temp == NULL) + goto Error; + Py_DECREF(b); + b = temp; + temp = NULL; + _PyLong_Negate(&b); + if (b == NULL) + goto Error; + + temp = long_invmod(a, c); + if (temp == NULL) + goto Error; + Py_DECREF(a); + a = temp; + } + /* Reduce base by modulus in some cases: 1. If base < 0. Forcing the base non-negative makes things easier. 2. If base is obviously larger than the modulus. The "small