mirror of https://github.com/python/cpython
Added complex numbers (AMK).
Clarify that sort() works in-place. Renamed dict.absorb() to dict.update().
This commit is contained in:
parent
a8d5131d57
commit
3a0d850160
|
@ -143,8 +143,9 @@ Two more operations with the same syntactic priority, \code{in} and
|
|||
|
||||
\subsection{Numeric Types}
|
||||
|
||||
There are three numeric types: \dfn{plain integers}, \dfn{long integers}, and
|
||||
\dfn{floating point numbers}. Plain integers (also just called \dfn{integers})
|
||||
There are four numeric types: \dfn{plain integers}, \dfn{long integers},
|
||||
\dfn{floating point numbers}, and \dfn{complex numbers}.
|
||||
Plain integers (also just called \dfn{integers})
|
||||
are implemented using \code{long} in \C{}, which gives them at least 32
|
||||
bits of precision. Long integers have unlimited precision. Floating
|
||||
point numbers are implemented using \code{double} in \C{}. All bets on
|
||||
|
@ -155,35 +156,45 @@ working with.
|
|||
\indexii{integer}{type}
|
||||
\indexiii{long}{integer}{type}
|
||||
\indexii{floating point}{type}
|
||||
\indexii{complex number}{type}
|
||||
\indexii{\C{}}{language}
|
||||
|
||||
Complex numbers have a real and imaginary part, which are both
|
||||
implemented using \code{double} in \C{}. To extract these parts from
|
||||
a complex number \code{z}, use \code{z.real} and \code{z.imag}.
|
||||
|
||||
Numbers are created by numeric literals or as the result of built-in
|
||||
functions and operators. Unadorned integer literals (including hex
|
||||
and octal numbers) yield plain integers. Integer literals with an \samp{L}
|
||||
or \samp{l} suffix yield long integers
|
||||
(\samp{L} is preferred because \code{1l} looks too much like eleven!).
|
||||
Numeric literals containing a decimal point or an exponent sign yield
|
||||
floating point numbers.
|
||||
floating point numbers. Appending \code{j} or \code{J} to a numeric
|
||||
literal yields a complex number.
|
||||
\indexii{numeric}{literals}
|
||||
\indexii{integer}{literals}
|
||||
\indexiii{long}{integer}{literals}
|
||||
\indexii{floating point}{literals}
|
||||
\indexii{complex number}{literals}
|
||||
\indexii{hexadecimal}{literals}
|
||||
\indexii{octal}{literals}
|
||||
|
||||
Python fully supports mixed arithmetic: when a binary arithmetic
|
||||
operator has operands of different numeric types, the operand with the
|
||||
``smaller'' type is converted to that of the other, where plain
|
||||
integer is smaller than long integer is smaller than floating point.
|
||||
integer is smaller than long integer is smaller than floating point is
|
||||
smaller than complex.
|
||||
Comparisons between numbers of mixed type use the same rule.%
|
||||
\footnote{As a consequence, the list \code{[1, 2]} is considered equal
|
||||
to \code{[1.0, 2.0]}, and similar for tuples.}
|
||||
The functions \code{int()}, \code{long()} and \code{float()} can be used
|
||||
The functions \code{int()}, \code{long()}, \code{float()},
|
||||
and \code{complex()} can be used
|
||||
to coerce numbers to a specific type.
