cpython/Lib/test/clinic.test.c

5931 lines
167 KiB
C
Raw Normal View History

/*[clinic input]
output preset block
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=3c81ac2402d06a8b]*/
/*[clinic input]
module m
class m.T "TestObj *" "TestType"
class Test "TestObj *" "TestType"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=f761b4d55cb179cf]*/
/*[clinic input]
test_object_converter
a: object
b: object(converter="PyUnicode_FSConverter")
c: object(subclass_of="&PyUnicode_Type")
d: object(type="PyUnicode_Object *")
/
[clinic start generated code]*/
PyDoc_STRVAR(test_object_converter__doc__,
"test_object_converter($module, a, b, c, d, /)\n"
"--\n"
"\n");
#define TEST_OBJECT_CONVERTER_METHODDEF \
{"test_object_converter", _PyCFunction_CAST(test_object_converter), METH_FASTCALL, test_object_converter__doc__},
static PyObject *
test_object_converter_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c, PyUnicode_Object *d);
static PyObject *
test_object_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *a;
PyObject *b;
PyObject *c;
PyUnicode_Object *d;
if (!_PyArg_CheckPositional("test_object_converter", nargs, 4, 4)) {
goto exit;
}
a = args[0];
if (!PyUnicode_FSConverter(args[1], &b)) {
goto exit;
}
if (!PyUnicode_Check(args[2])) {
_PyArg_BadArgument("test_object_converter", "argument 3", "str", args[2]);
goto exit;
}
c = args[2];
d = (PyUnicode_Object *)args[3];
return_value = test_object_converter_impl(module, a, b, c, d);
exit:
return return_value;
}
static PyObject *
test_object_converter_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c, PyUnicode_Object *d)
/*[clinic end generated code: output=886f4f9b598726b6 input=005e6a8a711a869b]*/
/*[clinic input]
cloned = test_object_converter
Check the clone feature.
[clinic start generated code]*/
PyDoc_STRVAR(cloned__doc__,
"cloned($module, a, b, c, d, /)\n"
"--\n"
"\n"
"Check the clone feature.");
#define CLONED_METHODDEF \
{"cloned", _PyCFunction_CAST(cloned), METH_FASTCALL, cloned__doc__},
static PyObject *
cloned_impl(PyObject *module, PyObject *a, PyObject *b, PyObject *c,
PyUnicode_Object *d);
static PyObject *
cloned(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *a;
PyObject *b;
PyObject *c;
PyUnicode_Object *d;
if (!_PyArg_CheckPositional("cloned", nargs, 4, 4)) {
goto exit;
}
a = args[0];
if (!PyUnicode_FSConverter(args[1], &b)) {
goto exit;
}
if (!PyUnicode_Check(args[2])) {
_PyArg_BadArgument("cloned", "argument 3", "str", args[2]);
goto exit;
}
c = args[2];
d = (PyUnicode_Object *)args[3];
return_value = cloned_impl(module, a, b, c, d);
exit:
return return_value;
}
static PyObject *
cloned_impl(PyObject *module, PyObject *a, PyObject *b, PyObject *c,
PyUnicode_Object *d)
/*[clinic end generated code: output=026b483e27c38065 input=0543614019d6fcc7]*/
/*[clinic input]
test_object_converter_one_arg
a: object
/
[clinic start generated code]*/
PyDoc_STRVAR(test_object_converter_one_arg__doc__,
"test_object_converter_one_arg($module, a, /)\n"
"--\n"
"\n");
#define TEST_OBJECT_CONVERTER_ONE_ARG_METHODDEF \
{"test_object_converter_one_arg", (PyCFunction)test_object_converter_one_arg, METH_O, test_object_converter_one_arg__doc__},
static PyObject *
test_object_converter_one_arg(PyObject *module, PyObject *a)
/*[clinic end generated code: output=6da755f8502139df input=d635d92a421f1ca3]*/
/*[clinic input]
test_objects_converter
a: object
b: object = NULL
/
[clinic start generated code]*/
PyDoc_STRVAR(test_objects_converter__doc__,
"test_objects_converter($module, a, b=<unrepresentable>, /)\n"
"--\n"
"\n");
#define TEST_OBJECTS_CONVERTER_METHODDEF \
{"test_objects_converter", _PyCFunction_CAST(test_objects_converter), METH_FASTCALL, test_objects_converter__doc__},
static PyObject *
test_objects_converter_impl(PyObject *module, PyObject *a, PyObject *b);
static PyObject *
test_objects_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *a;
PyObject *b = NULL;
if (!_PyArg_CheckPositional("test_objects_converter", nargs, 1, 2)) {
goto exit;
}
a = args[0];
if (nargs < 2) {
goto skip_optional;
}
b = args[1];
skip_optional:
return_value = test_objects_converter_impl(module, a, b);
exit:
return return_value;
}
static PyObject *
test_objects_converter_impl(PyObject *module, PyObject *a, PyObject *b)
/*[clinic end generated code: output=fc26328b79d46bb7 input=4cbb3d9edd2a36f3]*/
/*[clinic input]
test_object_converter_subclass_of
a: object(subclass_of="&PyLong_Type")
b: object(subclass_of="&PyTuple_Type")
c: object(subclass_of="&PyList_Type")
d: object(subclass_of="&PySet_Type")
e: object(subclass_of="&PyFrozenSet_Type")
f: object(subclass_of="&PyDict_Type")
g: object(subclass_of="&PyUnicode_Type")
h: object(subclass_of="&PyBytes_Type")
i: object(subclass_of="&PyByteArray_Type")
j: object(subclass_of="&MyType")
/
[clinic start generated code]*/
PyDoc_STRVAR(test_object_converter_subclass_of__doc__,
"test_object_converter_subclass_of($module, a, b, c, d, e, f, g, h, i,\n"
" j, /)\n"
"--\n"
"\n");
#define TEST_OBJECT_CONVERTER_SUBCLASS_OF_METHODDEF \
{"test_object_converter_subclass_of", _PyCFunction_CAST(test_object_converter_subclass_of), METH_FASTCALL, test_object_converter_subclass_of__doc__},
static PyObject *
test_object_converter_subclass_of_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c, PyObject *d,
PyObject *e, PyObject *f, PyObject *g,
PyObject *h, PyObject *i, PyObject *j);
static PyObject *
test_object_converter_subclass_of(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *a;
PyObject *b;
PyObject *c;
PyObject *d;
PyObject *e;
PyObject *f;
PyObject *g;
PyObject *h;
PyObject *i;
PyObject *j;
if (!_PyArg_CheckPositional("test_object_converter_subclass_of", nargs, 10, 10)) {
goto exit;
}
if (!PyLong_Check(args[0])) {
_PyArg_BadArgument("test_object_converter_subclass_of", "argument 1", "int", args[0]);
goto exit;
}
a = args[0];
if (!PyTuple_Check(args[1])) {
_PyArg_BadArgument("test_object_converter_subclass_of", "argument 2", "tuple", args[1]);
goto exit;
}
b = args[1];
if (!PyList_Check(args[2])) {
_PyArg_BadArgument("test_object_converter_subclass_of", "argument 3", "list", args[2]);
goto exit;
}
c = args[2];
if (!PySet_Check(args[3])) {
_PyArg_BadArgument("test_object_converter_subclass_of", "argument 4", "set", args[3]);
goto exit;
}
d = args[3];
if (!PyFrozenSet_Check(args[4])) {
_PyArg_BadArgument("test_object_converter_subclass_of", "argument 5", "frozenset", args[4]);
goto exit;
}
e = args[4];
if (!PyDict_Check(args[5])) {
_PyArg_BadArgument("test_object_converter_subclass_of", "argument 6", "dict", args[5]);
goto exit;
}
f = args[5];
if (!PyUnicode_Check(args[6])) {
_PyArg_BadArgument("test_object_converter_subclass_of", "argument 7", "str", args[6]);
goto exit;
}
g = args[6];
if (!PyBytes_Check(args[7])) {
_PyArg_BadArgument("test_object_converter_subclass_of", "argument 8", "bytes", args[7]);
goto exit;
}
h = args[7];
if (!PyByteArray_Check(args[8])) {
_PyArg_BadArgument("test_object_converter_subclass_of", "argument 9", "bytearray", args[8]);
goto exit;
}
i = args[8];
if (!PyObject_TypeCheck(args[9], &MyType)) {
_PyArg_BadArgument("test_object_converter_subclass_of", "argument 10", (&MyType)->tp_name, args[9]);
goto exit;
}
j = args[9];
return_value = test_object_converter_subclass_of_impl(module, a, b, c, d, e, f, g, h, i, j);
exit:
return return_value;
}
static PyObject *
test_object_converter_subclass_of_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c, PyObject *d,
PyObject *e, PyObject *f, PyObject *g,
PyObject *h, PyObject *i, PyObject *j)
/*[clinic end generated code: output=e4b07c9a54479a40 input=31b06b772d5f983e]*/
/*[clinic input]
test_PyBytesObject_converter
a: PyBytesObject
/
[clinic start generated code]*/
PyDoc_STRVAR(test_PyBytesObject_converter__doc__,
"test_PyBytesObject_converter($module, a, /)\n"
"--\n"
"\n");
#define TEST_PYBYTESOBJECT_CONVERTER_METHODDEF \
{"test_PyBytesObject_converter", (PyCFunction)test_PyBytesObject_converter, METH_O, test_PyBytesObject_converter__doc__},
static PyObject *
test_PyBytesObject_converter_impl(PyObject *module, PyBytesObject *a);
static PyObject *
test_PyBytesObject_converter(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
PyBytesObject *a;
if (!PyBytes_Check(arg)) {
_PyArg_BadArgument("test_PyBytesObject_converter", "argument", "bytes", arg);
goto exit;
}
a = (PyBytesObject *)arg;
return_value = test_PyBytesObject_converter_impl(module, a);
exit:
return return_value;
}
static PyObject *
test_PyBytesObject_converter_impl(PyObject *module, PyBytesObject *a)
/*[clinic end generated code: output=7539d628e6fceace input=12b10c7cb5750400]*/
/*[clinic input]
test_PyByteArrayObject_converter
a: PyByteArrayObject
/
[clinic start generated code]*/
PyDoc_STRVAR(test_PyByteArrayObject_converter__doc__,
"test_PyByteArrayObject_converter($module, a, /)\n"
"--\n"
"\n");
#define TEST_PYBYTEARRAYOBJECT_CONVERTER_METHODDEF \
{"test_PyByteArrayObject_converter", (PyCFunction)test_PyByteArrayObject_converter, METH_O, test_PyByteArrayObject_converter__doc__},
static PyObject *
test_PyByteArrayObject_converter_impl(PyObject *module, PyByteArrayObject *a);
static PyObject *
test_PyByteArrayObject_converter(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
PyByteArrayObject *a;
if (!PyByteArray_Check(arg)) {
_PyArg_BadArgument("test_PyByteArrayObject_converter", "argument", "bytearray", arg);
goto exit;
}
a = (PyByteArrayObject *)arg;
return_value = test_PyByteArrayObject_converter_impl(module, a);
exit:
return return_value;
}
static PyObject *
test_PyByteArrayObject_converter_impl(PyObject *module, PyByteArrayObject *a)
/*[clinic end generated code: output=1245af9f5b3e355e input=5a657da535d194ae]*/
/*[clinic input]
test_unicode_converter
a: unicode
/
[clinic start generated code]*/
PyDoc_STRVAR(test_unicode_converter__doc__,
"test_unicode_converter($module, a, /)\n"
"--\n"
"\n");
#define TEST_UNICODE_CONVERTER_METHODDEF \
{"test_unicode_converter", (PyCFunction)test_unicode_converter, METH_O, test_unicode_converter__doc__},
static PyObject *
test_unicode_converter_impl(PyObject *module, PyObject *a);
static PyObject *
test_unicode_converter(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
PyObject *a;
if (!PyUnicode_Check(arg)) {
_PyArg_BadArgument("test_unicode_converter", "argument", "str", arg);
goto exit;
}
a = arg;
return_value = test_unicode_converter_impl(module, a);
exit:
return return_value;
}
static PyObject *
test_unicode_converter_impl(PyObject *module, PyObject *a)
/*[clinic end generated code: output=8c1625cc272c1f3d input=aa33612df92aa9c5]*/
/*[clinic input]
test_bool_converter
a: bool = True
b: bool(accept={object}) = True
c: bool(accept={int}) = True
/
[clinic start generated code]*/
PyDoc_STRVAR(test_bool_converter__doc__,
"test_bool_converter($module, a=True, b=True, c=True, /)\n"
"--\n"
"\n");
#define TEST_BOOL_CONVERTER_METHODDEF \
{"test_bool_converter", _PyCFunction_CAST(test_bool_converter), METH_FASTCALL, test_bool_converter__doc__},
static PyObject *
test_bool_converter_impl(PyObject *module, int a, int b, int c);
static PyObject *
test_bool_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
int a = 1;
int b = 1;
int c = 1;
if (!_PyArg_CheckPositional("test_bool_converter", nargs, 0, 3)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
a = PyObject_IsTrue(args[0]);
if (a < 0) {
goto exit;
}
if (nargs < 2) {
goto skip_optional;
}
b = PyObject_IsTrue(args[1]);
if (b < 0) {
goto exit;
}
if (nargs < 3) {
goto skip_optional;
}
c = PyLong_AsInt(args[2]);
if (c == -1 && PyErr_Occurred()) {
goto exit;
}
skip_optional:
return_value = test_bool_converter_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_bool_converter_impl(PyObject *module, int a, int b, int c)
/*[clinic end generated code: output=3190e46490de0644 input=939854fa9f248c60]*/
/*[clinic input]
test_char_converter
a: char = b'A'
b: char = b'\a'
c: char = b'\b'
d: char = b'\t'
e: char = b'\n'
f: char = b'\v'
g: char = b'\f'
h: char = b'\r'
i: char = b'"'
j: char = b"'"
k: char = b'?'
