mirror of https://github.com/python/cpython
214 lines
6.6 KiB
C
214 lines
6.6 KiB
C
|
/*
|
||
|
* Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#ifndef BASEARITH_H
|
||
|
#define BASEARITH_H
|
||
|
|
||
|
|
||
|
#include "mpdecimal.h"
|
||
|
#include <stdio.h>
|
||
|
#include "typearith.h"
|
||
|
|
||
|
|
||
|
mpd_uint_t _mpd_baseadd(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
|
||
|
mpd_size_t m, mpd_size_t n);
|
||
|
void _mpd_baseaddto(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n);
|
||
|
mpd_uint_t _mpd_shortadd(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v);
|
||
|
mpd_uint_t _mpd_shortadd_b(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v,
|
||
|
mpd_uint_t b);
|
||
|
mpd_uint_t _mpd_baseincr(mpd_uint_t *u, mpd_size_t n);
|
||
|
void _mpd_basesub(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
|
||
|
mpd_size_t m, mpd_size_t n);
|
||
|
void _mpd_basesubfrom(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n);
|
||
|
void _mpd_basemul(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
|
||
|
mpd_size_t m, mpd_size_t n);
|
||
|
void _mpd_shortmul(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
|
||
|
mpd_uint_t v);
|
||
|
void _mpd_shortmul_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
|
||
|
mpd_uint_t v, mpd_uint_t b);
|
||
|
mpd_uint_t _mpd_shortdiv(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
|
||
|
mpd_uint_t v);
|
||
|
mpd_uint_t _mpd_shortdiv_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
|
||
|
mpd_uint_t v, mpd_uint_t b);
|
||
|
int _mpd_basedivmod(mpd_uint_t *q, mpd_uint_t *r, const mpd_uint_t *uconst,
|
||
|
const mpd_uint_t *vconst, mpd_size_t nplusm, mpd_size_t n);
|
||
|
void _mpd_baseshiftl(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t n,
|
||
|
mpd_size_t m, mpd_size_t shift);
|
||
|
mpd_uint_t _mpd_baseshiftr(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t slen,
|
||
|
mpd_size_t shift);
|
||
|
|
||
|
|
||
|
|
||
|
#ifdef CONFIG_64
|
||
|
extern const mpd_uint_t mprime_rdx;
|
||
|
|
||
|
/*
|
||
|
* Algorithm from: Division by Invariant Integers using Multiplication,
|
||
|
* T. Granlund and P. L. Montgomery, Proceedings of the SIGPLAN '94
|
||
|
* Conference on Programming Language Design and Implementation.
|
||
|
*
|
||
|
* http://gmplib.org/~tege/divcnst-pldi94.pdf
|
||
|
*
|
||
|
* Variables from the paper and their translations (See section 8):
|
||
|
*
|
||
|
* N := 64
|
||
|
* d := MPD_RADIX
|
||
|
* l := 64
|
||
|
* m' := floor((2**(64+64) - 1)/MPD_RADIX) - 2**64
|
||
|
*
|
||
|
* Since N-l == 0:
|
||
|
*
|
||
|
* dnorm := d
|
||
|
* n2 := hi
|
||
|
* n10 := lo
|
||
|
*
|
||
|
* ACL2 proof: mpd-div-words-r-correct
|
||
|
*/
|
||
|
static inline void
|
||
|
_mpd_div_words_r(mpd_uint_t *q, mpd_uint_t *r, mpd_uint_t hi, mpd_uint_t lo)
|
||
|
{
|
||
|
mpd_uint_t n_adj, h, l, t;
|
||
|
mpd_uint_t n1_neg;
|
||
|
|
||
|
/* n1_neg = if lo >= 2**63 then MPD_UINT_MAX else 0 */
|
||
|
n1_neg = (lo & (1ULL<<63)) ? MPD_UINT_MAX : 0;
|
||
|
/* n_adj = if lo >= 2**63 then lo+MPD_RADIX else lo */
|
||
|
n_adj = lo + (n1_neg & MPD_RADIX);
|
||
|
|
||
|
/* (h, l) = if lo >= 2**63 then m'*(hi+1) else m'*hi */