|
||||
\index{arithmetic}
|
||||
\bifuncindex{int}
|
||||
\bifuncindex{long}
|
||||
\bifuncindex{float}
|
||||
\bifuncindex{complex}
|
||||
|
||||
All numeric types support the following operations, sorted by
|
||||
ascending priority (operations in the same box have the same
|
||||
|
@ -201,12 +212,14 @@ comparison operations):
|
|||
\lineiii{-\var{x}}{\var{x} negated}{}
|
||||
\lineiii{+\var{x}}{\var{x} unchanged}{}
|
||||
\hline
|
||||
\lineiii{abs(\var{x})}{absolute value of \var{x}}{}
|
||||
\lineiii{abs(\var{x})}{absolute value or magnitude of \var{x}}{}
|
||||
\lineiii{int(\var{x})}{\var{x} converted to integer}{(2)}
|
||||
\lineiii{long(\var{x})}{\var{x} converted to long integer}{(2)}
|
||||
\lineiii{float(\var{x})}{\var{x} converted to floating point}{}
|
||||
\lineiii{complex(\var{re},\var{im})}{a complex number with real part \var{re}, imaginary part \var{im}. \var{im} defaults to zero.}{}
|
||||
\lineiii{divmod(\var{x}, \var{y})}{the pair \code{(\var{x} / \var{y}, \var{x} \%{} \var{y})}}{(3)}
|
||||
\lineiii{pow(\var{x}, \var{y})}{\var{x} to the power \var{y}}{}
|
||||
\lineiii{\var{x}**\var{y}}{\var{x} to the power \var{y}}{}
|
||||
\end{tableiii}
|
||||
\indexiii{operations on}{numeric}{types}
|
||||
|
||||
|
@ -439,11 +452,9 @@ The following operations are defined on mutable sequence types (where
|
|||
\lineiii{\var{s}.remove(\var{x})}
|
||||
{same as \code{del \var{s}[\var{s}.index(\var{x})]}}{(1)}
|
||||
\lineiii{\var{s}.reverse()}
|
||||
{reverses the items of \var{s} in place}{}
|
||||
{reverses the items of \var{s} in place}{(3)}
|
||||
\lineiii{\var{s}.sort()}
|
||||
{permutes the items of \var{s} to satisfy
|
||||
\code{\var{s}[\var{i}] <= \var{s}[\var{j}]},
|
||||
for \code{\var{i} < \var{j}}}{(2)}
|
||||
{sort the items of \var{s} in place}{(2), (3)}
|
||||
\end{tableiii}
|
||||
\indexiv{operations on}{mutable}{sequence}{types}
|
||||
\indexiii{operations on}{sequence}{types}
|
||||
|
@ -474,6 +485,12 @@ Notes:
|
|||
to use calls to \code{sort()} and \code{reverse()} than to use
|
||||
\code{sort()} with a comparison function that reverses the ordering of
|
||||
the elements.
|
||||
|
||||
\item[(3)] The \code{sort()} and \code{reverse()} methods modify the
|
||||
list in place for economy of space when sorting or reversing a large
|
||||
list. They don't return the sorted or reversed list to remind you of
|
||||
this side effect.
|
||||
|
||||
\end{description}
|
||||
|
||||
\subsection{Mapping Types}
|
||||
|
@ -504,12 +521,12 @@ mapping, \var{k} is a key and \var{x} is an arbitrary object):
|
|||
\lineiii{\var{a}[\var{k}]}{the item of \var{a} with key \var{k}}{(1)}
|
||||
\lineiii{\var{a}[\var{k}] = \var{x}}{set \code{\var{a}[\var{k}]} to \var{x}}{}
|
||||
\lineiii{del \var{a}[\var{k}]}{remove \code{\var{a}[\var{k}]} from \var{a}}{(1)}
|
||||
\lineiii{\var{a}.absorb(b)}{\code{for k, v in b.items(): a[k] = v}}{(3)}
|
||||
\lineiii{\var{a}.clear()}{remove all items from \code{a}}{}
|
||||
\lineiii{\var{a}.copy()}{a (shallow) copy of \code{a}}{}
|
||||
\lineiii{\var{a}.has_key(\var{k})}{\code{1} if \var{a} has a key \var{k}, else \code{0}}{}
|
||||
\lineiii{\var{a}.items()}{a copy of \var{a}'s list of (key, item) pairs}{(2)}
|
||||
\lineiii{\var{a}.keys()}{a copy of \var{a}'s list of keys}{(2)}
|
||||
\lineiii{\var{a}.update(b)}{\code{for k, v in b.items(): a[k] = v}}{(3)}
|
||||
\lineiii{\var{a}.values()}{a copy of \var{a}'s list of values}{(2)}
|
||||
\end{tableiii}
|
||||
\indexiii{operations on}{mapping}{types}
|
||||
|
|
|
@ -143,8 +143,9 @@ Two more operations with the same syntactic priority, \code{in} and
|
|||
|
||||
\subsection{Numeric Types}
|
||||
|
||||
There are three numeric types: \dfn{plain integers}, \dfn{long integers}, and
|
||||
\dfn{floating point numbers}. Plain integers (also just called \dfn{integers})
|
||||
There are four numeric types: \dfn{plain integers}, \dfn{long integers},
|
||||
\dfn{floating point numbers}, and \dfn{complex numbers}.