l: char = b'\\'
m: char = b'\000'
n: char = b'\377'
/
[clinic start generated code]*/
PyDoc_STRVAR(test_char_converter__doc__,
"test_char_converter($module, a=b\'A\', b=b\'\\x07\', c=b\'\\x08\', d=b\'\\t\',\n"
" e=b\'\\n\', f=b\'\\x0b\', g=b\'\\x0c\', h=b\'\\r\', i=b\'\"\',\n"
" j=b\"\'\", k=b\'?\', l=b\'\\\\\', m=b\'\\x00\', n=b\'\\xff\', /)\n"
"--\n"
"\n");
#define TEST_CHAR_CONVERTER_METHODDEF \
{"test_char_converter", _PyCFunction_CAST(test_char_converter), METH_FASTCALL, test_char_converter__doc__},
static PyObject *
test_char_converter_impl(PyObject *module, char a, char b, char c, char d,
char e, char f, char g, char h, char i, char j,
char k, char l, char m, char n);
static PyObject *
test_char_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
char a = 'A';
char b = '\x07';
char c = '\x08';
char d = '\t';
char e = '\n';
char f = '\x0b';
char g = '\x0c';
char h = '\r';
char i = '"';
char j = '\'';
char k = '?';
char l = '\\';
char m = '\x00';
char n = '\xff';
if (!_PyArg_CheckPositional("test_char_converter", nargs, 0, 14)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
if (PyBytes_Check(args[0])) {
if (PyBytes_GET_SIZE(args[0]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 1 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[0]));
goto exit;
}
a = PyBytes_AS_STRING(args[0])[0];
}
else if (PyByteArray_Check(args[0])) {
if (PyByteArray_GET_SIZE(args[0]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 1 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[0]));
goto exit;
}
a = PyByteArray_AS_STRING(args[0])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 1", "a byte string of length 1", args[0]);
goto exit;
}
if (nargs < 2) {
goto skip_optional;
}
if (PyBytes_Check(args[1])) {
if (PyBytes_GET_SIZE(args[1]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 2 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[1]));
goto exit;
}
b = PyBytes_AS_STRING(args[1])[0];
}
else if (PyByteArray_Check(args[1])) {
if (PyByteArray_GET_SIZE(args[1]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 2 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[1]));
goto exit;
}
b = PyByteArray_AS_STRING(args[1])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 2", "a byte string of length 1", args[1]);
goto exit;
}
if (nargs < 3) {
goto skip_optional;
}
if (PyBytes_Check(args[2])) {
if (PyBytes_GET_SIZE(args[2]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 3 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[2]));
goto exit;
}
c = PyBytes_AS_STRING(args[2])[0];
}
else if (PyByteArray_Check(args[2])) {
if (PyByteArray_GET_SIZE(args[2]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 3 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[2]));
goto exit;
}
c = PyByteArray_AS_STRING(args[2])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 3", "a byte string of length 1", args[2]);
goto exit;
}
if (nargs < 4) {
goto skip_optional;
}
if (PyBytes_Check(args[3])) {
if (PyBytes_GET_SIZE(args[3]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 4 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[3]));
goto exit;
}
d = PyBytes_AS_STRING(args[3])[0];
}
else if (PyByteArray_Check(args[3])) {
if (PyByteArray_GET_SIZE(args[3]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 4 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[3]));
goto exit;
}
d = PyByteArray_AS_STRING(args[3])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 4", "a byte string of length 1", args[3]);
goto exit;
}
if (nargs < 5) {
goto skip_optional;
}
if (PyBytes_Check(args[4])) {
if (PyBytes_GET_SIZE(args[4]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 5 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[4]));
goto exit;
}
e = PyBytes_AS_STRING(args[4])[0];
}
else if (PyByteArray_Check(args[4])) {
if (PyByteArray_GET_SIZE(args[4]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 5 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[4]));
goto exit;
}
e = PyByteArray_AS_STRING(args[4])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 5", "a byte string of length 1", args[4]);
goto exit;
}
if (nargs < 6) {
goto skip_optional;
}
if (PyBytes_Check(args[5])) {
if (PyBytes_GET_SIZE(args[5]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 6 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[5]));
goto exit;
}
f = PyBytes_AS_STRING(args[5])[0];
}
else if (PyByteArray_Check(args[5])) {
if (PyByteArray_GET_SIZE(args[5]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 6 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[5]));
goto exit;
}
f = PyByteArray_AS_STRING(args[5])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 6", "a byte string of length 1", args[5]);
goto exit;
}
if (nargs < 7) {
goto skip_optional;
}
if (PyBytes_Check(args[6])) {
if (PyBytes_GET_SIZE(args[6]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 7 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[6]));
goto exit;
}
g = PyBytes_AS_STRING(args[6])[0];
}
else if (PyByteArray_Check(args[6])) {
if (PyByteArray_GET_SIZE(args[6]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 7 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[6]));
goto exit;
}
g = PyByteArray_AS_STRING(args[6])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 7", "a byte string of length 1", args[6]);
goto exit;
}
if (nargs < 8) {
goto skip_optional;
}
if (PyBytes_Check(args[7])) {
if (PyBytes_GET_SIZE(args[7]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 8 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[7]));
goto exit;
}
h = PyBytes_AS_STRING(args[7])[0];
}
else if (PyByteArray_Check(args[7])) {
if (PyByteArray_GET_SIZE(args[7]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 8 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[7]));
goto exit;
}
h = PyByteArray_AS_STRING(args[7])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 8", "a byte string of length 1", args[7]);
goto exit;
}
if (nargs < 9) {
goto skip_optional;
}
if (PyBytes_Check(args[8])) {
if (PyBytes_GET_SIZE(args[8]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 9 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[8]));
goto exit;
}
i = PyBytes_AS_STRING(args[8])[0];
}
else if (PyByteArray_Check(args[8])) {
if (PyByteArray_GET_SIZE(args[8]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 9 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[8]));
goto exit;
}
i = PyByteArray_AS_STRING(args[8])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 9", "a byte string of length 1", args[8]);
goto exit;
}
if (nargs < 10) {
goto skip_optional;
}
if (PyBytes_Check(args[9])) {
if (PyBytes_GET_SIZE(args[9]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 10 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[9]));
goto exit;
}
j = PyBytes_AS_STRING(args[9])[0];
}
else if (PyByteArray_Check(args[9])) {
if (PyByteArray_GET_SIZE(args[9]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 10 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[9]));
goto exit;
}
j = PyByteArray_AS_STRING(args[9])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 10", "a byte string of length 1", args[9]);
goto exit;
}
if (nargs < 11) {
goto skip_optional;
}
if (PyBytes_Check(args[10])) {
if (PyBytes_GET_SIZE(args[10]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 11 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[10]));
goto exit;
}
k = PyBytes_AS_STRING(args[10])[0];
}
else if (PyByteArray_Check(args[10])) {
if (PyByteArray_GET_SIZE(args[10]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 11 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[10]));
goto exit;
}
k = PyByteArray_AS_STRING(args[10])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 11", "a byte string of length 1", args[10]);
goto exit;
}
if (nargs < 12) {
goto skip_optional;
}
if (PyBytes_Check(args[11])) {
if (PyBytes_GET_SIZE(args[11]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 12 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[11]));
goto exit;
}
l = PyBytes_AS_STRING(args[11])[0];
}
else if (PyByteArray_Check(args[11])) {
if (PyByteArray_GET_SIZE(args[11]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 12 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[11]));
goto exit;
}
l = PyByteArray_AS_STRING(args[11])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 12", "a byte string of length 1", args[11]);
goto exit;
}
if (nargs < 13) {
goto skip_optional;
}
if (PyBytes_Check(args[12])) {
if (PyBytes_GET_SIZE(args[12]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 13 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[12]));
goto exit;
}
m = PyBytes_AS_STRING(args[12])[0];
}
else if (PyByteArray_Check(args[12])) {
if (PyByteArray_GET_SIZE(args[12]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 13 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[12]));
goto exit;
}
m = PyByteArray_AS_STRING(args[12])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 13", "a byte string of length 1", args[12]);
goto exit;
}
if (nargs < 14) {
goto skip_optional;
}
if (PyBytes_Check(args[13])) {
if (PyBytes_GET_SIZE(args[13]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 14 must be a byte string of length 1, "
"not a bytes object of length %zd",
PyBytes_GET_SIZE(args[13]));
goto exit;
}
n = PyBytes_AS_STRING(args[13])[0];
}
else if (PyByteArray_Check(args[13])) {
if (PyByteArray_GET_SIZE(args[13]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_char_converter(): argument 14 must be a byte string of length 1, "
"not a bytearray object of length %zd",
PyByteArray_GET_SIZE(args[13]));
goto exit;
}
n = PyByteArray_AS_STRING(args[13])[0];
}
else {
_PyArg_BadArgument("test_char_converter", "argument 14", "a byte string of length 1", args[13]);
goto exit;
}
skip_optional:
return_value = test_char_converter_impl(module, a, b, c, d, e, f, g, h, i, j, k, l, m, n);
exit:
return return_value;
}
static PyObject *
test_char_converter_impl(PyObject *module, char a, char b, char c, char d,
char e, char f, char g, char h, char i, char j,
char k, char l, char m, char n)
/*[clinic end generated code: output=ff11e203248582df input=e42330417a44feac]*/
/*[clinic input]
test_unsigned_char_converter
a: unsigned_char = 12
b: unsigned_char(bitwise=False) = 34
c: unsigned_char(bitwise=True) = 56
/
[clinic start generated code]*/
PyDoc_STRVAR(test_unsigned_char_converter__doc__,
"test_unsigned_char_converter($module, a=12, b=34, c=56, /)\n"
"--\n"
"\n");
#define TEST_UNSIGNED_CHAR_CONVERTER_METHODDEF \
{"test_unsigned_char_converter", _PyCFunction_CAST(test_unsigned_char_converter), METH_FASTCALL, test_unsigned_char_converter__doc__},
static PyObject *
test_unsigned_char_converter_impl(PyObject *module, unsigned char a,
unsigned char b, unsigned char c);
static PyObject *
test_unsigned_char_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
unsigned char a = 12;
unsigned char b = 34;
unsigned char c = 56;
if (!_PyArg_CheckPositional("test_unsigned_char_converter", nargs, 0, 3)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
{
long ival = PyLong_AsLong(args[0]);
if (ival == -1 && PyErr_Occurred()) {
goto exit;
}
else if (ival < 0) {
PyErr_SetString(PyExc_OverflowError,
"unsigned byte integer is less than minimum");
goto exit;
}
else if (ival > UCHAR_MAX) {
PyErr_SetString(PyExc_OverflowError,
"unsigned byte integer is greater than maximum");
goto exit;
}
else {
a = (unsigned char) ival;
}
}
if (nargs < 2) {
goto skip_optional;
}
{
long ival = PyLong_AsLong(args[1]);
if (ival == -1 && PyErr_Occurred()) {
goto exit;
}
else if (ival < 0) {
PyErr_SetString(PyExc_OverflowError,
"unsigned byte integer is less than minimum");
goto exit;
}
else if (ival > UCHAR_MAX) {
PyErr_SetString(PyExc_OverflowError,
"unsigned byte integer is greater than maximum");
goto exit;
}
else {
b = (unsigned char) ival;
}
}
if (nargs < 3) {
goto skip_optional;
}
{
unsigned long ival = PyLong_AsUnsignedLongMask(args[2]);
if (ival == (unsigned long)-1 && PyErr_Occurred()) {
goto exit;
}
else {
c = (unsigned char) ival;
}
}
skip_optional:
return_value = test_unsigned_char_converter_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_unsigned_char_converter_impl(PyObject *module, unsigned char a,
unsigned char b, unsigned char c)
/*[clinic end generated code: output=45920dbedc22eb55 input=021414060993e289]*/
/*[clinic input]
test_short_converter
a: short = 12
/
[clinic start generated code]*/
PyDoc_STRVAR(test_short_converter__doc__,
"test_short_converter($module, a=12, /)\n"
"--\n"
"\n");
#define TEST_SHORT_CONVERTER_METHODDEF \
{"test_short_converter", _PyCFunction_CAST(test_short_converter), METH_FASTCALL, test_short_converter__doc__},
static PyObject *
test_short_converter_impl(PyObject *module, short a);
static PyObject *
test_short_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
short a = 12;
if (!_PyArg_CheckPositional("test_short_converter", nargs, 0, 1)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
{
long ival = PyLong_AsLong(args[0]);
if (ival == -1 && PyErr_Occurred()) {
goto exit;
}
else if (ival < SHRT_MIN) {
PyErr_SetString(PyExc_OverflowError,
"signed short integer is less than minimum");
goto exit;
}
else if (ival > SHRT_MAX) {
PyErr_SetString(PyExc_OverflowError,
"signed short integer is greater than maximum");
goto exit;
}
else {
a = (short) ival;
}
}
skip_optional:
return_value = test_short_converter_impl(module, a);
exit:
return return_value;
}
static PyObject *
test_short_converter_impl(PyObject *module, short a)
/*[clinic end generated code: output=a580945bd6963d45 input=6a8a7a509a498ff4]*/
/*[clinic input]
test_unsigned_short_converter
a: unsigned_short = 12
b: unsigned_short(bitwise=False) = 34
c: unsigned_short(bitwise=True) = 56
/
[clinic start generated code]*/
PyDoc_STRVAR(test_unsigned_short_converter__doc__,
"test_unsigned_short_converter($module, a=12, b=34, c=56, /)\n"
"--\n"
"\n");
#define TEST_UNSIGNED_SHORT_CONVERTER_METHODDEF \
{"test_unsigned_short_converter", _PyCFunction_CAST(test_unsigned_short_converter), METH_FASTCALL, test_unsigned_short_converter__doc__},
static PyObject *
test_unsigned_short_converter_impl(PyObject *module, unsigned short a,
unsigned short b, unsigned short c);
static PyObject *
test_unsigned_short_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
unsigned short a = 12;
unsigned short b = 34;
unsigned short c = 56;
if (!_PyArg_CheckPositional("test_unsigned_short_converter", nargs, 0, 3)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
if (!_PyLong_UnsignedShort_Converter(args[0], &a)) {
goto exit;
}
if (nargs < 2) {
goto skip_optional;
}
if (!_PyLong_UnsignedShort_Converter(args[1], &b)) {
goto exit;
}
if (nargs < 3) {
goto skip_optional;
}
c = (unsigned short)PyLong_AsUnsignedLongMask(args[2]);
if (c == (unsigned short)-1 && PyErr_Occurred()) {
goto exit;
}
skip_optional:
return_value = test_unsigned_short_converter_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_unsigned_short_converter_impl(PyObject *module, unsigned short a,
unsigned short b, unsigned short c)
/*[clinic end generated code: output=e6e990df729114fc input=cdfd8eff3d9176b4]*/
/*[clinic input]
test_int_converter
a: int = 12
b: int(accept={int}) = 34
c: int(accept={str}) = 45
d: int(type='myenum') = 67
/
[clinic start generated code]*/
PyDoc_STRVAR(test_int_converter__doc__,
"test_int_converter($module, a=12, b=34, c=45, d=67, /)\n"
"--\n"
"\n");
#define TEST_INT_CONVERTER_METHODDEF \
{"test_int_converter", _PyCFunction_CAST(test_int_converter), METH_FASTCALL, test_int_converter__doc__},
static PyObject *
test_int_converter_impl(PyObject *module, int a, int b, int c, myenum d);
static PyObject *
test_int_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
int a = 12;
int b = 34;
int c = 45;
myenum d = 67;
if (!_PyArg_CheckPositional("test_int_converter", nargs, 0, 4)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
a = PyLong_AsInt(args[0]);
if (a == -1 && PyErr_Occurred()) {
goto exit;
}
if (nargs < 2) {
goto skip_optional;
}
b = PyLong_AsInt(args[1]);
if (b == -1 && PyErr_Occurred()) {
goto exit;
}
if (nargs < 3) {
goto skip_optional;
}
if (!PyUnicode_Check(args[2])) {
_PyArg_BadArgument("test_int_converter", "argument 3", "a unicode character", args[2]);
goto exit;
}
if (PyUnicode_GET_LENGTH(args[2]) != 1) {
PyErr_Format(PyExc_TypeError,
"test_int_converter(): argument 3 must be a unicode character, "
"not a string of length %zd",
PyUnicode_GET_LENGTH(args[2]));
goto exit;
}
c = PyUnicode_READ_CHAR(args[2], 0);
if (nargs < 4) {
goto skip_optional;
}
d = PyLong_AsInt(args[3]);
if (d == -1 && PyErr_Occurred()) {
goto exit;
}
skip_optional:
return_value = test_int_converter_impl(module, a, b, c, d);
exit:
return return_value;
}
static PyObject *
test_int_converter_impl(PyObject *module, int a, int b, int c, myenum d)
/*[clinic end generated code: output=fbcfb7554688663d input=d20541fc1ca0553e]*/
/*[clinic input]
test_unsigned_int_converter
a: unsigned_int = 12
b: unsigned_int(bitwise=False) = 34
c: unsigned_int(bitwise=True) = 56
/
[clinic start generated code]*/
PyDoc_STRVAR(test_unsigned_int_converter__doc__,
"test_unsigned_int_converter($module, a=12, b=34, c=56, /)\n"
"--\n"
"\n");
#define TEST_UNSIGNED_INT_CONVERTER_METHODDEF \
{"test_unsigned_int_converter", _PyCFunction_CAST(test_unsigned_int_converter), METH_FASTCALL, test_unsigned_int_converter__doc__},
static PyObject *
test_unsigned_int_converter_impl(PyObject *module, unsigned int a,
unsigned int b, unsigned int c);
static PyObject *
test_unsigned_int_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
unsigned int a = 12;
unsigned int b = 34;
unsigned int c = 56;
if (!_PyArg_CheckPositional("test_unsigned_int_converter", nargs, 0, 3)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
if (!_PyLong_UnsignedInt_Converter(args[0], &a)) {
goto exit;
}
if (nargs < 2) {
goto skip_optional;
}
