cpython/Include/internal/pycore_code.h

355 lines
10 KiB
C
Raw Normal View History

#ifndef Py_INTERNAL_CODE_H
#define Py_INTERNAL_CODE_H
#ifdef __cplusplus
extern "C" {
#endif
/* Legacy Opcache */
typedef struct {
PyObject *ptr; /* Cached pointer (borrowed reference) */
uint64_t globals_ver; /* ma_version of global dict */
uint64_t builtins_ver; /* ma_version of builtin dict */
} _PyOpcache_LoadGlobal;
typedef struct {
PyTypeObject *type;
Py_ssize_t hint;
unsigned int tp_version_tag;
} _PyOpCodeOpt_LoadAttr;
struct _PyOpcache {
union {
_PyOpcache_LoadGlobal lg;
_PyOpCodeOpt_LoadAttr la;
} u;
char optimized;
};
/* PEP 659
* Specialization and quickening structs and helper functions
*/
typedef struct {
int32_t cache_count;
int32_t _; /* Force 8 byte size */
} _PyEntryZero;
typedef struct {
uint8_t original_oparg;
uint8_t counter;
uint16_t index;
} _PyAdaptiveEntry;
typedef struct {
uint32_t tp_version;
uint32_t dk_version_or_hint;
} _PyLoadAttrCache;
typedef struct {
uint32_t module_keys_version;
uint32_t builtin_keys_version;
} _PyLoadGlobalCache;
/* Add specialized versions of entries to this union.
*
* Do not break the invariant: sizeof(SpecializedCacheEntry) == 8
* Preserving this invariant is necessary because:
- If any one form uses more space, then all must and on 64 bit machines
this is likely to double the memory consumption of caches
- The function for calculating the offset of caches assumes a 4:1
cache:instruction size ratio. Changing that would need careful
analysis to choose a new function.
*/
typedef union {
_PyEntryZero zero;
_PyAdaptiveEntry adaptive;
_PyLoadAttrCache load_attr;
_PyLoadGlobalCache load_global;
} SpecializedCacheEntry;
#define INSTRUCTIONS_PER_ENTRY (sizeof(SpecializedCacheEntry)/sizeof(_Py_CODEUNIT))
/* Maximum size of code to quicken, in code units. */
#define MAX_SIZE_TO_QUICKEN 5000
typedef union _cache_or_instruction {
_Py_CODEUNIT code[1];
SpecializedCacheEntry entry;
} SpecializedCacheOrInstruction;
/* Get pointer to the nth cache entry, from the first instruction and n.
* Cache entries are indexed backwards, with [count-1] first in memory, and [0] last.
* The zeroth entry immediately precedes the instructions.
*/
static inline SpecializedCacheEntry *
2021-06-12 10:11:59 -03:00
_GetSpecializedCacheEntry(const _Py_CODEUNIT *first_instr, Py_ssize_t n)
{
SpecializedCacheOrInstruction *last_cache_plus_one = (SpecializedCacheOrInstruction *)first_instr;
assert(&last_cache_plus_one->code[0] == first_instr);
return &last_cache_plus_one[-1-n].entry;
}
/* Following two functions form a pair.
*
* oparg_from_offset_and_index() is used to compute the oparg
* when quickening, so that offset_from_oparg_and_nexti()
* can be used at runtime to compute the offset.
*
* The relationship between the three values is currently
* offset == (index>>1) + oparg
* This relation is chosen based on the following observations:
* 1. typically 1 in 4 instructions need a cache
* 2. instructions that need a cache typically use 2 entries
* These observations imply: offset index/2
* We use the oparg to fine tune the relation to avoid wasting space
* and allow consecutive instructions to use caches.
*
* If the number of cache entries < number of instructions/2 we will waste
* some small amoount of space.
* If the number of cache entries > (number of instructions/2) + 255, then
* some instructions will not be able to use a cache.
* In practice, we expect some small amount of wasted space in a shorter functions
* and only functions exceeding a 1000 lines or more not to have enugh cache space.
*
*/
static inline int
oparg_from_offset_and_nexti(int offset, int nexti)
{
return offset-(nexti>>1);
}
static inline int
offset_from_oparg_and_nexti(int oparg, int nexti)
{
return (nexti>>1)+oparg;
}
/* Get pointer to the cache entry associated with an instruction.
* nexti is the index of the instruction plus one.
* nexti is used as it corresponds to the instruction pointer in the interpreter.
* This doesn't check that an entry has been allocated for that instruction. */
static inline SpecializedCacheEntry *
2021-06-12 10:11:59 -03:00
_GetSpecializedCacheEntryForInstruction(const _Py_CODEUNIT *first_instr, int nexti, int oparg)
{
return _GetSpecializedCacheEntry(
first_instr,
offset_from_oparg_and_nexti(oparg, nexti)
);
}
#define QUICKENING_WARMUP_DELAY 8
/* We want to compare to zero for efficiency, so we offset values accordingly */
#define QUICKENING_INITIAL_WARMUP_VALUE (-QUICKENING_WARMUP_DELAY)
#define QUICKENING_WARMUP_COLDEST 1
static inline void
PyCodeObject_IncrementWarmup(PyCodeObject * co)
{
co->co_warmup++;
}
/* Used by the interpreter to determine when a code object should be quickened */
static inline int
PyCodeObject_IsWarmedUp(PyCodeObject * co)
{
return (co->co_warmup == 0);
}
int _Py_Quicken(PyCodeObject *code);
extern Py_ssize_t _Py_QuickenedCount;
/* "Locals plus" for a code object is the set of locals + cell vars +
* free vars. This relates to variable names as well as offsets into
* the "fast locals" storage array of execution frames. The compiler
* builds the list of names, their offsets, and the corresponding
* kind of local.