|
||||
Plain integers (also just called \dfn{integers})
|
||||
are implemented using \code{long} in \C{}, which gives them at least 32
|
||||
bits of precision. Long integers have unlimited precision. Floating
|
||||
point numbers are implemented using \code{double} in \C{}. All bets on
|
||||
|
@ -155,35 +156,45 @@ working with.
|
|||
\indexii{integer}{type}
|
||||
\indexiii{long}{integer}{type}
|
||||
\indexii{floating point}{type}
|
||||
\indexii{complex number}{type}
|
||||
\indexii{\C{}}{language}
|
||||
|
||||
Complex numbers have a real and imaginary part, which are both
|
||||
implemented using \code{double} in \C{}. To extract these parts from
|
||||
a complex number \code{z}, use \code{z.real} and \code{z.imag}.
|
||||
|
||||
Numbers are created by numeric literals or as the result of built-in
|
||||
functions and operators. Unadorned integer literals (including hex
|
||||
and octal numbers) yield plain integers. Integer literals with an \samp{L}
|
||||
or \samp{l} suffix yield long integers
|
||||
(\samp{L} is preferred because \code{1l} looks too much like eleven!).
|
||||
Numeric literals containing a decimal point or an exponent sign yield
|
||||
floating point numbers.
|
||||
floating point numbers. Appending \code{j} or \code{J} to a numeric
|
||||
literal yields a complex number.
|
||||
\indexii{numeric}{literals}
|
||||
\indexii{integer}{literals}
|
||||
\indexiii{long}{integer}{literals}
|
||||
\indexii{floating point}{literals}
|
||||
\indexii{complex number}{literals}
|
||||
\indexii{hexadecimal}{literals}
|
||||
\indexii{octal}{literals}
|
||||
|
||||
Python fully supports mixed arithmetic: when a binary arithmetic
|
||||
operator has operands of different numeric types, the operand with the
|
||||
``smaller'' type is converted to that of the other, where plain
|
||||
integer is smaller than long integer is smaller than floating point.
|
||||
integer is smaller than long integer is smaller than floating point is
|
||||
smaller than complex.
|
||||
Comparisons between numbers of mixed type use the same rule.%
|
||||
\footnote{As a consequence, the list \code{[1, 2]} is considered equal
|
||||
to \code{[1.0, 2.0]}, and similar for tuples.}
|
||||
The functions \code{int()}, \code{long()} and \code{float()} can be used
|
||||
The functions \code{int()}, \code{long()}, \code{float()},
|
||||
and \code{complex()} can be used
|
||||
to coerce numbers to a specific type.