if (!_PyLong_UnsignedInt_Converter(args[1], &b)) {
goto exit;
}
if (nargs < 3) {
goto skip_optional;
}
c = (unsigned int)PyLong_AsUnsignedLongMask(args[2]);
if (c == (unsigned int)-1 && PyErr_Occurred()) {
goto exit;
}
skip_optional:
return_value = test_unsigned_int_converter_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_unsigned_int_converter_impl(PyObject *module, unsigned int a,
unsigned int b, unsigned int c)
/*[clinic end generated code: output=f9cdbe410ccc98a3 input=5533534828b62fc0]*/
/*[clinic input]
test_long_converter
a: long = 12
/
[clinic start generated code]*/
PyDoc_STRVAR(test_long_converter__doc__,
"test_long_converter($module, a=12, /)\n"
"--\n"
"\n");
#define TEST_LONG_CONVERTER_METHODDEF \
{"test_long_converter", _PyCFunction_CAST(test_long_converter), METH_FASTCALL, test_long_converter__doc__},
static PyObject *
test_long_converter_impl(PyObject *module, long a);
static PyObject *
test_long_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
long a = 12;
if (!_PyArg_CheckPositional("test_long_converter", nargs, 0, 1)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
a = PyLong_AsLong(args[0]);
if (a == -1 && PyErr_Occurred()) {
goto exit;
}
skip_optional:
return_value = test_long_converter_impl(module, a);
exit:
return return_value;
}
static PyObject *
test_long_converter_impl(PyObject *module, long a)
/*[clinic end generated code: output=02b3a83495c1d236 input=d2179e3c9cdcde89]*/
/*[clinic input]
test_unsigned_long_converter
a: unsigned_long = 12
b: unsigned_long(bitwise=False) = 34
c: unsigned_long(bitwise=True) = 56
/
[clinic start generated code]*/
PyDoc_STRVAR(test_unsigned_long_converter__doc__,
"test_unsigned_long_converter($module, a=12, b=34, c=56, /)\n"
"--\n"
"\n");
#define TEST_UNSIGNED_LONG_CONVERTER_METHODDEF \
{"test_unsigned_long_converter", _PyCFunction_CAST(test_unsigned_long_converter), METH_FASTCALL, test_unsigned_long_converter__doc__},
static PyObject *
test_unsigned_long_converter_impl(PyObject *module, unsigned long a,
unsigned long b, unsigned long c);
static PyObject *
test_unsigned_long_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
unsigned long a = 12;
unsigned long b = 34;
unsigned long c = 56;
if (!_PyArg_CheckPositional("test_unsigned_long_converter", nargs, 0, 3)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
if (!_PyLong_UnsignedLong_Converter(args[0], &a)) {
goto exit;
}
if (nargs < 2) {
goto skip_optional;
}
if (!_PyLong_UnsignedLong_Converter(args[1], &b)) {
goto exit;
}
if (nargs < 3) {
goto skip_optional;
}
if (!PyLong_Check(args[2])) {
_PyArg_BadArgument("test_unsigned_long_converter", "argument 3", "int", args[2]);
goto exit;
}
c = PyLong_AsUnsignedLongMask(args[2]);
skip_optional:
return_value = test_unsigned_long_converter_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_unsigned_long_converter_impl(PyObject *module, unsigned long a,
unsigned long b, unsigned long c)
/*[clinic end generated code: output=540bb0ba2894e1fe input=f450d94cae1ef73b]*/
/*[clinic input]
test_long_long_converter
a: long_long = 12
/
[clinic start generated code]*/
PyDoc_STRVAR(test_long_long_converter__doc__,
"test_long_long_converter($module, a=12, /)\n"
"--\n"
"\n");
#define TEST_LONG_LONG_CONVERTER_METHODDEF \
{"test_long_long_converter", _PyCFunction_CAST(test_long_long_converter), METH_FASTCALL, test_long_long_converter__doc__},
static PyObject *
test_long_long_converter_impl(PyObject *module, long long a);
static PyObject *
test_long_long_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
long long a = 12;
if (!_PyArg_CheckPositional("test_long_long_converter", nargs, 0, 1)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
a = PyLong_AsLongLong(args[0]);
if (a == -1 && PyErr_Occurred()) {
goto exit;
}
skip_optional:
return_value = test_long_long_converter_impl(module, a);
exit:
return return_value;
}
static PyObject *
test_long_long_converter_impl(PyObject *module, long long a)
/*[clinic end generated code: output=f9d4ed79ad2db857 input=d5fc81577ff4dd02]*/
/*[clinic input]
test_unsigned_long_long_converter
a: unsigned_long_long = 12
b: unsigned_long_long(bitwise=False) = 34
c: unsigned_long_long(bitwise=True) = 56
/
[clinic start generated code]*/
PyDoc_STRVAR(test_unsigned_long_long_converter__doc__,
"test_unsigned_long_long_converter($module, a=12, b=34, c=56, /)\n"
"--\n"
"\n");
#define TEST_UNSIGNED_LONG_LONG_CONVERTER_METHODDEF \
{"test_unsigned_long_long_converter", _PyCFunction_CAST(test_unsigned_long_long_converter), METH_FASTCALL, test_unsigned_long_long_converter__doc__},
static PyObject *
test_unsigned_long_long_converter_impl(PyObject *module,
unsigned long long a,
unsigned long long b,
unsigned long long c);
static PyObject *
test_unsigned_long_long_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
unsigned long long a = 12;
unsigned long long b = 34;
unsigned long long c = 56;
if (!_PyArg_CheckPositional("test_unsigned_long_long_converter", nargs, 0, 3)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
if (!_PyLong_UnsignedLongLong_Converter(args[0], &a)) {
goto exit;
}
if (nargs < 2) {
goto skip_optional;
}
if (!_PyLong_UnsignedLongLong_Converter(args[1], &b)) {
goto exit;
}
if (nargs < 3) {
goto skip_optional;
}
if (!PyLong_Check(args[2])) {
_PyArg_BadArgument("test_unsigned_long_long_converter", "argument 3", "int", args[2]);
goto exit;
}
c = PyLong_AsUnsignedLongLongMask(args[2]);
skip_optional:
return_value = test_unsigned_long_long_converter_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_unsigned_long_long_converter_impl(PyObject *module,
unsigned long long a,
unsigned long long b,
unsigned long long c)
/*[clinic end generated code: output=3d69994f618b46bb input=a15115dc41866ff4]*/
/*[clinic input]
test_Py_ssize_t_converter
a: Py_ssize_t = 12
b: Py_ssize_t(accept={int}) = 34
c: Py_ssize_t(accept={int, NoneType}) = 56
/
[clinic start generated code]*/
PyDoc_STRVAR(test_Py_ssize_t_converter__doc__,
"test_Py_ssize_t_converter($module, a=12, b=34, c=56, /)\n"
"--\n"
"\n");
#define TEST_PY_SSIZE_T_CONVERTER_METHODDEF \
{"test_Py_ssize_t_converter", _PyCFunction_CAST(test_Py_ssize_t_converter), METH_FASTCALL, test_Py_ssize_t_converter__doc__},
static PyObject *
test_Py_ssize_t_converter_impl(PyObject *module, Py_ssize_t a, Py_ssize_t b,
Py_ssize_t c);
static PyObject *
test_Py_ssize_t_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
Py_ssize_t a = 12;
Py_ssize_t b = 34;
Py_ssize_t c = 56;
if (!_PyArg_CheckPositional("test_Py_ssize_t_converter", nargs, 0, 3)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
{
Py_ssize_t ival = -1;
PyObject *iobj = _PyNumber_Index(args[0]);
if (iobj != NULL) {
ival = PyLong_AsSsize_t(iobj);
Py_DECREF(iobj);
}
if (ival == -1 && PyErr_Occurred()) {
goto exit;
}
a = ival;
}
if (nargs < 2) {
goto skip_optional;
}
{
Py_ssize_t ival = -1;
PyObject *iobj = _PyNumber_Index(args[1]);
if (iobj != NULL) {
ival = PyLong_AsSsize_t(iobj);
Py_DECREF(iobj);
}
if (ival == -1 && PyErr_Occurred()) {
goto exit;
}
b = ival;
}
if (nargs < 3) {
goto skip_optional;
}
if (!_Py_convert_optional_to_ssize_t(args[2], &c)) {
goto exit;
}
skip_optional:
return_value = test_Py_ssize_t_converter_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_Py_ssize_t_converter_impl(PyObject *module, Py_ssize_t a, Py_ssize_t b,
Py_ssize_t c)
/*[clinic end generated code: output=48214bc3d01f4dd7 input=3855f184bb3f299d]*/
/*[clinic input]
test_slice_index_converter
a: slice_index = 12
b: slice_index(accept={int}) = 34
c: slice_index(accept={int, NoneType}) = 56
/
[clinic start generated code]*/
PyDoc_STRVAR(test_slice_index_converter__doc__,
"test_slice_index_converter($module, a=12, b=34, c=56, /)\n"
"--\n"
"\n");
#define TEST_SLICE_INDEX_CONVERTER_METHODDEF \
{"test_slice_index_converter", _PyCFunction_CAST(test_slice_index_converter), METH_FASTCALL, test_slice_index_converter__doc__},
static PyObject *
test_slice_index_converter_impl(PyObject *module, Py_ssize_t a, Py_ssize_t b,
Py_ssize_t c);
static PyObject *
test_slice_index_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
Py_ssize_t a = 12;
Py_ssize_t b = 34;
Py_ssize_t c = 56;
if (!_PyArg_CheckPositional("test_slice_index_converter", nargs, 0, 3)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
if (!_PyEval_SliceIndex(args[0], &a)) {
goto exit;
}
if (nargs < 2) {
goto skip_optional;
}
if (!_PyEval_SliceIndexNotNone(args[1], &b)) {
goto exit;
}
if (nargs < 3) {
goto skip_optional;
}
if (!_PyEval_SliceIndex(args[2], &c)) {
goto exit;
}
skip_optional:
return_value = test_slice_index_converter_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_slice_index_converter_impl(PyObject *module, Py_ssize_t a, Py_ssize_t b,
Py_ssize_t c)
/*[clinic end generated code: output=67506ed999361212 input=edeadb0ee126f531]*/
/*[clinic input]
test_size_t_converter
a: size_t = 12
/
[clinic start generated code]*/
PyDoc_STRVAR(test_size_t_converter__doc__,
"test_size_t_converter($module, a=12, /)\n"
"--\n"
"\n");
#define TEST_SIZE_T_CONVERTER_METHODDEF \
{"test_size_t_converter", _PyCFunction_CAST(test_size_t_converter), METH_FASTCALL, test_size_t_converter__doc__},
static PyObject *
test_size_t_converter_impl(PyObject *module, size_t a);
static PyObject *
test_size_t_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
size_t a = 12;
if (!_PyArg_CheckPositional("test_size_t_converter", nargs, 0, 1)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
if (!_PyLong_Size_t_Converter(args[0], &a)) {
goto exit;
}
skip_optional:
return_value = test_size_t_converter_impl(module, a);
exit:
return return_value;
}
static PyObject *
test_size_t_converter_impl(PyObject *module, size_t a)
/*[clinic end generated code: output=1653ecb5cbf775aa input=52e93a0fed0f1fb3]*/
/*[clinic input]
test_float_converter
a: float = 12.5
/
[clinic start generated code]*/
PyDoc_STRVAR(test_float_converter__doc__,
"test_float_converter($module, a=12.5, /)\n"
"--\n"
"\n");
#define TEST_FLOAT_CONVERTER_METHODDEF \
{"test_float_converter", _PyCFunction_CAST(test_float_converter), METH_FASTCALL, test_float_converter__doc__},
static PyObject *
test_float_converter_impl(PyObject *module, float a);
static PyObject *
test_float_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
float a = 12.5;
if (!_PyArg_CheckPositional("test_float_converter", nargs, 0, 1)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
if (PyFloat_CheckExact(args[0])) {
a = (float) (PyFloat_AS_DOUBLE(args[0]));
}
else
{
a = (float) PyFloat_AsDouble(args[0]);
if (a == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
skip_optional:
return_value = test_float_converter_impl(module, a);
exit:
return return_value;
}
static PyObject *
test_float_converter_impl(PyObject *module, float a)
/*[clinic end generated code: output=36ad006990a8a91e input=259c0d98eca35034]*/
/*[clinic input]
test_double_converter
a: double = 12.5
/
[clinic start generated code]*/
PyDoc_STRVAR(test_double_converter__doc__,
"test_double_converter($module, a=12.5, /)\n"
"--\n"
"\n");
#define TEST_DOUBLE_CONVERTER_METHODDEF \
{"test_double_converter", _PyCFunction_CAST(test_double_converter), METH_FASTCALL, test_double_converter__doc__},
static PyObject *
test_double_converter_impl(PyObject *module, double a);
static PyObject *
test_double_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
double a = 12.5;
if (!_PyArg_CheckPositional("test_double_converter", nargs, 0, 1)) {
goto exit;
}
if (nargs < 1) {
goto skip_optional;
}
if (PyFloat_CheckExact(args[0])) {
a = PyFloat_AS_DOUBLE(args[0]);
}
else
{
a = PyFloat_AsDouble(args[0]);
if (a == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
skip_optional:
return_value = test_double_converter_impl(module, a);
exit:
return return_value;
}
static PyObject *
test_double_converter_impl(PyObject *module, double a)
/*[clinic end generated code: output=7435925592bac795 input=c6a9945706a41c27]*/
/*[clinic input]
test_Py_complex_converter
a: Py_complex
/
[clinic start generated code]*/
PyDoc_STRVAR(test_Py_complex_converter__doc__,
"test_Py_complex_converter($module, a, /)\n"
"--\n"
"\n");
#define TEST_PY_COMPLEX_CONVERTER_METHODDEF \
{"test_Py_complex_converter", (PyCFunction)test_Py_complex_converter, METH_O, test_Py_complex_converter__doc__},
static PyObject *
test_Py_complex_converter_impl(PyObject *module, Py_complex a);
static PyObject *
test_Py_complex_converter(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
Py_complex a;
a = PyComplex_AsCComplex(arg);
if (PyErr_Occurred()) {
goto exit;
}
return_value = test_Py_complex_converter_impl(module, a);
exit:
return return_value;
}
static PyObject *
test_Py_complex_converter_impl(PyObject *module, Py_complex a)
/*[clinic end generated code: output=c2ecbec2144ca540 input=070f216a515beb79]*/
/*[clinic input]
test_str_converter
a: str = NULL
b: str = "ab"
c: str(accept={str}) = "cd"
d: str(accept={robuffer}) = "cef"
e: str(accept={str, NoneType}) = "gh"
f: str(accept={robuffer}, zeroes=True) = "ij"
g: str(accept={robuffer, str}, zeroes=True) = "kl"
h: str(accept={robuffer, str, NoneType}, zeroes=True) = "mn"
/
[clinic start generated code]*/
PyDoc_STRVAR(test_str_converter__doc__,
"test_str_converter($module, a=<unrepresentable>, b=\'ab\', c=\'cd\',\n"
" d=\'cef\', e=\'gh\', f=\'ij\', g=\'kl\', h=\'mn\', /)\n"
"--\n"
"\n");
#define TEST_STR_CONVERTER_METHODDEF \
{"test_str_converter", _PyCFunction_CAST(test_str_converter), METH_FASTCALL, test_str_converter__doc__},
static PyObject *
test_str_converter_impl(PyObject *module, const char *a, const char *b,
const char *c, const char *d, const char *e,
2021-05-07 22:17:37 -03:00
const char *f, Py_ssize_t f_length, const char *g,
Py_ssize_t g_length, const char *h,
Py_ssize_t h_length);
static PyObject *
test_str_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
const char *a = NULL;
const char *b = "ab";
const char *c = "cd";
const char *d = "cef";
const char *e = "gh";
const char *f = "ij";
2021-05-07 22:17:37 -03:00
Py_ssize_t f_length;
const char *g = "kl";
2021-05-07 22:17:37 -03:00
Py_ssize_t g_length;
const char *h = "mn";
2021-05-07 22:17:37 -03:00
Py_ssize_t h_length;
if (!_PyArg_ParseStack(args, nargs, "|sssyzy#s#z#:test_str_converter",
&a, &b, &c, &d, &e, &f, &f_length, &g, &g_length, &h, &h_length)) {
goto exit;
}
return_value = test_str_converter_impl(module, a, b, c, d, e, f, f_length, g, g_length, h, h_length);
exit:
return return_value;
}
static PyObject *
test_str_converter_impl(PyObject *module, const char *a, const char *b,
const char *c, const char *d, const char *e,
2021-05-07 22:17:37 -03:00
const char *f, Py_ssize_t f_length, const char *g,
Py_ssize_t g_length, const char *h,
Py_ssize_t h_length)
/*[clinic end generated code: output=82cb06d5237ef062 input=8afe9da8185cd38c]*/
/*[clinic input]
test_str_converter_encoding
a: str(encoding="idna")
b: str(encoding="idna", accept={str})
c: str(encoding="idna", accept={bytes, bytearray, str})
d: str(encoding="idna", zeroes=True)
e: str(encoding="idna", accept={bytes, bytearray, str}, zeroes=True)
/
[clinic start generated code]*/
PyDoc_STRVAR(test_str_converter_encoding__doc__,
"test_str_converter_encoding($module, a, b, c, d, e, /)\n"
"--\n"
"\n");
#define TEST_STR_CONVERTER_ENCODING_METHODDEF \
{"test_str_converter_encoding", _PyCFunction_CAST(test_str_converter_encoding), METH_FASTCALL, test_str_converter_encoding__doc__},
static PyObject *
test_str_converter_encoding_impl(PyObject *module, char *a, char *b, char *c,
2021-05-07 22:17:37 -03:00
char *d, Py_ssize_t d_length, char *e,
Py_ssize_t e_length);
static PyObject *
test_str_converter_encoding(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
char *a = NULL;
char *b = NULL;
char *c = NULL;
char *d = NULL;
2021-05-07 22:17:37 -03:00
Py_ssize_t d_length;
char *e = NULL;
2021-05-07 22:17:37 -03:00
Py_ssize_t e_length;
if (!_PyArg_ParseStack(args, nargs, "esesetes#et#:test_str_converter_encoding",
"idna", &a, "idna", &b, "idna", &c, "idna", &d, &d_length, "idna", &e, &e_length)) {
goto exit;
}
return_value = test_str_converter_encoding_impl(module, a, b, c, d, d_length, e, e_length);
/* Post parse cleanup for a */
PyMem_FREE(a);
/* Post parse cleanup for b */
PyMem_FREE(b);
/* Post parse cleanup for c */
PyMem_FREE(c);
/* Post parse cleanup for d */
PyMem_FREE(d);
/* Post parse cleanup for e */
PyMem_FREE(e);
exit:
return return_value;
}
static PyObject *
test_str_converter_encoding_impl(PyObject *module, char *a, char *b, char *c,
2021-05-07 22:17:37 -03:00
char *d, Py_ssize_t d_length, char *e,
Py_ssize_t e_length)
/*[clinic end generated code: output=999c1deecfa15b0a input=eb4c38e1f898f402]*/
/*[clinic input]
test_Py_UNICODE_converter
a: Py_UNICODE
b: Py_UNICODE(accept={str})
c: Py_UNICODE(accept={str, NoneType})
d: Py_UNICODE(zeroes=True)
e: Py_UNICODE(accept={str, NoneType}, zeroes=True)
/
[clinic start generated code]*/
PyDoc_STRVAR(test_Py_UNICODE_converter__doc__,
"test_Py_UNICODE_converter($module, a, b, c, d, e, /)\n"
"--\n"
"\n");
#define TEST_PY_UNICODE_CONVERTER_METHODDEF \
{"test_Py_UNICODE_converter", _PyCFunction_CAST(test_Py_UNICODE_converter), METH_FASTCALL, test_Py_UNICODE_converter__doc__},
static PyObject *
test_Py_UNICODE_converter_impl(PyObject *module, const wchar_t *a,
const wchar_t *b, const wchar_t *c,
const wchar_t *d, Py_ssize_t d_length,
const wchar_t *e, Py_ssize_t e_length);
static PyObject *
test_Py_UNICODE_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
const wchar_t *a = NULL;
const wchar_t *b = NULL;
const wchar_t *c = NULL;
const wchar_t *d = NULL;
2021-05-07 22:17:37 -03:00
Py_ssize_t d_length;
const wchar_t *e = NULL;
2021-05-07 22:17:37 -03:00
Py_ssize_t e_length;
if (!_PyArg_ParseStack(args, nargs, "O&O&O&u#Z#:test_Py_UNICODE_converter",
_PyUnicode_WideCharString_Converter, &a, _PyUnicode_WideCharString_Converter, &b, _PyUnicode_WideCharString_Opt_Converter, &c, &d, &d_length, &e, &e_length)) {
goto exit;
}