*
* Those kinds represent the source of the initial value and the
* variable's scope (as related to closures). A "local" is an
* argument or other variable defined in the current scope. A "free"
* variable is one that is defined in an outer scope and comes from
* the function's closure. A "cell" variable is a local that escapes
* into an inner function as part of a closure, and thus must be
* wrapped in a cell. Any "local" can also be a "cell", but the
* "free" kind is mutually exclusive with both.
*/
// Note that these all fit within a byte, as do combinations.
// Later, we will use the smaller numbers to differentiate the different
// kinds of locals (e.g. pos-only arg, varkwargs, local-only).
#define CO_FAST_LOCAL 0x20
#define CO_FAST_CELL 0x40
#define CO_FAST_FREE 0x80
typedef unsigned char _PyLocals_Kind;
static inline _PyLocals_Kind
_PyLocals_GetKind(PyObject *kinds, int i)
{
assert(PyBytes_Check(kinds));
assert(0 <= i && i < PyBytes_GET_SIZE(kinds));
char *ptr = PyBytes_AS_STRING(kinds);
return (_PyLocals_Kind)(ptr[i]);
}
static inline void
_PyLocals_SetKind(PyObject *kinds, int i, _PyLocals_Kind kind)
{
assert(PyBytes_Check(kinds));
assert(0 <= i && i < PyBytes_GET_SIZE(kinds));
char *ptr = PyBytes_AS_STRING(kinds);
ptr[i] = (char) kind;
}
struct _PyCodeConstructor {
/* metadata */
PyObject *filename;
PyObject *name;
PyObject *qualname;
int flags;
/* the code */
PyObject *code;
int firstlineno;
PyObject *linetable;
PyObject *endlinetable;
PyObject *columntable;
/* used by the code */
PyObject *consts;
PyObject *names;
/* mapping frame offsets to information */
PyObject *localsplusnames; // Tuple of strings
PyObject *localspluskinds; // Bytes object, one byte per variable
/* args (within varnames) */
int argcount;
int posonlyargcount;
// XXX Replace argcount with posorkwargcount (argcount - posonlyargcount).
int kwonlyargcount;
/* needed to create the frame */
int stacksize;
/* used by the eval loop */
PyObject *exceptiontable;
};
// Using an "arguments struct" like this is helpful for maintainability
// in a case such as this with many parameters. It does bear a risk:
// if the struct changes and callers are not updated properly then the
// compiler will not catch problems (like a missing argument). This can
// cause hard-to-debug problems. The risk is mitigated by the use of
// check_code() in codeobject.c. However, we may decide to switch
// back to a regular function signature. Regardless, this approach
// wouldn't be appropriate if this weren't a strictly internal API.
// (See the comments in https://github.com/python/cpython/pull/26258.)
PyAPI_FUNC(int) _PyCode_Validate(struct _PyCodeConstructor *);
PyAPI_FUNC(PyCodeObject *) _PyCode_New(struct _PyCodeConstructor *);
/* Private API */
/* Getters for internal PyCodeObject data. */
PyAPI_FUNC(PyObject *) _PyCode_GetVarnames(PyCodeObject *);
PyAPI_FUNC(PyObject *) _PyCode_GetCellvars(PyCodeObject *);
PyAPI_FUNC(PyObject *) _PyCode_GetFreevars(PyCodeObject *);
/* Cache hits and misses */
static inline uint8_t
saturating_increment(uint8_t c)
{
return c<<1;
}
static inline uint8_t
saturating_decrement(uint8_t c)
{
return (c>>1) + 128;
}
static inline uint8_t
saturating_zero(void)
{
return 255;
}
/* Starting value for saturating counter.
* Technically this should be 1, but that is likely to
* cause a bit of thrashing when we optimize then get an immediate miss.
* We want to give the counter a change to stabilize, so we start at 3.
*/
static inline uint8_t
saturating_start(void)
{
return saturating_zero()<<3;
}
static inline void
record_cache_hit(_PyAdaptiveEntry *entry) {
entry->counter = saturating_increment(entry->counter);
}
static inline void
record_cache_miss(_PyAdaptiveEntry *entry) {
entry->counter = saturating_decrement(entry->counter);
}
static inline int
too_many_cache_misses(_PyAdaptiveEntry *entry) {
return entry->counter == saturating_zero();
}
#define BACKOFF 64
static inline void
cache_backoff(_PyAdaptiveEntry *entry) {
entry->counter = BACKOFF;
}
/* Specialization functions */
int _Py_Specialize_LoadAttr(PyObject *owner, _Py_CODEUNIT *instr, PyObject *name, SpecializedCacheEntry *cache);
int _Py_Specialize_LoadGlobal(PyObject *globals, PyObject *builtins, _Py_CODEUNIT *instr, PyObject *name, SpecializedCacheEntry *cache);
#define SPECIALIZATION_STATS 0
#define SPECIALIZATION_STATS_DETAILED 0
#if SPECIALIZATION_STATS
typedef struct _stats {
uint64_t specialization_success;
uint64_t specialization_failure;
uint64_t hit;
uint64_t deferred;
uint64_t miss;
uint64_t deopt;
uint64_t unquickened;
#if SPECIALIZATION_STATS_DETAILED
PyObject *miss_types;
#endif
} SpecializationStats;
extern SpecializationStats _specialization_stats[256];
#define STAT_INC(opname, name) _specialization_stats[opname].name++
void _Py_PrintSpecializationStats(void);
#else
#define STAT_INC(opname, name) ((void)0)
#endif
#ifdef __cplusplus
}
#endif
#endif /* !Py_INTERNAL_CODE_H */