mirror of https://github.com/python/cpython
Extend some comments on the order of values in the returns from
dict.items/keys/values/iteritems/iterkeys/itervalues().
This commit is contained in:
parent
45ec02aed1
commit
017778332f
|
@ -1049,13 +1049,13 @@ arbitrary objects):
|
|||
{(6)}
|
||||
\lineiii{\var{a}.iteritems()}
|
||||
{return an iterator over (\var{key}, \var{value}) pairs}
|
||||
{(2)}
|
||||
{(2), (3)}
|
||||
\lineiii{\var{a}.iterkeys()}
|
||||
{return an iterator over the mapping's keys}
|
||||
{(2)}
|
||||
{(2), (3)}
|
||||
\lineiii{\var{a}.itervalues()}
|
||||
{return an iterator over the mapping's values}
|
||||
{(2)}
|
||||
{(2), (3)}
|
||||
\end{tableiii}
|
||||
|
||||
\noindent
|
||||
|
@ -1067,11 +1067,17 @@ in the map.
|
|||
\item[(2)] \versionadded{2.2}
|
||||
|
||||
\item[(3)] Keys and values are listed in random order. If
|
||||
\method{keys()} and \method{values()} are called with no intervening
|
||||
modifications to the dictionary, the two lists will directly
|
||||
correspond. This allows the creation of \code{(\var{value},
|
||||
\var{key})} pairs using \function{zip()}: \samp{pairs =
|
||||
zip(\var{a}.values(), \var{a}.keys())}.
|
||||
\method{items()}, \method{keys()}, \method{values()},
|
||||
\method{iteritems()}, \method{iterkeys()}, and \method{itervalues()}
|
||||
are called with no intervening modifications to the dictionary, the
|
||||
lists will directly correspond. This allows the creation of
|
||||
\code{(\var{value}, \var{key})} pairs using \function{zip()}:
|
||||
\samp{pairs = zip(\var{a}.values(), \var{a}.keys())}. The same
|
||||
relationship holds for the \method{iterkeys()} and
|
||||
\method{itervalues()} methods: \samp{pairs = zip(\var{a}.itervalues(),
|
||||
\var{a}.iterkeys())} provides the same value for \code{pairs}.
|
||||
Another way to create the same list is \samp{pairs = [(v, k) for (k,
|
||||
v) in \var{a}.iteritems()]}.
|
||||
|
||||
\item[(4)] Never raises an exception if \var{k} is not in the map,
|
||||
instead it returns \var{x}. \var{x} is optional; when \var{x} is not
|
||||
|
|
Loading…
Reference in New Issue