return_value = test_Py_UNICODE_converter_impl(module, a, b, c, d, d_length, e, e_length);
exit:
/* Cleanup for a */
PyMem_Free((void *)a);
/* Cleanup for b */
PyMem_Free((void *)b);
/* Cleanup for c */
PyMem_Free((void *)c);
return return_value;
}
static PyObject *
test_Py_UNICODE_converter_impl(PyObject *module, const wchar_t *a,
const wchar_t *b, const wchar_t *c,
const wchar_t *d, Py_ssize_t d_length,
const wchar_t *e, Py_ssize_t e_length)
/*[clinic end generated code: output=529af9cda2a20349 input=064a3b68ad7f04b0]*/
/*[clinic input]
test_Py_buffer_converter
a: Py_buffer
b: Py_buffer(accept={buffer})
c: Py_buffer(accept={str, buffer})
d: Py_buffer(accept={str, buffer, NoneType})
e: Py_buffer(accept={rwbuffer})
/
[clinic start generated code]*/
PyDoc_STRVAR(test_Py_buffer_converter__doc__,
"test_Py_buffer_converter($module, a, b, c, d, e, /)\n"
"--\n"
"\n");
#define TEST_PY_BUFFER_CONVERTER_METHODDEF \
{"test_Py_buffer_converter", _PyCFunction_CAST(test_Py_buffer_converter), METH_FASTCALL, test_Py_buffer_converter__doc__},
static PyObject *
test_Py_buffer_converter_impl(PyObject *module, Py_buffer *a, Py_buffer *b,
Py_buffer *c, Py_buffer *d, Py_buffer *e);
static PyObject *
test_Py_buffer_converter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
Py_buffer a = {NULL, NULL};
Py_buffer b = {NULL, NULL};
Py_buffer c = {NULL, NULL};
Py_buffer d = {NULL, NULL};
Py_buffer e = {NULL, NULL};
if (!_PyArg_ParseStack(args, nargs, "y*y*s*z*w*:test_Py_buffer_converter",
&a, &b, &c, &d, &e)) {
goto exit;
}
return_value = test_Py_buffer_converter_impl(module, &a, &b, &c, &d, &e);
exit:
/* Cleanup for a */
if (a.obj) {
PyBuffer_Release(&a);
}
/* Cleanup for b */
if (b.obj) {
PyBuffer_Release(&b);
}
/* Cleanup for c */
if (c.obj) {
PyBuffer_Release(&c);
}
/* Cleanup for d */
if (d.obj) {
PyBuffer_Release(&d);
}
/* Cleanup for e */
if (e.obj) {
PyBuffer_Release(&e);
}
return return_value;
}
static PyObject *
test_Py_buffer_converter_impl(PyObject *module, Py_buffer *a, Py_buffer *b,
Py_buffer *c, Py_buffer *d, Py_buffer *e)
/*[clinic end generated code: output=a153b71b4f45f952 input=6a9da0f56f9525fd]*/
/*[clinic input]
test_keywords
a: object
b: object
[clinic start generated code]*/
PyDoc_STRVAR(test_keywords__doc__,
"test_keywords($module, /, a, b)\n"
"--\n"
"\n");
#define TEST_KEYWORDS_METHODDEF \
{"test_keywords", _PyCFunction_CAST(test_keywords), METH_FASTCALL|METH_KEYWORDS, test_keywords__doc__},
static PyObject *
test_keywords_impl(PyObject *module, PyObject *a, PyObject *b);
static PyObject *
test_keywords(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 2
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('a'), _Py_LATIN1_CHR('b'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"a", "b", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_keywords",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[2];
PyObject *a;
PyObject *b;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 2, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
b = args[1];
return_value = test_keywords_impl(module, a, b);
exit:
return return_value;
}
static PyObject *
test_keywords_impl(PyObject *module, PyObject *a, PyObject *b)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=13ba007e1c842a37 input=0d3484844749c05b]*/
/*[clinic input]
test_keywords_kwonly
a: object
*
b: object
[clinic start generated code]*/
PyDoc_STRVAR(test_keywords_kwonly__doc__,
"test_keywords_kwonly($module, /, a, *, b)\n"
"--\n"
"\n");
#define TEST_KEYWORDS_KWONLY_METHODDEF \
{"test_keywords_kwonly", _PyCFunction_CAST(test_keywords_kwonly), METH_FASTCALL|METH_KEYWORDS, test_keywords_kwonly__doc__},
static PyObject *
test_keywords_kwonly_impl(PyObject *module, PyObject *a, PyObject *b);
static PyObject *
test_keywords_kwonly(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 2
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('a'), _Py_LATIN1_CHR('b'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"a", "b", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_keywords_kwonly",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[2];
PyObject *a;
PyObject *b;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 1, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
b = args[1];
return_value = test_keywords_kwonly_impl(module, a, b);
exit:
return return_value;
}
static PyObject *
test_keywords_kwonly_impl(PyObject *module, PyObject *a, PyObject *b)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=789799a6d2d6eb4d input=384adc78bfa0bff7]*/
/*[clinic input]
test_keywords_opt
a: object
b: object = None
c: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_keywords_opt__doc__,
"test_keywords_opt($module, /, a, b=None, c=None)\n"
"--\n"
"\n");
#define TEST_KEYWORDS_OPT_METHODDEF \
{"test_keywords_opt", _PyCFunction_CAST(test_keywords_opt), METH_FASTCALL|METH_KEYWORDS, test_keywords_opt__doc__},
static PyObject *
test_keywords_opt_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c);
static PyObject *
test_keywords_opt(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 3
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('a'), _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"a", "b", "c", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_keywords_opt",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[3];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
PyObject *a;
PyObject *b = Py_None;
PyObject *c = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 3, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
if (!noptargs) {
goto skip_optional_pos;
}
if (args[1]) {
b = args[1];
if (!--noptargs) {
goto skip_optional_pos;
}
}
c = args[2];
skip_optional_pos:
return_value = test_keywords_opt_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_keywords_opt_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=42430dd8ea5afde6 input=eda7964f784f4607]*/
/*[clinic input]
test_keywords_opt_kwonly
a: object
b: object = None
*
c: object = None
d: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_keywords_opt_kwonly__doc__,
"test_keywords_opt_kwonly($module, /, a, b=None, *, c=None, d=None)\n"
"--\n"
"\n");
#define TEST_KEYWORDS_OPT_KWONLY_METHODDEF \
{"test_keywords_opt_kwonly", _PyCFunction_CAST(test_keywords_opt_kwonly), METH_FASTCALL|METH_KEYWORDS, test_keywords_opt_kwonly__doc__},
static PyObject *
test_keywords_opt_kwonly_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c, PyObject *d);
static PyObject *
test_keywords_opt_kwonly(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 4
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('a'), _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), _Py_LATIN1_CHR('d'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"a", "b", "c", "d", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_keywords_opt_kwonly",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[4];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
PyObject *a;
PyObject *b = Py_None;
PyObject *c = Py_None;
PyObject *d = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 2, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
if (!noptargs) {
goto skip_optional_pos;
}
if (args[1]) {
b = args[1];
if (!--noptargs) {
goto skip_optional_pos;
}
}
skip_optional_pos:
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[2]) {
c = args[2];
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
d = args[3];
skip_optional_kwonly:
return_value = test_keywords_opt_kwonly_impl(module, a, b, c, d);
exit:
return return_value;
}
static PyObject *
test_keywords_opt_kwonly_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c, PyObject *d)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=f312c35c380d2bf9 input=209387a4815e5082]*/
/*[clinic input]
test_keywords_kwonly_opt
a: object
*
b: object = None
c: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_keywords_kwonly_opt__doc__,
"test_keywords_kwonly_opt($module, /, a, *, b=None, c=None)\n"
"--\n"
"\n");
#define TEST_KEYWORDS_KWONLY_OPT_METHODDEF \
{"test_keywords_kwonly_opt", _PyCFunction_CAST(test_keywords_kwonly_opt), METH_FASTCALL|METH_KEYWORDS, test_keywords_kwonly_opt__doc__},
static PyObject *
test_keywords_kwonly_opt_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c);
static PyObject *
test_keywords_kwonly_opt(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 3
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('a'), _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"a", "b", "c", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_keywords_kwonly_opt",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[3];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
PyObject *a;
PyObject *b = Py_None;
PyObject *c = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[1]) {
b = args[1];
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
c = args[2];
skip_optional_kwonly:
return_value = test_keywords_kwonly_opt_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_keywords_kwonly_opt_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=3937da2a8233ebe0 input=18393cc64fa000f4]*/
/*[clinic input]
test_posonly_keywords
a: object
/
b: object
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_keywords__doc__,
"test_posonly_keywords($module, a, /, b)\n"
"--\n"
"\n");
#define TEST_POSONLY_KEYWORDS_METHODDEF \
{"test_posonly_keywords", _PyCFunction_CAST(test_posonly_keywords), METH_FASTCALL|METH_KEYWORDS, test_posonly_keywords__doc__},
static PyObject *
test_posonly_keywords_impl(PyObject *module, PyObject *a, PyObject *b);
static PyObject *
test_posonly_keywords(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 1
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('b'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "b", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_keywords",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[2];
PyObject *a;
PyObject *b;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 2, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
b = args[1];
return_value = test_posonly_keywords_impl(module, a, b);
exit:
return return_value;
}
static PyObject *
test_posonly_keywords_impl(PyObject *module, PyObject *a, PyObject *b)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=6b4f6dd5f4db3877 input=1767b0ebdf06060e]*/
/*[clinic input]
test_posonly_kwonly
a: object
/
*
c: object
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_kwonly__doc__,
"test_posonly_kwonly($module, a, /, *, c)\n"
"--\n"
"\n");
#define TEST_POSONLY_KWONLY_METHODDEF \
{"test_posonly_kwonly", _PyCFunction_CAST(test_posonly_kwonly), METH_FASTCALL|METH_KEYWORDS, test_posonly_kwonly__doc__},
static PyObject *
test_posonly_kwonly_impl(PyObject *module, PyObject *a, PyObject *c);
static PyObject *
test_posonly_kwonly(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 1
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('c'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "c", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_kwonly",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[2];
PyObject *a;
PyObject *c;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 1, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
c = args[1];
return_value = test_posonly_kwonly_impl(module, a, c);
exit:
return return_value;
}
static PyObject *
test_posonly_kwonly_impl(PyObject *module, PyObject *a, PyObject *c)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=8bef2a8198e70b26 input=9042f2818f664839]*/
/*[clinic input]
test_posonly_keywords_kwonly
a: object
/
b: object
*
c: object
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_keywords_kwonly__doc__,
"test_posonly_keywords_kwonly($module, a, /, b, *, c)\n"
"--\n"
"\n");
#define TEST_POSONLY_KEYWORDS_KWONLY_METHODDEF \
{"test_posonly_keywords_kwonly", _PyCFunction_CAST(test_posonly_keywords_kwonly), METH_FASTCALL|METH_KEYWORDS, test_posonly_keywords_kwonly__doc__},
static PyObject *
test_posonly_keywords_kwonly_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c);
static PyObject *
test_posonly_keywords_kwonly(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 2
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "b", "c", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_keywords_kwonly",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[3];
PyObject *a;
PyObject *b;
PyObject *c;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 2, 1, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
b = args[1];
c = args[2];
return_value = test_posonly_keywords_kwonly_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_posonly_keywords_kwonly_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=a44b8ae8300955e1 input=29546ebdca492fea]*/
/*[clinic input]
test_posonly_keywords_opt
a: object
/
b: object
c: object = None
d: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_keywords_opt__doc__,
"test_posonly_keywords_opt($module, a, /, b, c=None, d=None)\n"
"--\n"
"\n");
#define TEST_POSONLY_KEYWORDS_OPT_METHODDEF \
{"test_posonly_keywords_opt", _PyCFunction_CAST(test_posonly_keywords_opt), METH_FASTCALL|METH_KEYWORDS, test_posonly_keywords_opt__doc__},
static PyObject *
test_posonly_keywords_opt_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c, PyObject *d);
static PyObject *
test_posonly_keywords_opt(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 3
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), _Py_LATIN1_CHR('d'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "b", "c", "d", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_keywords_opt",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[4];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 2;
PyObject *a;
PyObject *b;
PyObject *c = Py_None;
PyObject *d = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 4, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
b = args[1];
if (!noptargs) {
goto skip_optional_pos;
}
if (args[2]) {
c = args[2];
if (!--noptargs) {
goto skip_optional_pos;
}
}
d = args[3];
skip_optional_pos:
return_value = test_posonly_keywords_opt_impl(module, a, b, c, d);
exit:
return return_value;
}
static PyObject *
test_posonly_keywords_opt_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c, PyObject *d)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=cae6647c9e8e0238 input=cdf5a9625e554e9b]*/
/*[clinic input]
test_posonly_keywords_opt2
a: object
/
b: object = None
c: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_keywords_opt2__doc__,
"test_posonly_keywords_opt2($module, a, /, b=None, c=None)\n"
"--\n"
"\n");
#define TEST_POSONLY_KEYWORDS_OPT2_METHODDEF \
{"test_posonly_keywords_opt2", _PyCFunction_CAST(test_posonly_keywords_opt2), METH_FASTCALL|METH_KEYWORDS, test_posonly_keywords_opt2__doc__},
static PyObject *
test_posonly_keywords_opt2_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c);
static PyObject *
test_posonly_keywords_opt2(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 2
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "b", "c", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_keywords_opt2",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[3];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
PyObject *a;
PyObject *b = Py_None;
PyObject *c = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 3, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
if (!noptargs) {
goto skip_optional_pos;
}
if (args[1]) {
b = args[1];
if (!--noptargs) {
goto skip_optional_pos;
}
}
c = args[2];
skip_optional_pos:
return_value = test_posonly_keywords_opt2_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_posonly_keywords_opt2_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=6526fd08aafa2149 input=1581299d21d16f14]*/
/*[clinic input]
test_posonly_opt_keywords_opt
a: object
b: object = None
/
c: object = None
d: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_opt_keywords_opt__doc__,
"test_posonly_opt_keywords_opt($module, a, b=None, /, c=None, d=None)\n"
"--\n"
"\n");
#define TEST_POSONLY_OPT_KEYWORDS_OPT_METHODDEF \
{"test_posonly_opt_keywords_opt", _PyCFunction_CAST(test_posonly_opt_keywords_opt), METH_FASTCALL|METH_KEYWORDS, test_posonly_opt_keywords_opt__doc__},
static PyObject *
test_posonly_opt_keywords_opt_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c, PyObject *d);
static PyObject *
test_posonly_opt_keywords_opt(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 2
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('c'), _Py_LATIN1_CHR('d'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "", "c", "d", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_opt_keywords_opt",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[4];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
PyObject *a;
PyObject *b = Py_None;
PyObject *c = Py_None;
PyObject *d = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 4, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
if (nargs < 2) {
goto skip_optional_posonly;
}
noptargs--;
b = args[1];
skip_optional_posonly:
if (!noptargs) {
goto skip_optional_pos;
}
if (args[2]) {
c = args[2];
if (!--noptargs) {
goto skip_optional_pos;
}
}
d = args[3];
skip_optional_pos:
return_value = test_posonly_opt_keywords_opt_impl(module, a, b, c, d);
exit:
return return_value;
}
static PyObject *
test_posonly_opt_keywords_opt_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c, PyObject *d)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=b8d01e98443738c2 input=408798ec3d42949f]*/
/*[clinic input]
test_posonly_kwonly_opt
a: object
/
*
b: object
c: object = None
d: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_kwonly_opt__doc__,
"test_posonly_kwonly_opt($module, a, /, *, b, c=None, d=None)\n"
"--\n"
"\n");
#define TEST_POSONLY_KWONLY_OPT_METHODDEF \
{"test_posonly_kwonly_opt", _PyCFunction_CAST(test_posonly_kwonly_opt), METH_FASTCALL|METH_KEYWORDS, test_posonly_kwonly_opt__doc__},
static PyObject *