|
||
|
_mpd_mul_words(&h, &l, mprime_rdx, hi-n1_neg);
|
||
|
l = l + n_adj;
|
||
|
if (l < n_adj) h++;
|
||
|
t = h + hi;
|
||
|
/* At this point t == qest, with q == qest or q == qest+1:
|
||
|
* 1) 0 <= 2**64*hi + lo - qest*MPD_RADIX < 2*MPD_RADIX
|
||
|
*/
|
||
|
|
||
|
/* t = 2**64-1 - qest = 2**64 - (qest+1) */
|
||
|
t = MPD_UINT_MAX - t;
|
||
|
|
||
|
/* (h, l) = 2**64*MPD_RADIX - (qest+1)*MPD_RADIX */
|
||
|
_mpd_mul_words(&h, &l, t, MPD_RADIX);
|
||
|
l = l + lo;
|
||
|
if (l < lo) h++;
|
||
|
h += hi;
|
||
|
h -= MPD_RADIX;
|
||
|
/* (h, l) = 2**64*hi + lo - (qest+1)*MPD_RADIX (mod 2**128)
|
||
|
* Case q == qest+1:
|
||
|
* a) h == 0, l == r
|
||
|
* b) q := h - t == qest+1
|
||
|
* c) r := l
|
||
|
* Case q == qest:
|
||
|
* a) h == MPD_UINT_MAX, l == 2**64-(MPD_RADIX-r)
|
||
|
* b) q := h - t == qest
|
||
|
* c) r := l + MPD_RADIX = r
|
||
|
*/
|
||
|
|
||
|
*q = (h - t);
|
||
|
*r = l + (MPD_RADIX & h);
|
||
|
}
|
||
|
#else
|
||
|
static inline void
|
||
|
_mpd_div_words_r(mpd_uint_t *q, mpd_uint_t *r, mpd_uint_t hi, mpd_uint_t lo)
|
||
|
{
|
||
|
_mpd_div_words(q, r, hi, lo, MPD_RADIX);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* Multiply two single base MPD_RADIX words, store result in array w[2]. */
|
||
|
static inline void
|
||
|
_mpd_singlemul(mpd_uint_t w[2], mpd_uint_t u, mpd_uint_t v)
|
||
|
{
|
||
|
mpd_uint_t hi, lo;
|
||
|
|
||
|
_mpd_mul_words(&hi, &lo, u, v);
|
||
|
_mpd_div_words_r(&w[1], &w[0], hi, lo);
|
||
|
}
|
||
|
|
||
|
/* Multiply u (len 2) and v (len m, 1 <= m <= 2). */
|
||
|
static inline void
|
||
|
_mpd_mul_2_le2(mpd_uint_t w[4], mpd_uint_t u[2], mpd_uint_t v[2], mpd_ssize_t m)
|
||
|
{
|
||
|
mpd_uint_t hi, lo;
|
||
|
|
||
|
_mpd_mul_words(&hi, &lo, u[0], v[0]);
|
||
|
_mpd_div_words_r(&w[1], &w[0], hi, lo);
|
||
|
|
||
|
_mpd_mul_words(&hi, &lo, u[1], v[0]);
|
||
|
lo = w[1] + lo;
|
||
|
if (lo < w[1]) hi++;
|
||
|
_mpd_div_words_r(&w[2], &w[1], hi, lo);
|
||
|
if (m == 1) return;
|
||
|
|
||
|
_mpd_mul_words(&hi, &lo, u[0], v[1]);
|
||
|
lo = w[1] + lo;
|
||
|
if (lo < w[1]) hi++;
|
||
|
_mpd_div_words_r(&w[3], &w[1], hi, lo);
|
||
|
|
||
|
_mpd_mul_words(&hi, &lo, u[1], v[1]);
|
||
|
lo = w[2] + lo;
|
||
|
if (lo < w[2]) hi++;
|
||
|
lo = w[3] + lo;
|
||
|
if (lo < w[3]) hi++;
|
||
|
_mpd_div_words_r(&w[3], &w[2], hi, lo);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Test if all words from data[len-1] to data[0] are zero. If len is 0, nothing
|
||
|
* is tested and the coefficient is regarded as "all zero".
|
||
|
*/
|
||
|
static inline int
|
||
|
_mpd_isallzero(const mpd_uint_t *data, mpd_ssize_t len)
|
||
|
{
|
||
|
while (--len >= 0) {
|
||
|
if (data[len] != 0) return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Test if all full words from data[len-1] to data[0] are MPD_RADIX-1
|
||
|
* (all nines). Return true if len == 0.
|
||
|
*/
|
||
|
static inline int
|
||
|
_mpd_isallnine(const mpd_uint_t *data, mpd_ssize_t len)
|
||
|
{
|
||
|
while (--len >= 0) {
|
||
|
if (data[len] != MPD_RADIX-1) return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif /* BASEARITH_H */
|
||
|
|
||
|
|
||
|
|