Small nits.

One more index entry.

Be more specific about an exception raised by range().
This commit is contained in:
Fred Drake 1998-04-03 07:15:54 +00:00
parent 8efde2197b
commit 6251c169c6
2 changed files with 12 additions and 12 deletions

View File

@ -425,7 +425,7 @@ there's no reliable way to determine whether this is the case.}
\begin{funcdesc}{pow}{x, y\optional{, z}}
Return \var{x} to the power \var{y}; if \var{z} is present, return
\var{x} to the power \var{y}, modulo \var{z} (computed more
efficiently than \code{pow(\var{x}, \var{y}) \% \var{z}}).
efficiently than \code{pow(\var{x}, \var{y}) \%\ \var{z}}).
The arguments must have
numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the
@ -445,8 +445,8 @@ there's no reliable way to determine whether this is the case.}
the last element is the largest \code{\var{start} + \var{i} *
\var{step}} less than \var{stop}; if \var{step} is negative, the last
element is the largest \code{\var{start} + \var{i} * \var{step}}
greater than \var{stop}. \var{step} must not be zero (or else an
exception is raised). Example:
greater than \var{stop}. \var{step} must not be zero (or else
\exception{ValueError} is raised). Example:
\begin{verbatim}
>>> range(10)
@ -575,9 +575,9 @@ and \var{step} arguments default to None. Slice objects have
read-only data attributes \member{start}, \member{stop} and \member{step}
which merely return the argument values (or their default). They have
no other explicit functionality; however they are used by Numerical
Python and other third party extensions. Slice objects are also
generated when extended indexing syntax is used, e.g. for
\code{a[start:stop:step]} or \code{a[start:stop, i]}.
Python\index{Numerical Python} and other third party extensions.
Slice objects are also generated when extended indexing syntax is
used, e.g. for \samp{a[start:stop:step]} or \samp{a[start:stop, i]}.
\end{funcdesc}
\begin{funcdesc}{str}{object}

View File

@ -425,7 +425,7 @@ there's no reliable way to determine whether this is the case.}
\begin{funcdesc}{pow}{x, y\optional{, z}}
Return \var{x} to the power \var{y}; if \var{z} is present, return
\var{x} to the power \var{y}, modulo \var{z} (computed more
efficiently than \code{pow(\var{x}, \var{y}) \% \var{z}}).
efficiently than \code{pow(\var{x}, \var{y}) \%\ \var{z}}).
The arguments must have
numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the
@ -445,8 +445,8 @@ there's no reliable way to determine whether this is the case.}
the last element is the largest \code{\var{start} + \var{i} *
\var{step}} less than \var{stop}; if \var{step} is negative, the last
element is the largest \code{\var{start} + \var{i} * \var{step}}
greater than \var{stop}. \var{step} must not be zero (or else an
exception is raised). Example:
greater than \var{stop}. \var{step} must not be zero (or else
\exception{ValueError} is raised). Example:
\begin{verbatim}
>>> range(10)
@ -575,9 +575,9 @@ and \var{step} arguments default to None. Slice objects have
read-only data attributes \member{start}, \member{stop} and \member{step}
which merely return the argument values (or their default). They have
no other explicit functionality; however they are used by Numerical
Python and other third party extensions. Slice objects are also
generated when extended indexing syntax is used, e.g. for
\code{a[start:stop:step]} or \code{a[start:stop, i]}.
Python\index{Numerical Python} and other third party extensions.
Slice objects are also generated when extended indexing syntax is
used, e.g. for \samp{a[start:stop:step]} or \samp{a[start:stop, i]}.
\end{funcdesc}
\begin{funcdesc}{str}{object}