test_posonly_kwonly_opt_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c, PyObject *d);
static PyObject *
test_posonly_kwonly_opt(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 3
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), _Py_LATIN1_CHR('d'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "b", "c", "d", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_kwonly_opt",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[4];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 2;
PyObject *a;
PyObject *b;
PyObject *c = Py_None;
PyObject *d = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 1, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
b = args[1];
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[2]) {
c = args[2];
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
d = args[3];
skip_optional_kwonly:
return_value = test_posonly_kwonly_opt_impl(module, a, b, c, d);
exit:
return return_value;
}
static PyObject *
test_posonly_kwonly_opt_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c, PyObject *d)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=81d71c288f13d4dc input=8d8e5643bbbc2309]*/
/*[clinic input]
test_posonly_kwonly_opt2
a: object
/
*
b: object = None
c: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_kwonly_opt2__doc__,
"test_posonly_kwonly_opt2($module, a, /, *, b=None, c=None)\n"
"--\n"
"\n");
#define TEST_POSONLY_KWONLY_OPT2_METHODDEF \
{"test_posonly_kwonly_opt2", _PyCFunction_CAST(test_posonly_kwonly_opt2), METH_FASTCALL|METH_KEYWORDS, test_posonly_kwonly_opt2__doc__},
static PyObject *
test_posonly_kwonly_opt2_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c);
static PyObject *
test_posonly_kwonly_opt2(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 2
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "b", "c", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_kwonly_opt2",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[3];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
PyObject *a;
PyObject *b = Py_None;
PyObject *c = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[1]) {
b = args[1];
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
c = args[2];
skip_optional_kwonly:
return_value = test_posonly_kwonly_opt2_impl(module, a, b, c);
exit:
return return_value;
}
static PyObject *
test_posonly_kwonly_opt2_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=a717d2a1a3310289 input=f7e5eed94f75fff0]*/
/*[clinic input]
test_posonly_opt_kwonly_opt
a: object
b: object = None
/
*
c: object = None
d: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_opt_kwonly_opt__doc__,
"test_posonly_opt_kwonly_opt($module, a, b=None, /, *, c=None, d=None)\n"
"--\n"
"\n");
#define TEST_POSONLY_OPT_KWONLY_OPT_METHODDEF \
{"test_posonly_opt_kwonly_opt", _PyCFunction_CAST(test_posonly_opt_kwonly_opt), METH_FASTCALL|METH_KEYWORDS, test_posonly_opt_kwonly_opt__doc__},
static PyObject *
test_posonly_opt_kwonly_opt_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c, PyObject *d);
static PyObject *
test_posonly_opt_kwonly_opt(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 2
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('c'), _Py_LATIN1_CHR('d'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "", "c", "d", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_opt_kwonly_opt",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[4];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
PyObject *a;
PyObject *b = Py_None;
PyObject *c = Py_None;
PyObject *d = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 2, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
if (nargs < 2) {
goto skip_optional_posonly;
}
noptargs--;
b = args[1];
skip_optional_posonly:
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[2]) {
c = args[2];
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
d = args[3];
skip_optional_kwonly:
return_value = test_posonly_opt_kwonly_opt_impl(module, a, b, c, d);
exit:
return return_value;
}
static PyObject *
test_posonly_opt_kwonly_opt_impl(PyObject *module, PyObject *a, PyObject *b,
PyObject *c, PyObject *d)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=0f50b4b8d45cf2de input=1e557dc979d120fd]*/
/*[clinic input]
test_posonly_keywords_kwonly_opt
a: object
/
b: object
*
c: object
d: object = None
e: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_keywords_kwonly_opt__doc__,
"test_posonly_keywords_kwonly_opt($module, a, /, b, *, c, d=None, e=None)\n"
"--\n"
"\n");
#define TEST_POSONLY_KEYWORDS_KWONLY_OPT_METHODDEF \
{"test_posonly_keywords_kwonly_opt", _PyCFunction_CAST(test_posonly_keywords_kwonly_opt), METH_FASTCALL|METH_KEYWORDS, test_posonly_keywords_kwonly_opt__doc__},
static PyObject *
test_posonly_keywords_kwonly_opt_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c, PyObject *d,
PyObject *e);
static PyObject *
test_posonly_keywords_kwonly_opt(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 4
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), _Py_LATIN1_CHR('d'), _Py_LATIN1_CHR('e'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "b", "c", "d", "e", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_keywords_kwonly_opt",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[5];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 3;
PyObject *a;
PyObject *b;
PyObject *c;
PyObject *d = Py_None;
PyObject *e = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 2, 1, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
b = args[1];
c = args[2];
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[3]) {
d = args[3];
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
e = args[4];
skip_optional_kwonly:
return_value = test_posonly_keywords_kwonly_opt_impl(module, a, b, c, d, e);
exit:
return return_value;
}
static PyObject *
test_posonly_keywords_kwonly_opt_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c, PyObject *d,
PyObject *e)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=8dac8d2a4e6105fa input=c3884a4f956fdc89]*/
/*[clinic input]
test_posonly_keywords_kwonly_opt2
a: object
/
b: object
*
c: object = None
d: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_keywords_kwonly_opt2__doc__,
"test_posonly_keywords_kwonly_opt2($module, a, /, b, *, c=None, d=None)\n"
"--\n"
"\n");
#define TEST_POSONLY_KEYWORDS_KWONLY_OPT2_METHODDEF \
{"test_posonly_keywords_kwonly_opt2", _PyCFunction_CAST(test_posonly_keywords_kwonly_opt2), METH_FASTCALL|METH_KEYWORDS, test_posonly_keywords_kwonly_opt2__doc__},
static PyObject *
test_posonly_keywords_kwonly_opt2_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c, PyObject *d);
static PyObject *
test_posonly_keywords_kwonly_opt2(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 3
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), _Py_LATIN1_CHR('d'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "b", "c", "d", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_keywords_kwonly_opt2",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[4];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 2;
PyObject *a;
PyObject *b;
PyObject *c = Py_None;
PyObject *d = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 2, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
b = args[1];
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[2]) {
c = args[2];
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
d = args[3];
skip_optional_kwonly:
return_value = test_posonly_keywords_kwonly_opt2_impl(module, a, b, c, d);
exit:
return return_value;
}
static PyObject *
test_posonly_keywords_kwonly_opt2_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c, PyObject *d)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=5a96d521e6414f5d input=68d01d7c0f6dafb0]*/
/*[clinic input]
test_posonly_keywords_opt_kwonly_opt
a: object
/
b: object
c: object = None
*
d: object = None
e: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_keywords_opt_kwonly_opt__doc__,
"test_posonly_keywords_opt_kwonly_opt($module, a, /, b, c=None, *,\n"
" d=None, e=None)\n"
"--\n"
"\n");
#define TEST_POSONLY_KEYWORDS_OPT_KWONLY_OPT_METHODDEF \
{"test_posonly_keywords_opt_kwonly_opt", _PyCFunction_CAST(test_posonly_keywords_opt_kwonly_opt), METH_FASTCALL|METH_KEYWORDS, test_posonly_keywords_opt_kwonly_opt__doc__},
static PyObject *
test_posonly_keywords_opt_kwonly_opt_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c,
PyObject *d, PyObject *e);
static PyObject *
test_posonly_keywords_opt_kwonly_opt(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 4
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), _Py_LATIN1_CHR('d'), _Py_LATIN1_CHR('e'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "b", "c", "d", "e", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_keywords_opt_kwonly_opt",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[5];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 2;
PyObject *a;
PyObject *b;
PyObject *c = Py_None;
PyObject *d = Py_None;
PyObject *e = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 3, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
b = args[1];
if (!noptargs) {
goto skip_optional_pos;
}
if (args[2]) {
c = args[2];
if (!--noptargs) {
goto skip_optional_pos;
}
}
skip_optional_pos:
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[3]) {
d = args[3];
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
e = args[4];
skip_optional_kwonly:
return_value = test_posonly_keywords_opt_kwonly_opt_impl(module, a, b, c, d, e);
exit:
return return_value;
}
static PyObject *
test_posonly_keywords_opt_kwonly_opt_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c,
PyObject *d, PyObject *e)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=d5a474dcd5dc3e9f input=d0883d45876f186c]*/
/*[clinic input]
test_posonly_keywords_opt2_kwonly_opt
a: object
/
b: object = None
c: object = None
*
d: object = None
e: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_keywords_opt2_kwonly_opt__doc__,
"test_posonly_keywords_opt2_kwonly_opt($module, a, /, b=None, c=None, *,\n"
" d=None, e=None)\n"
"--\n"
"\n");
#define TEST_POSONLY_KEYWORDS_OPT2_KWONLY_OPT_METHODDEF \
{"test_posonly_keywords_opt2_kwonly_opt", _PyCFunction_CAST(test_posonly_keywords_opt2_kwonly_opt), METH_FASTCALL|METH_KEYWORDS, test_posonly_keywords_opt2_kwonly_opt__doc__},
static PyObject *
test_posonly_keywords_opt2_kwonly_opt_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c,
PyObject *d, PyObject *e);
static PyObject *
test_posonly_keywords_opt2_kwonly_opt(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 4
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), _Py_LATIN1_CHR('d'), _Py_LATIN1_CHR('e'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "b", "c", "d", "e", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_keywords_opt2_kwonly_opt",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[5];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
PyObject *a;
PyObject *b = Py_None;
PyObject *c = Py_None;
PyObject *d = Py_None;
PyObject *e = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 3, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
if (!noptargs) {
goto skip_optional_pos;
}
if (args[1]) {
b = args[1];
if (!--noptargs) {
goto skip_optional_pos;
}
}
if (args[2]) {
c = args[2];
if (!--noptargs) {
goto skip_optional_pos;
}
}
skip_optional_pos:
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[3]) {
d = args[3];
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
e = args[4];
skip_optional_kwonly:
return_value = test_posonly_keywords_opt2_kwonly_opt_impl(module, a, b, c, d, e);
exit:
return return_value;
}
static PyObject *
test_posonly_keywords_opt2_kwonly_opt_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c,
PyObject *d, PyObject *e)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=ac239c5ee8a74408 input=c95e2e1ec93035ad]*/
/*[clinic input]
test_posonly_opt_keywords_opt_kwonly_opt
a: object
b: object = None
/
c: object = None
d: object = None
*
e: object = None
f: object = None
[clinic start generated code]*/
PyDoc_STRVAR(test_posonly_opt_keywords_opt_kwonly_opt__doc__,
"test_posonly_opt_keywords_opt_kwonly_opt($module, a, b=None, /, c=None,\n"
" d=None, *, e=None, f=None)\n"
"--\n"
"\n");
#define TEST_POSONLY_OPT_KEYWORDS_OPT_KWONLY_OPT_METHODDEF \
{"test_posonly_opt_keywords_opt_kwonly_opt", _PyCFunction_CAST(test_posonly_opt_keywords_opt_kwonly_opt), METH_FASTCALL|METH_KEYWORDS, test_posonly_opt_keywords_opt_kwonly_opt__doc__},
static PyObject *
test_posonly_opt_keywords_opt_kwonly_opt_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c,
PyObject *d, PyObject *e,
PyObject *f);
static PyObject *
test_posonly_opt_keywords_opt_kwonly_opt(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 4
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('c'), _Py_LATIN1_CHR('d'), _Py_LATIN1_CHR('e'), _Py_LATIN1_CHR('f'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"", "", "c", "d", "e", "f", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_posonly_opt_keywords_opt_kwonly_opt",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[6];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
PyObject *a;
PyObject *b = Py_None;
PyObject *c = Py_None;
PyObject *d = Py_None;
PyObject *e = Py_None;
PyObject *f = Py_None;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 4, 0, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
if (nargs < 2) {
goto skip_optional_posonly;
}
noptargs--;
b = args[1];
skip_optional_posonly:
if (!noptargs) {
goto skip_optional_pos;
}
if (args[2]) {
c = args[2];
if (!--noptargs) {
goto skip_optional_pos;
}
}
if (args[3]) {
d = args[3];
if (!--noptargs) {
goto skip_optional_pos;
}
}
skip_optional_pos:
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[4]) {
e = args[4];
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
f = args[5];
skip_optional_kwonly:
return_value = test_posonly_opt_keywords_opt_kwonly_opt_impl(module, a, b, c, d, e, f);
exit:
return return_value;
}
static PyObject *
test_posonly_opt_keywords_opt_kwonly_opt_impl(PyObject *module, PyObject *a,
PyObject *b, PyObject *c,
PyObject *d, PyObject *e,
PyObject *f)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=638bbd0005639342 input=9914857713c5bbf8]*/
/*[clinic input]
test_keyword_only_parameter
*
co_lnotab: PyBytesObject(c_default="(PyBytesObject *)self->co_lnotab") = None
[clinic start generated code]*/
PyDoc_STRVAR(test_keyword_only_parameter__doc__,
"test_keyword_only_parameter($module, /, *, co_lnotab=None)\n"
"--\n"
"\n");
#define TEST_KEYWORD_ONLY_PARAMETER_METHODDEF \
{"test_keyword_only_parameter", _PyCFunction_CAST(test_keyword_only_parameter), METH_FASTCALL|METH_KEYWORDS, test_keyword_only_parameter__doc__},
static PyObject *
test_keyword_only_parameter_impl(PyObject *module, PyBytesObject *co_lnotab);
static PyObject *
test_keyword_only_parameter(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 1
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
.ob_item = { &_Py_ID(co_lnotab), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"co_lnotab", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_keyword_only_parameter",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[1];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 0;
PyBytesObject *co_lnotab = (PyBytesObject *)self->co_lnotab;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 0, 0, 0, argsbuf);
if (!args) {
goto exit;
}
if (!noptargs) {
goto skip_optional_kwonly;
}
if (!PyBytes_Check(args[0])) {
_PyArg_BadArgument("test_keyword_only_parameter", "argument 'co_lnotab'", "bytes", args[0]);
goto exit;
}
co_lnotab = (PyBytesObject *)args[0];
skip_optional_kwonly:
return_value = test_keyword_only_parameter_impl(module, co_lnotab);
exit:
return return_value;
}
static PyObject *
test_keyword_only_parameter_impl(PyObject *module, PyBytesObject *co_lnotab)
/*[clinic end generated code: output=b12fe2e515a62603 input=303df5046c7e37a3]*/
/*[clinic input]
output push
output preset buffer
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=5bff3376ee0df0b5]*/
#ifdef CONDITION_A
/*[clinic input]
test_preprocessor_guarded_condition_a
[clinic start generated code]*/
static PyObject *
test_preprocessor_guarded_condition_a_impl(PyObject *module)
/*[clinic end generated code: output=ad012af18085add6 input=8edb8706a98cda7e]*/
#elif CONDITION_B
/*[clinic input]
test_preprocessor_guarded_elif_condition_b
[clinic start generated code]*/
static PyObject *
test_preprocessor_guarded_elif_condition_b_impl(PyObject *module)
/*[clinic end generated code: output=615f2dee82b138d1 input=53777cebbf7fee32]*/
#else
/*[clinic input]
test_preprocessor_guarded_else
[clinic start generated code]*/
static PyObject *
test_preprocessor_guarded_else_impl(PyObject *module)
/*[clinic end generated code: output=13af7670aac51b12 input=6657ab31d74c29fc]*/
#endif
#ifndef CONDITION_C
/*[clinic input]
test_preprocessor_guarded_ifndef_condition_c
[clinic start generated code]*/
static PyObject *
test_preprocessor_guarded_ifndef_condition_c_impl(PyObject *module)
/*[clinic end generated code: output=ed422e8c895bb0a5 input=e9b50491cea2b668]*/
#else
/*[clinic input]
test_preprocessor_guarded_ifndef_not_condition_c
[clinic start generated code]*/
static PyObject *
test_preprocessor_guarded_ifndef_not_condition_c_impl(PyObject *module)
/*[clinic end generated code: output=de6f4c6a67f8c536 input=da74e30e01c6f2c5]*/
#endif
#if \
CONDITION_D
/*[clinic input]
test_preprocessor_guarded_if_with_continuation
[clinic start generated code]*/
static PyObject *
test_preprocessor_guarded_if_with_continuation_impl(PyObject *module)
/*[clinic end generated code: output=3d0712ca9e2d15b9 input=4a956fd91be30284]*/
#endif
#if CONDITION_E || CONDITION_F
#warning "different type of CPP directive"
/*[clinic input]
test_preprocessor_guarded_if_e_or_f
Makes sure cpp.Monitor handles other directives than preprocessor conditionals.