|
||||
\index{arithmetic}
|
||||
\bifuncindex{int}
|
||||
\bifuncindex{long}
|
||||
\bifuncindex{float}
|
||||
\bifuncindex{complex}
|
||||
|
||||
All numeric types support the following operations, sorted by
|
||||
ascending priority (operations in the same box have the same
|
||||
|
@ -201,12 +212,14 @@ comparison operations):
|
|||
\lineiii{-\var{x}}{\var{x} negated}{}
|
||||
\lineiii{+\var{x}}{\var{x} unchanged}{}
|
||||
\hline
|
||||
\lineiii{abs(\var{x})}{absolute value of \var{x}}{}
|
||||
\lineiii{abs(\var{x})}{absolute value or magnitude of \var{x}}{}
|
||||
\lineiii{int(\var{x})}{\var{x} converted to integer}{(2)}
|
||||
\lineiii{long(\var{x})}{\var{x} converted to long integer}{(2)}
|
||||
\lineiii{float(\var{x})}{\var{x} converted to floating point}{}
|
||||
\lineiii{complex(\var{re},\var{im})}{a complex number with real part \var{re}, imaginary part \var{im}. \var{im} defaults to zero.}{}
|
||||
\lineiii{divmod(\var{x}, \var{y})}{the pair \code{(\var{x} / \var{y}, \var{x} \%{} \var{y})}}{(3)}
|
||||
\lineiii{pow(\var{x}, \var{y})}{\var{x} to the power \var{y}}{}
|
||||
\lineiii{\var{x}**\var{y}}{\var{x} to the power \var{y}}{}
|
||||
\end{tableiii}
|
||||
\indexiii{operations on}{numeric}{types}
|
||||
|
||||
|
@ -439,11 +452,9 @@ The following operations are defined on mutable sequence types (where
|
|||
\lineiii{\var{s}.remove(\var{x})}
|
||||
{same as \code{del \var{s}[\var{s}.index(\var{x})]}}{(1)}
|
||||
\lineiii{\var{s}.reverse()}
|
||||
{reverses the items of \var{s} in place}{}
|
||||
{reverses the items of \var{s} in place}{(3)}
|
||||
\lineiii{\var{s}.sort()}
|
||||
{permutes the items of \var{s} to satisfy
|
||||
\code{\var{s}[\var{i}] <= \var{s}[\var{j}]},
|
||||
for \code{\var{i} < \var{j}}}{(2)}
|
||||
{sort the items of \var{s} in place}{(2), (3)}
|
||||
\end{tableiii}
|
||||
\indexiv{operations on}{mutable}{sequence}{types}
|
||||
\indexiii{operations on}{sequence}{types}
|
||||
|
@ -474,6 +485,12 @@ Notes:
|
|||
to use calls to \code{sort()} and \code{reverse()} than to use
|
||||
\code{sort()} with a comparison function that reverses the ordering of
|
||||
the elements.
|
||||
|
||||
\item[(3)] The \code{sort()} and \code{reverse()} methods modify the
|
||||
list in place for economy of space when sorting or reversing a large
|
||||
list. They don't return the sorted or reversed list to remind you of
|
||||
this side effect.
|
||||
|
||||
\end{description}
|
||||
|
||||
\subsection{Mapping Types}
|
||||
|
@ -504,12 +521,12 @@ mapping, \var{k} is a key and \var{x} is an arbitrary object):
|
|||
\lineiii{\var{a}[\var{k}]}{the item of \var{a} with key \var{k}}{(1)}
|
||||
\lineiii{\var{a}[\var{k}] = \var{x}}{set \code{\var{a}[\var{k}]} to \var{x}}{}
|
||||
\lineiii{del \var{a}[\var{k}]}{remove \code{\var{a}[\var{k}]} from \var{a}}{(1)}
|
||||
\lineiii{\var{a}.absorb(b)}{\code{for k, v in b.items(): a[k] = v}}{(3)}
|
||||
\lineiii{\var{a}.clear()}{remove all items from \code{a}}{}
|
||||
\lineiii{\var{a}.copy()}{a (shallow) copy of \code{a}}{}
|
||||
\lineiii{\var{a}.has_key(\var{k})}{\code{1} if \var{a} has a key \var{k}, else \code{0}}{}
|
||||
\lineiii{\var{a}.items()}{a copy of \var{a}'s list of (key, item) pairs}{(2)}
|
||||
\lineiii{\var{a}.keys()}{a copy of \var{a}'s list of keys}{(2)}
|
||||
\lineiii{\var{a}.update(b)}{\code{for k, v in b.items(): a[k] = v}}{(3)}
|
||||
\lineiii{\var{a}.values()}{a copy of \var{a}'s list of values}{(2)}
|
||||
\end{tableiii}
|
||||
\indexiii{operations on}{mapping}{types}
|
||||
|
|
Loading…
Reference in New Issue