[clinic start generated code]*/
static PyObject *
test_preprocessor_guarded_if_e_or_f_impl(PyObject *module)
/*[clinic end generated code: output=e49d24ff64ad88bc input=57b9c37f938bc4f1]*/
#endif
/*[clinic input]
dump buffer
output pop
[clinic start generated code]*/
#if defined(CONDITION_A)
PyDoc_STRVAR(test_preprocessor_guarded_condition_a__doc__,
"test_preprocessor_guarded_condition_a($module, /)\n"
"--\n"
"\n");
#define TEST_PREPROCESSOR_GUARDED_CONDITION_A_METHODDEF \
{"test_preprocessor_guarded_condition_a", (PyCFunction)test_preprocessor_guarded_condition_a, METH_NOARGS, test_preprocessor_guarded_condition_a__doc__},
static PyObject *
test_preprocessor_guarded_condition_a(PyObject *module, PyObject *Py_UNUSED(ignored))
{
return test_preprocessor_guarded_condition_a_impl(module);
}
#endif /* defined(CONDITION_A) */
#if !defined(CONDITION_A) && (CONDITION_B)
PyDoc_STRVAR(test_preprocessor_guarded_elif_condition_b__doc__,
"test_preprocessor_guarded_elif_condition_b($module, /)\n"
"--\n"
"\n");
#define TEST_PREPROCESSOR_GUARDED_ELIF_CONDITION_B_METHODDEF \
{"test_preprocessor_guarded_elif_condition_b", (PyCFunction)test_preprocessor_guarded_elif_condition_b, METH_NOARGS, test_preprocessor_guarded_elif_condition_b__doc__},
static PyObject *
test_preprocessor_guarded_elif_condition_b(PyObject *module, PyObject *Py_UNUSED(ignored))
{
return test_preprocessor_guarded_elif_condition_b_impl(module);
}
#endif /* !defined(CONDITION_A) && (CONDITION_B) */
#if !defined(CONDITION_A) && !(CONDITION_B)
PyDoc_STRVAR(test_preprocessor_guarded_else__doc__,
"test_preprocessor_guarded_else($module, /)\n"
"--\n"
"\n");
#define TEST_PREPROCESSOR_GUARDED_ELSE_METHODDEF \
{"test_preprocessor_guarded_else", (PyCFunction)test_preprocessor_guarded_else, METH_NOARGS, test_preprocessor_guarded_else__doc__},
static PyObject *
test_preprocessor_guarded_else(PyObject *module, PyObject *Py_UNUSED(ignored))
{
return test_preprocessor_guarded_else_impl(module);
}
#endif /* !defined(CONDITION_A) && !(CONDITION_B) */
#if !defined(CONDITION_C)
PyDoc_STRVAR(test_preprocessor_guarded_ifndef_condition_c__doc__,
"test_preprocessor_guarded_ifndef_condition_c($module, /)\n"
"--\n"
"\n");
#define TEST_PREPROCESSOR_GUARDED_IFNDEF_CONDITION_C_METHODDEF \
{"test_preprocessor_guarded_ifndef_condition_c", (PyCFunction)test_preprocessor_guarded_ifndef_condition_c, METH_NOARGS, test_preprocessor_guarded_ifndef_condition_c__doc__},
static PyObject *
test_preprocessor_guarded_ifndef_condition_c(PyObject *module, PyObject *Py_UNUSED(ignored))
{
return test_preprocessor_guarded_ifndef_condition_c_impl(module);
}
#endif /* !defined(CONDITION_C) */
#if defined(CONDITION_C)
PyDoc_STRVAR(test_preprocessor_guarded_ifndef_not_condition_c__doc__,
"test_preprocessor_guarded_ifndef_not_condition_c($module, /)\n"
"--\n"
"\n");
#define TEST_PREPROCESSOR_GUARDED_IFNDEF_NOT_CONDITION_C_METHODDEF \
{"test_preprocessor_guarded_ifndef_not_condition_c", (PyCFunction)test_preprocessor_guarded_ifndef_not_condition_c, METH_NOARGS, test_preprocessor_guarded_ifndef_not_condition_c__doc__},
static PyObject *
test_preprocessor_guarded_ifndef_not_condition_c(PyObject *module, PyObject *Py_UNUSED(ignored))
{
return test_preprocessor_guarded_ifndef_not_condition_c_impl(module);
}
#endif /* defined(CONDITION_C) */
#if (CONDITION_D)
PyDoc_STRVAR(test_preprocessor_guarded_if_with_continuation__doc__,
"test_preprocessor_guarded_if_with_continuation($module, /)\n"
"--\n"
"\n");
#define TEST_PREPROCESSOR_GUARDED_IF_WITH_CONTINUATION_METHODDEF \
{"test_preprocessor_guarded_if_with_continuation", (PyCFunction)test_preprocessor_guarded_if_with_continuation, METH_NOARGS, test_preprocessor_guarded_if_with_continuation__doc__},
static PyObject *
test_preprocessor_guarded_if_with_continuation(PyObject *module, PyObject *Py_UNUSED(ignored))
{
return test_preprocessor_guarded_if_with_continuation_impl(module);
}
#endif /* (CONDITION_D) */
#if (CONDITION_E || CONDITION_F)
PyDoc_STRVAR(test_preprocessor_guarded_if_e_or_f__doc__,
"test_preprocessor_guarded_if_e_or_f($module, /)\n"
"--\n"
"\n"
"Makes sure cpp.Monitor handles other directives than preprocessor conditionals.");
#define TEST_PREPROCESSOR_GUARDED_IF_E_OR_F_METHODDEF \
{"test_preprocessor_guarded_if_e_or_f", (PyCFunction)test_preprocessor_guarded_if_e_or_f, METH_NOARGS, test_preprocessor_guarded_if_e_or_f__doc__},
static PyObject *
test_preprocessor_guarded_if_e_or_f(PyObject *module, PyObject *Py_UNUSED(ignored))
{
return test_preprocessor_guarded_if_e_or_f_impl(module);
}
#endif /* (CONDITION_E || CONDITION_F) */
#ifndef TEST_PREPROCESSOR_GUARDED_CONDITION_A_METHODDEF
#define TEST_PREPROCESSOR_GUARDED_CONDITION_A_METHODDEF
#endif /* !defined(TEST_PREPROCESSOR_GUARDED_CONDITION_A_METHODDEF) */
#ifndef TEST_PREPROCESSOR_GUARDED_ELIF_CONDITION_B_METHODDEF
#define TEST_PREPROCESSOR_GUARDED_ELIF_CONDITION_B_METHODDEF
#endif /* !defined(TEST_PREPROCESSOR_GUARDED_ELIF_CONDITION_B_METHODDEF) */
#ifndef TEST_PREPROCESSOR_GUARDED_ELSE_METHODDEF
#define TEST_PREPROCESSOR_GUARDED_ELSE_METHODDEF
#endif /* !defined(TEST_PREPROCESSOR_GUARDED_ELSE_METHODDEF) */
#ifndef TEST_PREPROCESSOR_GUARDED_IFNDEF_CONDITION_C_METHODDEF
#define TEST_PREPROCESSOR_GUARDED_IFNDEF_CONDITION_C_METHODDEF
#endif /* !defined(TEST_PREPROCESSOR_GUARDED_IFNDEF_CONDITION_C_METHODDEF) */
#ifndef TEST_PREPROCESSOR_GUARDED_IFNDEF_NOT_CONDITION_C_METHODDEF
#define TEST_PREPROCESSOR_GUARDED_IFNDEF_NOT_CONDITION_C_METHODDEF
#endif /* !defined(TEST_PREPROCESSOR_GUARDED_IFNDEF_NOT_CONDITION_C_METHODDEF) */
#ifndef TEST_PREPROCESSOR_GUARDED_IF_WITH_CONTINUATION_METHODDEF
#define TEST_PREPROCESSOR_GUARDED_IF_WITH_CONTINUATION_METHODDEF
#endif /* !defined(TEST_PREPROCESSOR_GUARDED_IF_WITH_CONTINUATION_METHODDEF) */
#ifndef TEST_PREPROCESSOR_GUARDED_IF_E_OR_F_METHODDEF
#define TEST_PREPROCESSOR_GUARDED_IF_E_OR_F_METHODDEF
#endif /* !defined(TEST_PREPROCESSOR_GUARDED_IF_E_OR_F_METHODDEF) */
/*[clinic end generated code: output=fcfae7cac7a99e62 input=3fc80c9989d2f2e1]*/
/*[clinic input]
test_vararg_and_posonly
a: object
/
*args: object
[clinic start generated code]*/
PyDoc_STRVAR(test_vararg_and_posonly__doc__,
"test_vararg_and_posonly($module, a, /, *args)\n"
"--\n"
"\n");
#define TEST_VARARG_AND_POSONLY_METHODDEF \
{"test_vararg_and_posonly", _PyCFunction_CAST(test_vararg_and_posonly), METH_FASTCALL, test_vararg_and_posonly__doc__},
static PyObject *
test_vararg_and_posonly_impl(PyObject *module, PyObject *a, PyObject *args);
static PyObject *
test_vararg_and_posonly(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *a;
PyObject *__clinic_args = NULL;
if (!_PyArg_CheckPositional("test_vararg_and_posonly", nargs, 1, PY_SSIZE_T_MAX)) {
goto exit;
}
a = args[0];
__clinic_args = PyTuple_New(nargs - 1);
if (!__clinic_args) {
goto exit;
}
for (Py_ssize_t i = 0; i < nargs - 1; ++i) {
PyTuple_SET_ITEM(__clinic_args, i, Py_NewRef(args[1 + i]));
}
return_value = test_vararg_and_posonly_impl(module, a, __clinic_args);
exit:
Py_XDECREF(__clinic_args);
return return_value;
}
static PyObject *
test_vararg_and_posonly_impl(PyObject *module, PyObject *a, PyObject *args)
/*[clinic end generated code: output=79b75dc07decc8d6 input=9cfa748bbff09877]*/
/*[clinic input]
test_vararg
a: object
*args: object
[clinic start generated code]*/
PyDoc_STRVAR(test_vararg__doc__,
"test_vararg($module, /, a, *args)\n"
"--\n"
"\n");
#define TEST_VARARG_METHODDEF \
{"test_vararg", _PyCFunction_CAST(test_vararg), METH_FASTCALL|METH_KEYWORDS, test_vararg__doc__},
static PyObject *
test_vararg_impl(PyObject *module, PyObject *a, PyObject *args);
static PyObject *
test_vararg(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 1
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('a'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"a", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_vararg",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[2];
PyObject *a;
PyObject *__clinic_args = NULL;
args = _PyArg_UnpackKeywordsWithVararg(args, nargs, NULL, kwnames, &_parser, 1, 1, 0, 1, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
__clinic_args = args[1];
return_value = test_vararg_impl(module, a, __clinic_args);
exit:
Py_XDECREF(__clinic_args);
return return_value;
}
static PyObject *
test_vararg_impl(PyObject *module, PyObject *a, PyObject *args)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=1411e464f358a7ba input=81d33815ad1bae6e]*/
/*[clinic input]
test_vararg_with_default
a: object
*args: object
b: bool = False
[clinic start generated code]*/
PyDoc_STRVAR(test_vararg_with_default__doc__,
"test_vararg_with_default($module, /, a, *args, b=False)\n"
"--\n"
"\n");
#define TEST_VARARG_WITH_DEFAULT_METHODDEF \
{"test_vararg_with_default", _PyCFunction_CAST(test_vararg_with_default), METH_FASTCALL|METH_KEYWORDS, test_vararg_with_default__doc__},
static PyObject *
test_vararg_with_default_impl(PyObject *module, PyObject *a, PyObject *args,
int b);
static PyObject *
test_vararg_with_default(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 2
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('a'), _Py_LATIN1_CHR('b'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"a", "b", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_vararg_with_default",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[3];
Py_ssize_t noptargs = Py_MIN(nargs, 1) + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
PyObject *a;
PyObject *__clinic_args = NULL;
int b = 0;
args = _PyArg_UnpackKeywordsWithVararg(args, nargs, NULL, kwnames, &_parser, 1, 1, 0, 1, argsbuf);
if (!args) {
goto exit;
}
a = args[0];
__clinic_args = args[1];
if (!noptargs) {
goto skip_optional_kwonly;
}
b = PyObject_IsTrue(args[2]);
if (b < 0) {
goto exit;
}
skip_optional_kwonly:
return_value = test_vararg_with_default_impl(module, a, __clinic_args, b);
exit:
Py_XDECREF(__clinic_args);
return return_value;
}
static PyObject *
test_vararg_with_default_impl(PyObject *module, PyObject *a, PyObject *args,
int b)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=f09d4b917063ca41 input=6e110b54acd9b22d]*/
/*[clinic input]
test_vararg_with_only_defaults
*args: object
b: bool = False
c: object = ' '
[clinic start generated code]*/
PyDoc_STRVAR(test_vararg_with_only_defaults__doc__,
"test_vararg_with_only_defaults($module, /, *args, b=False, c=\' \')\n"
"--\n"
"\n");
#define TEST_VARARG_WITH_ONLY_DEFAULTS_METHODDEF \
{"test_vararg_with_only_defaults", _PyCFunction_CAST(test_vararg_with_only_defaults), METH_FASTCALL|METH_KEYWORDS, test_vararg_with_only_defaults__doc__},
static PyObject *
test_vararg_with_only_defaults_impl(PyObject *module, PyObject *args, int b,
PyObject *c);
static PyObject *
test_vararg_with_only_defaults(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 2
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('b'), _Py_LATIN1_CHR('c'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"b", "c", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_vararg_with_only_defaults",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[3];
Py_ssize_t noptargs = 0 + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 0;
PyObject *__clinic_args = NULL;
int b = 0;
PyObject *c = " ";
args = _PyArg_UnpackKeywordsWithVararg(args, nargs, NULL, kwnames, &_parser, 0, 0, 0, 0, argsbuf);
if (!args) {
goto exit;
}
__clinic_args = args[0];
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[1]) {
b = PyObject_IsTrue(args[1]);
if (b < 0) {
goto exit;
}
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
c = args[2];
skip_optional_kwonly:
return_value = test_vararg_with_only_defaults_impl(module, __clinic_args, b, c);
exit:
Py_XDECREF(__clinic_args);
return return_value;
}
static PyObject *
test_vararg_with_only_defaults_impl(PyObject *module, PyObject *args, int b,
PyObject *c)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=cc6590b8805d5433 input=fa56a709a035666e]*/
/*[clinic input]
test_paramname_module
module as mod: object
[clinic start generated code]*/
PyDoc_STRVAR(test_paramname_module__doc__,
"test_paramname_module($module, /, module)\n"
"--\n"
"\n");
#define TEST_PARAMNAME_MODULE_METHODDEF \
{"test_paramname_module", _PyCFunction_CAST(test_paramname_module), METH_FASTCALL|METH_KEYWORDS, test_paramname_module__doc__},
static PyObject *
test_paramname_module_impl(PyObject *module, PyObject *mod);
static PyObject *
test_paramname_module(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 1
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
.ob_item = { &_Py_ID(module), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"module", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "test_paramname_module",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[1];
PyObject *mod;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 0, argsbuf);
if (!args) {
goto exit;
}
mod = args[0];
return_value = test_paramname_module_impl(module, mod);
exit:
return return_value;
}
static PyObject *
test_paramname_module_impl(PyObject *module, PyObject *mod)
/*[clinic end generated code: output=4a2a849ecbcc8b53 input=afefe259667f13ba]*/
/*[clinic input]
mangle1
args: object
kwnames: object
return_value: object
_keywords: object
_parser: object
argsbuf: object
fastargs: object
nargs: object
noptargs: object
[clinic start generated code]*/
PyDoc_STRVAR(mangle1__doc__,
"mangle1($module, /, args, kwnames, return_value, _keywords, _parser,\n"
" argsbuf, fastargs, nargs, noptargs)\n"
"--\n"
"\n");
#define MANGLE1_METHODDEF \
{"mangle1", _PyCFunction_CAST(mangle1), METH_FASTCALL|METH_KEYWORDS, mangle1__doc__},
static PyObject *
mangle1_impl(PyObject *module, PyObject *args, PyObject *kwnames,
PyObject *return_value, PyObject *_keywords, PyObject *_parser,
PyObject *argsbuf, PyObject *fastargs, PyObject *nargs,
PyObject *noptargs);
static PyObject *
mangle1(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 9
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
.ob_item = { &_Py_ID(args), &_Py_ID(kwnames), &_Py_ID(return_value), &_Py_ID(_keywords), &_Py_ID(_parser), &_Py_ID(argsbuf), &_Py_ID(fastargs), &_Py_ID(nargs), &_Py_ID(noptargs), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"args", "kwnames", "return_value", "_keywords", "_parser", "argsbuf", "fastargs", "nargs", "noptargs", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "mangle1",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[9];
PyObject *__clinic_args;
PyObject *__clinic_kwnames;
PyObject *__clinic_return_value;
PyObject *__clinic__keywords;
PyObject *__clinic__parser;
PyObject *__clinic_argsbuf;
PyObject *__clinic_fastargs;
PyObject *__clinic_nargs;
PyObject *__clinic_noptargs;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 9, 9, 0, argsbuf);
if (!args) {
goto exit;
}
__clinic_args = args[0];
__clinic_kwnames = args[1];
__clinic_return_value = args[2];
__clinic__keywords = args[3];
__clinic__parser = args[4];
__clinic_argsbuf = args[5];
__clinic_fastargs = args[6];
__clinic_nargs = args[7];
__clinic_noptargs = args[8];
return_value = mangle1_impl(module, __clinic_args, __clinic_kwnames, __clinic_return_value, __clinic__keywords, __clinic__parser, __clinic_argsbuf, __clinic_fastargs, __clinic_nargs, __clinic_noptargs);
exit:
return return_value;
}
static PyObject *
mangle1_impl(PyObject *module, PyObject *args, PyObject *kwnames,
PyObject *return_value, PyObject *_keywords, PyObject *_parser,
PyObject *argsbuf, PyObject *fastargs, PyObject *nargs,
PyObject *noptargs)
/*[clinic end generated code: output=083e5076be9987c3 input=a3ed51bdedf8a3c7]*/
/*[clinic input]
mangle2
args: object
kwargs: object
return_value: object
[clinic start generated code]*/
PyDoc_STRVAR(mangle2__doc__,
"mangle2($module, /, args, kwargs, return_value)\n"
"--\n"
"\n");
#define MANGLE2_METHODDEF \
{"mangle2", _PyCFunction_CAST(mangle2), METH_FASTCALL|METH_KEYWORDS, mangle2__doc__},
static PyObject *
mangle2_impl(PyObject *module, PyObject *args, PyObject *kwargs,
PyObject *return_value);
static PyObject *
mangle2(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 3
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
.ob_item = { &_Py_ID(args), &_Py_ID(kwargs), &_Py_ID(return_value), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"args", "kwargs", "return_value", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "mangle2",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[3];
PyObject *__clinic_args;
PyObject *__clinic_kwargs;
PyObject *__clinic_return_value;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 3, 3, 0, argsbuf);
if (!args) {
goto exit;
}
__clinic_args = args[0];
__clinic_kwargs = args[1];
__clinic_return_value = args[2];
return_value = mangle2_impl(module, __clinic_args, __clinic_kwargs, __clinic_return_value);
exit:
return return_value;
}
static PyObject *
mangle2_impl(PyObject *module, PyObject *args, PyObject *kwargs,
PyObject *return_value)
/*[clinic end generated code: output=2ebb62aaefe7590a input=391766fee51bad7a]*/
/*[clinic input]
Test.cls_with_param
cls: defining_class
/
a: int
[clinic start generated code]*/
PyDoc_STRVAR(Test_cls_with_param__doc__,
"cls_with_param($self, /, a)\n"
"--\n"
"\n");
#define TEST_CLS_WITH_PARAM_METHODDEF \
{"cls_with_param", _PyCFunction_CAST(Test_cls_with_param), METH_METHOD|METH_FASTCALL|METH_KEYWORDS, Test_cls_with_param__doc__},
static PyObject *
Test_cls_with_param_impl(TestObj *self, PyTypeObject *cls, int a);
static PyObject *
Test_cls_with_param(TestObj *self, PyTypeObject *cls, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 1
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('a'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"a", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "cls_with_param",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[1];
int a;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 0, argsbuf);
if (!args) {
goto exit;
}
a = PyLong_AsInt(args[0]);
if (a == -1 && PyErr_Occurred()) {
goto exit;
}
return_value = Test_cls_with_param_impl(self, cls, a);
exit:
return return_value;
}
static PyObject *
Test_cls_with_param_impl(TestObj *self, PyTypeObject *cls, int a)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=a3a968137b0f320a input=af158077bd237ef9]*/
/*[clinic input]
Test.__init__
Empty init method.
[clinic start generated code]*/
PyDoc_STRVAR(Test___init____doc__,
"Test()\n"
"--\n"
"\n"
"Empty init method.");
static int
Test___init___impl(TestObj *self);
static int
Test___init__(PyObject *self, PyObject *args, PyObject *kwargs)
{
int return_value = -1;
PyTypeObject *base_tp = TestType;
if ((Py_IS_TYPE(self, base_tp) ||
Py_TYPE(self)->tp_new == base_tp->tp_new) &&
!_PyArg_NoPositional("Test", args)) {
goto exit;
}
if ((Py_IS_TYPE(self, base_tp) ||
Py_TYPE(self)->tp_new == base_tp->tp_new) &&
!_PyArg_NoKeywords("Test", kwargs)) {
goto exit;
}
return_value = Test___init___impl((TestObj *)self);
exit:
return return_value;
}
static int
Test___init___impl(TestObj *self)
/*[clinic end generated code: output=f6a35c85bc5b408f input=4ea79fee54d0c3ff]*/
/*[clinic input]
@classmethod
Test.__new__
Empty new method.
[clinic start generated code]*/
PyDoc_STRVAR(Test__doc__,
"Test()\n"
"--\n"
"\n"
"Empty new method.");
static PyObject *
Test_impl(PyTypeObject *type);
static PyObject *
Test(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
PyObject *return_value = NULL;
PyTypeObject *base_tp = TestType;
if ((type == base_tp || type->tp_init == base_tp->tp_init) &&
!_PyArg_NoPositional("Test", args)) {
goto exit;
}
if ((type == base_tp || type->tp_init == base_tp->tp_init) &&
!_PyArg_NoKeywords("Test", kwargs)) {
goto exit;
}
return_value = Test_impl(type);
exit:
return return_value;
}
static PyObject *
Test_impl(PyTypeObject *type)
/*[clinic end generated code: output=68a117adc057940f input=6fe98a19f097907f]*/
/*[clinic input]
Test.cls_no_params
cls: defining_class
/
[clinic start generated code]*/
PyDoc_STRVAR(Test_cls_no_params__doc__,
"cls_no_params($self, /)\n"
"--\n"
"\n");
#define TEST_CLS_NO_PARAMS_METHODDEF \
{"cls_no_params", _PyCFunction_CAST(Test_cls_no_params), METH_METHOD|METH_FASTCALL|METH_KEYWORDS, Test_cls_no_params__doc__},
static PyObject *
Test_cls_no_params_impl(TestObj *self, PyTypeObject *cls);
static PyObject *
Test_cls_no_params(TestObj *self, PyTypeObject *cls, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
if (nargs || (kwnames && PyTuple_GET_SIZE(kwnames))) {
PyErr_SetString(PyExc_TypeError, "cls_no_params() takes no arguments");
return NULL;
}
return Test_cls_no_params_impl(self, cls);
}
static PyObject *
Test_cls_no_params_impl(TestObj *self, PyTypeObject *cls)
/*[clinic end generated code: output=4d68b4652c144af3 input=e7e2e4e344e96a11]*/
/*[clinic input]
Test.metho_not_default_return_converter -> int
a: object
/
[clinic start generated code]*/
PyDoc_STRVAR(Test_metho_not_default_return_converter__doc__,
"metho_not_default_return_converter($self, a, /)\n"
"--\n"
"\n");
#define TEST_METHO_NOT_DEFAULT_RETURN_CONVERTER_METHODDEF \
{"metho_not_default_return_converter", (PyCFunction)Test_metho_not_default_return_converter, METH_O, Test_metho_not_default_return_converter__doc__},
static int
Test_metho_not_default_return_converter_impl(TestObj *self, PyObject *a);
static PyObject *
Test_metho_not_default_return_converter(TestObj *self, PyObject *a)
{
PyObject *return_value = NULL;
int _return_value;
_return_value = Test_metho_not_default_return_converter_impl(self, a);
if ((_return_value == -1) && PyErr_Occurred()) {
goto exit;
}
return_value = PyLong_FromLong((long)_return_value);
exit:
return return_value;
}
static int
Test_metho_not_default_return_converter_impl(TestObj *self, PyObject *a)
/*[clinic end generated code: output=3350de11bd538007 input=428657129b521177]*/
/*[clinic input]
Test.an_metho_arg_named_arg
arg: int
Name should be mangled to 'arg_' in generated output.
/
[clinic start generated code]*/
PyDoc_STRVAR(Test_an_metho_arg_named_arg__doc__,
"an_metho_arg_named_arg($self, arg, /)\n"
"--\n"
"\n"
"\n"
"\n"
" arg\n"
" Name should be mangled to \'arg_\' in generated output.");
#define TEST_AN_METHO_ARG_NAMED_ARG_METHODDEF \
{"an_metho_arg_named_arg", (PyCFunction)Test_an_metho_arg_named_arg, METH_O, Test_an_metho_arg_named_arg__doc__},
static PyObject *
Test_an_metho_arg_named_arg_impl(TestObj *self, int arg);
static PyObject *
Test_an_metho_arg_named_arg(TestObj *self, PyObject *arg_)
{
PyObject *return_value = NULL;
int arg;
arg = PyLong_AsInt(arg_);
if (arg == -1 && PyErr_Occurred()) {
goto exit;
}
return_value = Test_an_metho_arg_named_arg_impl(self, arg);
exit:
return return_value;
}
static PyObject *
Test_an_metho_arg_named_arg_impl(TestObj *self, int arg)
/*[clinic end generated code: output=9f04de4a62287e28 input=2a53a57cf5624f95]*/
/*[clinic input]
Test.__init__
*args: object
Varargs init method. For example, nargs is translated to PyTuple_GET_SIZE.
[clinic start generated code]*/
PyDoc_STRVAR(Test___init____doc__,
"Test(*args)\n"
"--\n"
"\n"
"Varargs init method. For example, nargs is translated to PyTuple_GET_SIZE.");
static int
Test___init___impl(TestObj *self, PyObject *args);
static int
Test___init__(PyObject *self, PyObject *args, PyObject *kwargs)
{
int return_value = -1;
PyTypeObject *base_tp = TestType;
PyObject *__clinic_args = NULL;
if ((Py_IS_TYPE(self, base_tp) ||
Py_TYPE(self)->tp_new == base_tp->tp_new) &&
!_PyArg_NoKeywords("Test", kwargs)) {
goto exit;
}
if (!_PyArg_CheckPositional("Test", PyTuple_GET_SIZE(args), 0, PY_SSIZE_T_MAX)) {
goto exit;
}
__clinic_args = PyTuple_GetSlice(0, -1);
return_value = Test___init___impl((TestObj *)self, __clinic_args);
exit:
Py_XDECREF(__clinic_args);
return return_value;
}
static int
Test___init___impl(TestObj *self, PyObject *args)
/*[clinic end generated code: output=0ed1009fe0dcf98d input=2a8bd0033c9ac772]*/
/*[clinic input]
@classmethod
Test.__new__
*args: object
Varargs new method. For example, nargs is translated to PyTuple_GET_SIZE.
[clinic start generated code]*/
PyDoc_STRVAR(Test__doc__,
"Test(*args)\n"
"--\n"
"\n"
"Varargs new method. For example, nargs is translated to PyTuple_GET_SIZE.");
static PyObject *
Test_impl(PyTypeObject *type, PyObject *args);
static PyObject *
Test(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
PyObject *return_value = NULL;
PyTypeObject *base_tp = TestType;
PyObject *__clinic_args = NULL;
if ((type == base_tp || type->tp_init == base_tp->tp_init) &&
!_PyArg_NoKeywords("Test", kwargs)) {
goto exit;
}
if (!_PyArg_CheckPositional("Test", PyTuple_GET_SIZE(args), 0, PY_SSIZE_T_MAX)) {
goto exit;
}
__clinic_args = PyTuple_GetSlice(0, -1);
return_value = Test_impl(type, __clinic_args);
exit:
Py_XDECREF(__clinic_args);
return return_value;
}
static PyObject *
Test_impl(PyTypeObject *type, PyObject *args)
/*[clinic end generated code: output=8b219f6633e2a2e9 input=70ad829df3dd9b84]*/
/*[clinic input]
Test.__init__
a: object
Init method with positional or keyword arguments.
[clinic start generated code]*/
PyDoc_STRVAR(Test___init____doc__,
"Test(a)\n"
"--\n"
"\n"
"Init method with positional or keyword arguments.");
static int
Test___init___impl(TestObj *self, PyObject *a);
static int
Test___init__(PyObject *self, PyObject *args, PyObject *kwargs)
{
int return_value = -1;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 1
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('a'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"a", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "Test",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[1];
PyObject * const *fastargs;
Py_ssize_t nargs = PyTuple_GET_SIZE(args);
PyObject *a;
fastargs = _PyArg_UnpackKeywords(_PyTuple_CAST(args)->ob_item, nargs, kwargs, NULL, &_parser, 1, 1, 0, argsbuf);
if (!fastargs) {
goto exit;
}
a = fastargs[0];
return_value = Test___init___impl((TestObj *)self, a);
exit:
return return_value;
}
static int
Test___init___impl(TestObj *self, PyObject *a)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=0e1239b9bc247bc1 input=a8f9222a6ab35c59]*/
/*[clinic input]
@classmethod
Test.class_method
[clinic start generated code]*/
PyDoc_STRVAR(Test_class_method__doc__,
"class_method($type, /)\n"
"--\n"
"\n");
#define TEST_CLASS_METHOD_METHODDEF \
{"class_method", (PyCFunction)Test_class_method, METH_NOARGS|METH_CLASS, Test_class_method__doc__},
static PyObject *
Test_class_method_impl(PyTypeObject *type);
static PyObject *
Test_class_method(PyTypeObject *type, PyObject *Py_UNUSED(ignored))
{
return Test_class_method_impl(type);
}
static PyObject *
Test_class_method_impl(PyTypeObject *type)
/*[clinic end generated code: output=47fb7ecca1abcaaa input=43bc4a0494547b80]*/
/*[clinic input]
@staticmethod
Test.static_method
[clinic start generated code]*/
PyDoc_STRVAR(Test_static_method__doc__,
"static_method()\n"
"--\n"
"\n");
#define TEST_STATIC_METHOD_METHODDEF \
{"static_method", (PyCFunction)Test_static_method, METH_NOARGS|METH_STATIC, Test_static_method__doc__},
static PyObject *
Test_static_method_impl();
static PyObject *
Test_static_method(void *null, PyObject *Py_UNUSED(ignored))
{
return Test_static_method_impl();
}
static PyObject *
Test_static_method_impl()
/*[clinic end generated code: output=82524a63025cf7ab input=dae892fac55ae72b]*/
/*[clinic input]
@coexist
Test.meth_coexist
[clinic start generated code]*/
PyDoc_STRVAR(Test_meth_coexist__doc__,
"meth_coexist($self, /)\n"
"--\n"
"\n");
#define TEST_METH_COEXIST_METHODDEF \
{"meth_coexist", (PyCFunction)Test_meth_coexist, METH_NOARGS|METH_COEXIST, Test_meth_coexist__doc__},
static PyObject *
Test_meth_coexist_impl(TestObj *self);
static PyObject *
Test_meth_coexist(TestObj *self, PyObject *Py_UNUSED(ignored))
{
return Test_meth_coexist_impl(self);
}
static PyObject *
Test_meth_coexist_impl(TestObj *self)
/*[clinic end generated code: output=808a293d0cd27439 input=2a1d75b5e6fec6dd]*/
/*[clinic input]
@getter
Test.property
[clinic start generated code]*/
#if defined(Test_property_HAS_DOCSTR)
# define Test_property_DOCSTR Test_property__doc__
#else
# define Test_property_DOCSTR NULL
#endif
#if defined(TEST_PROPERTY_GETSETDEF)
# undef TEST_PROPERTY_GETSETDEF
# define TEST_PROPERTY_GETSETDEF {"property", (getter)Test_property_get, (setter)Test_property_set, Test_property_DOCSTR},
#else
# define TEST_PROPERTY_GETSETDEF {"property", (getter)Test_property_get, NULL, Test_property_DOCSTR},
#endif
static PyObject *
Test_property_get_impl(TestObj *self);
static PyObject *
Test_property_get(TestObj *self, void *Py_UNUSED(context))
{
return Test_property_get_impl(self);
}
static PyObject *
Test_property_get_impl(TestObj *self)
/*[clinic end generated code: output=27b519719d992e03 input=2d92b3449fbc7d2b]*/
/*[clinic input]
@setter
Test.property
[clinic start generated code]*/
#if defined(TEST_PROPERTY_HAS_DOCSTR)
# define Test_property_DOCSTR Test_property__doc__
#else
# define Test_property_DOCSTR NULL
#endif
#if defined(TEST_PROPERTY_GETSETDEF)
# undef TEST_PROPERTY_GETSETDEF
# define TEST_PROPERTY_GETSETDEF {"property", (getter)Test_property_get, (setter)Test_property_set, Test_property_DOCSTR},
#else
# define TEST_PROPERTY_GETSETDEF {"property", NULL, (setter)Test_property_set, NULL},
#endif
static int
Test_property_set_impl(TestObj *self, PyObject *value);
static int
Test_property_set(TestObj *self, PyObject *value, void *Py_UNUSED(context))
{
int return_value;
return_value = Test_property_set_impl(self, value);
return return_value;
}
static int
Test_property_set_impl(TestObj *self, PyObject *value)
/*[clinic end generated code: output=d51023f17c4ac3a1 input=3bc3f46a23c83a88]*/
/*[clinic input]
output push
output preset buffer
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=5bff3376ee0df0b5]*/
/*[clinic input]
buffer_clear
a: int
We'll call 'destination buffer clear' after this.
Argument Clinic's buffer preset puts most generated code into the
'buffer' destination, except from 'impl_definition', which is put into
the 'block' destination, so we should expect everything but
'impl_definition' to be cleared.
[clinic start generated code]*/
static PyObject *
buffer_clear_impl(PyObject *module, int a)
/*[clinic end generated code: output=f14bba74677e1846 input=a4c308a6fdab043c]*/
/*[clinic input]
destination buffer clear
output pop
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=f20d06adb8252084]*/
/*[clinic input]
output push
destination test1 new buffer
output everything suppress
output docstring_definition test1
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=5a77c454970992fc]*/
/*[clinic input]
new_dest
a: int
Only this docstring should be outputted to test1.
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=da5af421ed8996ed]*/
/*[clinic input]
dump test1
output pop
[clinic start generated code]*/
PyDoc_STRVAR(new_dest__doc__,
"new_dest($module, /, a)\n"
"--\n"
"\n"
"Only this docstring should be outputted to test1.");
/*[clinic end generated code: output=9cac703f51d90e84 input=090db8df4945576d]*/
/*[clinic input]
mangled_c_keyword_identifier
i as int: int
The 'int' param should be mangled as 'int_value'
[clinic start generated code]*/
PyDoc_STRVAR(mangled_c_keyword_identifier__doc__,
"mangled_c_keyword_identifier($module, /, i)\n"
"--\n"
"\n"
"The \'int\' param should be mangled as \'int_value\'");
#define MANGLED_C_KEYWORD_IDENTIFIER_METHODDEF \
{"mangled_c_keyword_identifier", _PyCFunction_CAST(mangled_c_keyword_identifier), METH_FASTCALL|METH_KEYWORDS, mangled_c_keyword_identifier__doc__},
static PyObject *
mangled_c_keyword_identifier_impl(PyObject *module, int int_value);
static PyObject *
mangled_c_keyword_identifier(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 1
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('i'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"i", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "mangled_c_keyword_identifier",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[1];
int int_value;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 0, argsbuf);
if (!args) {
goto exit;
}
int_value = PyLong_AsInt(args[0]);
if (int_value == -1 && PyErr_Occurred()) {
goto exit;
}
return_value = mangled_c_keyword_identifier_impl(module, int_value);
exit:
return return_value;
}
static PyObject *
mangled_c_keyword_identifier_impl(PyObject *module, int int_value)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=01a8088b57632916 input=060876448ab567a2]*/
/*[clinic input]
bool_return -> bool
[clinic start generated code]*/
PyDoc_STRVAR(bool_return__doc__,
"bool_return($module, /)\n"
"--\n"
"\n");
#define BOOL_RETURN_METHODDEF \
{"bool_return", (PyCFunction)bool_return, METH_NOARGS, bool_return__doc__},
static int
bool_return_impl(PyObject *module);
static PyObject *
bool_return(PyObject *module, PyObject *Py_UNUSED(ignored))
{
PyObject *return_value = NULL;
int _return_value;
_return_value = bool_return_impl(module);
if ((_return_value == -1) && PyErr_Occurred()) {
goto exit;
}
return_value = PyBool_FromLong((long)_return_value);
exit:
return return_value;
}
static int
bool_return_impl(PyObject *module)
/*[clinic end generated code: output=3a65f07830e48e98 input=93ba95d39ee98f39]*/
/*[clinic input]
double_return -> double
[clinic start generated code]*/
PyDoc_STRVAR(double_return__doc__,
"double_return($module, /)\n"
"--\n"
"\n");
#define DOUBLE_RETURN_METHODDEF \
{"double_return", (PyCFunction)double_return, METH_NOARGS, double_return__doc__},
static double
double_return_impl(PyObject *module);
static PyObject *
double_return(PyObject *module, PyObject *Py_UNUSED(ignored))
{
PyObject *return_value = NULL;
double _return_value;
_return_value = double_return_impl(module);
if ((_return_value == -1.0) && PyErr_Occurred()) {
goto exit;
}
return_value = PyFloat_FromDouble(_return_value);
exit:
return return_value;
}
static double
double_return_impl(PyObject *module)
/*[clinic end generated code: output=076dc72595d3f66d input=da11b6255e4cbfd7]*/
/*[clinic input]
Test.__init__
a: object
[
b: object
]
/
Should generate two PyArg_ParseTuple calls.
[clinic start generated code]*/
PyDoc_STRVAR(Test___init____doc__,
"Test(a, [b])\n"
"Should generate two PyArg_ParseTuple calls.");
static int
Test___init___impl(TestObj *self, PyObject *a, int group_right_1,
PyObject *b);
static int
Test___init__(PyObject *self, PyObject *args, PyObject *kwargs)
{
int return_value = -1;
PyTypeObject *base_tp = TestType;
PyObject *a;
int group_right_1 = 0;
PyObject *b = NULL;
if ((Py_IS_TYPE(self, base_tp) ||
Py_TYPE(self)->tp_new == base_tp->tp_new) &&
!_PyArg_NoKeywords("Test", kwargs)) {
goto exit;
}
switch (PyTuple_GET_SIZE(args)) {
case 1:
if (!PyArg_ParseTuple(args, "O:__init__", &a)) {
goto exit;
}
break;
case 2:
if (!PyArg_ParseTuple(args, "OO:__init__", &a, &b)) {
goto exit;
}
group_right_1 = 1;
break;
default:
PyErr_SetString(PyExc_TypeError, "Test.__init__ requires 1 to 2 arguments");
goto exit;
}
return_value = Test___init___impl((TestObj *)self, a, group_right_1, b);
exit:
return return_value;
}
static int
Test___init___impl(TestObj *self, PyObject *a, int group_right_1,
PyObject *b)
/*[clinic end generated code: output=2bbb8ea60e8f57a6 input=10f5d0f1e8e466ef]*/
/*[clinic input]
Test._pyarg_parsestackandkeywords
cls: defining_class
key: str(accept={str, robuffer}, zeroes=True)
/
Check that _PyArg_ParseStackAndKeywords() is generated.
[clinic start generated code]*/
PyDoc_STRVAR(Test__pyarg_parsestackandkeywords__doc__,
"_pyarg_parsestackandkeywords($self, key, /)\n"
"--\n"
"\n"
"Check that _PyArg_ParseStackAndKeywords() is generated.");
#define TEST__PYARG_PARSESTACKANDKEYWORDS_METHODDEF \
{"_pyarg_parsestackandkeywords", _PyCFunction_CAST(Test__pyarg_parsestackandkeywords), METH_METHOD|METH_FASTCALL|METH_KEYWORDS, Test__pyarg_parsestackandkeywords__doc__},
static PyObject *
Test__pyarg_parsestackandkeywords_impl(TestObj *self, PyTypeObject *cls,
const char *key,
Py_ssize_t key_length);
static PyObject *
Test__pyarg_parsestackandkeywords(TestObj *self, PyTypeObject *cls, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
# define KWTUPLE (PyObject *)&_Py_SINGLETON(tuple_empty)
#else
# define KWTUPLE NULL
#endif
static const char * const _keywords[] = {"", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.format = "s#:_pyarg_parsestackandkeywords",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
const char *key;
Py_ssize_t key_length;
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
&key, &key_length)) {
goto exit;
}
return_value = Test__pyarg_parsestackandkeywords_impl(self, cls, key, key_length);
exit:
return return_value;
}
static PyObject *
Test__pyarg_parsestackandkeywords_impl(TestObj *self, PyTypeObject *cls,
const char *key,
Py_ssize_t key_length)
/*[clinic end generated code: output=4fda8a7f2547137c input=fc72ef4b4cfafabc]*/
/*[clinic input]
fn_with_default_binop_expr
arg: object(c_default='CONST_A + CONST_B') = a+b
[clinic start generated code]*/
PyDoc_STRVAR(fn_with_default_binop_expr__doc__,
"fn_with_default_binop_expr($module, /, arg=a+b)\n"
"--\n"
"\n");
#define FN_WITH_DEFAULT_BINOP_EXPR_METHODDEF \
{"fn_with_default_binop_expr", _PyCFunction_CAST(fn_with_default_binop_expr), METH_FASTCALL|METH_KEYWORDS, fn_with_default_binop_expr__doc__},
static PyObject *
fn_with_default_binop_expr_impl(PyObject *module, PyObject *arg);
static PyObject *
fn_with_default_binop_expr(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 1
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
.ob_item = { &_Py_ID(arg), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"arg", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "fn_with_default_binop_expr",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[1];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 0;
PyObject *arg = CONST_A + CONST_B;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 0, 1, 0, argsbuf);
if (!args) {
goto exit;
}
if (!noptargs) {
goto skip_optional_pos;
}
arg = args[0];
skip_optional_pos:
return_value = fn_with_default_binop_expr_impl(module, arg);
exit:
return return_value;
}
static PyObject *
fn_with_default_binop_expr_impl(PyObject *module, PyObject *arg)
/*[clinic end generated code: output=018672772e4092ff input=1b55c8ae68d89453]*/
/*[python input]
class Custom_converter(CConverter):
type = "str"
default = "Hello!"
converter = "c_converter_func"
[python start generated code]*/
/*[python end generated code: output=da39a3ee5e6b4b0d input=d612708f0efb8e3c]*/
/*[clinic input]
docstr_fallback_to_converter_default
a: Custom
Check docstring default value fallback.
Verify that the docstring formatter fetches the default
value from the converter if no 'py_default' is found.
The signature should have the default a='Hello!',
as given by the Custom converter.
[clinic start generated code]*/
PyDoc_STRVAR(docstr_fallback_to_converter_default__doc__,
"docstr_fallback_to_converter_default($module, /, a=\'Hello!\')\n"
"--\n"
"\n"
"Check docstring default value fallback.\n"
"\n"
"Verify that the docstring formatter fetches the default\n"
"value from the converter if no \'py_default\' is found.\n"
"The signature should have the default a=\'Hello!\',\n"
"as given by the Custom converter.");
#define DOCSTR_FALLBACK_TO_CONVERTER_DEFAULT_METHODDEF \
{"docstr_fallback_to_converter_default", _PyCFunction_CAST(docstr_fallback_to_converter_default), METH_FASTCALL|METH_KEYWORDS, docstr_fallback_to_converter_default__doc__},
static PyObject *
docstr_fallback_to_converter_default_impl(PyObject *module, str a);
static PyObject *
docstr_fallback_to_converter_default(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
#if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE)
#define NUM_KEYWORDS 1
static struct {
PyGC_Head _this_is_not_used;
PyObject_VAR_HEAD
PyObject *ob_item[NUM_KEYWORDS];
} _kwtuple = {
.ob_base = PyVarObject_HEAD_INIT(&PyTuple_Type, NUM_KEYWORDS)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
.ob_item = { _Py_LATIN1_CHR('a'), },
};
#undef NUM_KEYWORDS
#define KWTUPLE (&_kwtuple.ob_base.ob_base)
#else // !Py_BUILD_CORE
# define KWTUPLE NULL
#endif // !Py_BUILD_CORE
static const char * const _keywords[] = {"a", NULL};
static _PyArg_Parser _parser = {
.keywords = _keywords,
.fname = "docstr_fallback_to_converter_default",
.kwtuple = KWTUPLE,
};
#undef KWTUPLE
PyObject *argsbuf[1];
str a;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 0, argsbuf);
if (!args) {
goto exit;
}
if (!c_converter_func(args[0], &a)) {
goto exit;
}
return_value = docstr_fallback_to_converter_default_impl(module, a);
exit:
return return_value;
}
static PyObject *
docstr_fallback_to_converter_default_impl(PyObject *module, str a)
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
/*[clinic end generated code: output=3fff7b702f0065cb input=0cbe6a4d24bc2274]*/
/*[clinic input]
@critical_section
test_critical_section
[clinic start generated code]*/
PyDoc_STRVAR(test_critical_section__doc__,
"test_critical_section($module, /)\n"
"--\n"
"\n");
#define TEST_CRITICAL_SECTION_METHODDEF \
{"test_critical_section", (PyCFunction)test_critical_section, METH_NOARGS, test_critical_section__doc__},
static PyObject *
test_critical_section_impl(PyObject *module);
static PyObject *
test_critical_section(PyObject *module, PyObject *Py_UNUSED(ignored))
{
PyObject *return_value = NULL;
Py_BEGIN_CRITICAL_SECTION(module);
return_value = test_critical_section_impl(module);
Py_END_CRITICAL_SECTION();
return return_value;
}
static PyObject *
test_critical_section_impl(PyObject *module)
/*[clinic end generated code: output=9d5a87bb28aa3f0c input=8c58956d6ff00f80]*/
/*[clinic input]
@critical_section
test_critical_section_meth_o
a: object(subclass_of="&PyUnicode_Type")
/
[clinic start generated code]*/
PyDoc_STRVAR(test_critical_section_meth_o__doc__,
"test_critical_section_meth_o($module, a, /)\n"
"--\n"
"\n");
#define TEST_CRITICAL_SECTION_METH_O_METHODDEF \
{"test_critical_section_meth_o", (PyCFunction)test_critical_section_meth_o, METH_O, test_critical_section_meth_o__doc__},
static PyObject *
test_critical_section_meth_o_impl(PyObject *module, PyObject *a);
static PyObject *
test_critical_section_meth_o(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
PyObject *a;
if (!PyUnicode_Check(arg)) {
_PyArg_BadArgument("test_critical_section_meth_o", "argument", "str", arg);
goto exit;
}
a = arg;
Py_BEGIN_CRITICAL_SECTION(module);
return_value = test_critical_section_meth_o_impl(module, a);
Py_END_CRITICAL_SECTION();
exit:
return return_value;
}
static PyObject *
test_critical_section_meth_o_impl(PyObject *module, PyObject *a)
/*[clinic end generated code: output=7a9d7420802d1202 input=376533f51eceb6c3]*/
/*[clinic input]
@critical_section a
test_critical_section_object
a: object(subclass_of="&PyUnicode_Type")
/
test_critical_section_object
[clinic start generated code]*/
PyDoc_STRVAR(test_critical_section_object__doc__,
"test_critical_section_object($module, a, /)\n"
"--\n"
"\n"
"test_critical_section_object");
#define TEST_CRITICAL_SECTION_OBJECT_METHODDEF \
{"test_critical_section_object", (PyCFunction)test_critical_section_object, METH_O, test_critical_section_object__doc__},
static PyObject *
test_critical_section_object_impl(PyObject *module, PyObject *a);
static PyObject *
test_critical_section_object(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
PyObject *a;
if (!PyUnicode_Check(arg)) {
_PyArg_BadArgument("test_critical_section_object", "argument", "str", arg);
goto exit;
}
a = arg;
Py_BEGIN_CRITICAL_SECTION(a);
return_value = test_critical_section_object_impl(module, a);
Py_END_CRITICAL_SECTION();
exit:
return return_value;
}
static PyObject *
test_critical_section_object_impl(PyObject *module, PyObject *a)
/*[clinic end generated code: output=ec06df92232b0fb5 input=6f67f91b523c875f]*/
PyDoc_STRVAR(test_critical_section_object__doc__,
"test_critical_section_object($module, a, /)\n"
"--\n"
"\n"
"test_critical_section_object");
#define TEST_CRITICAL_SECTION_OBJECT_METHODDEF \
{"test_critical_section_object", (PyCFunction)test_critical_section_object, METH_O, test_critical_section_object__doc__},
static PyObject *
test_critical_section_object_impl(PyObject *module, PyObject *a);
static PyObject *
test_critical_section_object(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
PyObject *a;
if (!PyUnicode_Check(arg)) {
_PyArg_BadArgument("test_critical_section_object", "argument", "str", arg);
goto exit;
}
a = arg;
Py_BEGIN_CRITICAL_SECTION(a);
return_value = test_critical_section_object_impl(module, a);
Py_END_CRITICAL_SECTION();
exit:
return return_value;
}
/*[clinic input]
@critical_section a b
test_critical_section_object2
a: object(subclass_of="&PyUnicode_Type")
b: object(subclass_of="&PyUnicode_Type")
/
test_critical_section_object2
[clinic start generated code]*/
PyDoc_STRVAR(test_critical_section_object2__doc__,
"test_critical_section_object2($module, a, b, /)\n"
"--\n"
"\n"
"test_critical_section_object2");
#define TEST_CRITICAL_SECTION_OBJECT2_METHODDEF \
{"test_critical_section_object2", _PyCFunction_CAST(test_critical_section_object2), METH_FASTCALL, test_critical_section_object2__doc__},
static PyObject *
test_critical_section_object2_impl(PyObject *module, PyObject *a,
PyObject *b);
static PyObject *
test_critical_section_object2(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *a;
PyObject *b;
if (!_PyArg_CheckPositional("test_critical_section_object2", nargs, 2, 2)) {
goto exit;
}
if (!PyUnicode_Check(args[0])) {
_PyArg_BadArgument("test_critical_section_object2", "argument 1", "str", args[0]);
goto exit;
}
a = args[0];
if (!PyUnicode_Check(args[1])) {
_PyArg_BadArgument("test_critical_section_object2", "argument 2", "str", args[1]);
goto exit;
}
b = args[1];
Py_BEGIN_CRITICAL_SECTION2(a, b);
return_value = test_critical_section_object2_impl(module, a, b);
Py_END_CRITICAL_SECTION2();
exit:
return return_value;
}
static PyObject *
test_critical_section_object2_impl(PyObject *module, PyObject *a,
PyObject *b)
/*[clinic end generated code: output=d73a1657c18df17a input=638824e41419a466]*/
PyDoc_STRVAR(test_critical_section_object2__doc__,
"test_critical_section_object2($module, a, b, /)\n"
"--\n"
"\n"
"test_critical_section_object2");
#define TEST_CRITICAL_SECTION_OBJECT2_METHODDEF \
{"test_critical_section_object2", _PyCFunction_CAST(test_critical_section_object2), METH_FASTCALL, test_critical_section_object2__doc__},
static PyObject *
test_critical_section_object2_impl(PyObject *module, PyObject *a,
PyObject *b);
static PyObject *
test_critical_section_object2(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *a;
PyObject *b;
if (!_PyArg_CheckPositional("test_critical_section_object2", nargs, 2, 2)) {
goto exit;
}
if (!PyUnicode_Check(args[0])) {
_PyArg_BadArgument("test_critical_section_object2", "argument 1", "str", args[0]);
goto exit;
}
a = args[0];
if (!PyUnicode_Check(args[1])) {
_PyArg_BadArgument("test_critical_section_object2", "argument 2", "str", args[1]);
goto exit;
}
b = args[1];
Py_BEGIN_CRITICAL_SECTION2(a, b);
return_value = test_critical_section_object2_impl(module, a, b);
Py_END_CRITICAL_SECTION2();
exit:
return return_value;
}