cpython/Tools/cases_generator/generate_cases.py

1695 lines
65 KiB
Python
Raw Normal View History

"""Generate the main interpreter switch.
Reads the instruction definitions from bytecodes.c.
Writes the cases to generated_cases.c.h, which is #included in ceval.c.
"""
import argparse
import contextlib
import dataclasses
import os
import posixpath
import re
import sys
import typing
import lexer as lx
import parser
from parser import StackEffect
HERE = os.path.dirname(__file__)
ROOT = os.path.join(HERE, "../..")
THIS = os.path.relpath(__file__, ROOT).replace(os.path.sep, posixpath.sep)
DEFAULT_INPUT = os.path.relpath(os.path.join(ROOT, "Python/bytecodes.c"))
DEFAULT_OUTPUT = os.path.relpath(os.path.join(ROOT, "Python/generated_cases.c.h"))
DEFAULT_METADATA_OUTPUT = os.path.relpath(
os.path.join(ROOT, "Python/opcode_metadata.h")
)
DEFAULT_PYMETADATA_OUTPUT = os.path.relpath(
os.path.join(ROOT, "Lib/_opcode_metadata.py")
)
DEFAULT_EXECUTOR_OUTPUT = os.path.relpath(
os.path.join(ROOT, "Python/executor_cases.c.h")
)
BEGIN_MARKER = "// BEGIN BYTECODES //"
END_MARKER = "// END BYTECODES //"
RE_PREDICTED = (
r"^\s*(?:GO_TO_INSTRUCTION\(|DEOPT_IF\(.*?,\s*)(\w+)\);\s*(?://.*)?$"
)
UNUSED = "unused"
BITS_PER_CODE_UNIT = 16
# Constants used instead of size for macro expansions.
# Note: 1, 2, 4 must match actual cache entry sizes.
OPARG_SIZES = {
"OPARG_FULL": 0,
"OPARG_CACHE_1": 1,
"OPARG_CACHE_2": 2,
"OPARG_CACHE_4": 4,
"OPARG_TOP": 5,
"OPARG_BOTTOM": 6,
}
RESERVED_WORDS = {
"co_consts" : "Use FRAME_CO_CONSTS.",
"co_names": "Use FRAME_CO_NAMES.",
}
arg_parser = argparse.ArgumentParser(
description="Generate the code for the interpreter switch.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
arg_parser.add_argument(
"-o", "--output", type=str, help="Generated code", default=DEFAULT_OUTPUT
)
arg_parser.add_argument(
"-m", "--metadata", type=str, help="Generated C metadata", default=DEFAULT_METADATA_OUTPUT
)
arg_parser.add_argument(
"-p", "--pymetadata", type=str, help="Generated Python metadata", default=DEFAULT_PYMETADATA_OUTPUT
)
arg_parser.add_argument(
"-l", "--emit-line-directives", help="Emit #line directives", action="store_true"
)
arg_parser.add_argument(
"input", nargs=argparse.REMAINDER, help="Instruction definition file(s)"
)
arg_parser.add_argument(
"-e",
"--executor-cases",
type=str,
help="Write executor cases to this file",
default=DEFAULT_EXECUTOR_OUTPUT,
)
def effect_size(effect: StackEffect) -> tuple[int, str]:
"""Return the 'size' impact of a stack effect.
Returns a tuple (numeric, symbolic) where:
- numeric is an int giving the statically analyzable size of the effect
- symbolic is a string representing a variable effect (e.g. 'oparg*2')
At most one of these will be non-zero / non-empty.
"""
if effect.size:
assert not effect.cond, "Array effects cannot have a condition"
return 0, effect.size
elif effect.cond:
return 0, f"{maybe_parenthesize(effect.cond)} ? 1 : 0"
else:
return 1, ""
def maybe_parenthesize(sym: str) -> str:
"""Add parentheses around a string if it contains an operator.
An exception is made for '*' which is common and harmless
in the context where the symbolic size is used.
"""
if re.match(r"^[\s\w*]+$", sym):
return sym
else:
return f"({sym})"
def list_effect_size(effects: list[StackEffect]) -> tuple[int, str]:
numeric = 0
symbolic: list[str] = []
for effect in effects:
diff, sym = effect_size(effect)
numeric += diff
if sym:
symbolic.append(maybe_parenthesize(sym))
return numeric, " + ".join(symbolic)
def string_effect_size(arg: tuple[int, str]) -> str:
numeric, symbolic = arg
if numeric and symbolic:
return f"{numeric} + {symbolic}"
elif symbolic:
return symbolic
else:
return str(numeric)
class Formatter:
"""Wraps an output stream with the ability to indent etc."""
stream: typing.TextIO
prefix: str
emit_line_directives: bool = False
lineno: int # Next line number, 1-based
filename: str # Slightly improved stream.filename
nominal_lineno: int
nominal_filename: str
def __init__(
self, stream: typing.TextIO, indent: int,
emit_line_directives: bool = False, comment: str = "//",
) -> None:
self.stream = stream
self.prefix = " " * indent
self.emit_line_directives = emit_line_directives
self.comment = comment
self.lineno = 1
filename = os.path.relpath(self.stream.name, ROOT)
# Make filename more user-friendly and less platform-specific
filename = filename.replace("\\", "/")
if filename.startswith("./"):
filename = filename[2:]
if filename.endswith(".new"):
filename = filename[:-4]
self.filename = filename
self.nominal_lineno = 1
self.nominal_filename = filename
def write_raw(self, s: str) -> None:
self.stream.write(s)
newlines = s.count("\n")
self.lineno += newlines
self.nominal_lineno += newlines
def emit(self, arg: str) -> None:
if arg:
self.write_raw(f"{self.prefix}{arg}\n")
else:
self.write_raw("\n")
def set_lineno(self, lineno: int, filename: str) -> None:
if self.emit_line_directives:
if lineno != self.nominal_lineno or filename != self.nominal_filename:
self.emit(f'#line {lineno} "{filename}"')
self.nominal_lineno = lineno
self.nominal_filename = filename
def reset_lineno(self) -> None:
if self.lineno != self.nominal_lineno or self.filename != self.nominal_filename:
self.set_lineno(self.lineno + 1, self.filename)
@contextlib.contextmanager
def indent(self):
self.prefix += " "
yield
self.prefix = self.prefix[:-4]
@contextlib.contextmanager
def block(self, head: str, tail: str = ""):
if head:
self.emit(head + " {")
else:
self.emit("{")
with self.indent():
yield
self.emit("}" + tail)
def stack_adjust(
self,
input_effects: list[StackEffect],
output_effects: list[StackEffect],
):
shrink, isym = list_effect_size(input_effects)
grow, osym = list_effect_size(output_effects)
diff = grow - shrink
if isym and isym != osym:
self.emit(f"STACK_SHRINK({isym});")
if diff < 0:
self.emit(f"STACK_SHRINK({-diff});")
if diff > 0:
self.emit(f"STACK_GROW({diff});")
if osym and osym != isym:
self.emit(f"STACK_GROW({osym});")
def declare(self, dst: StackEffect, src: StackEffect | None):
if dst.name == UNUSED:
return
typ = f"{dst.type}" if dst.type else "PyObject *"
if src:
cast = self.cast(dst, src)
init = f" = {cast}{src.name}"
elif dst.cond:
init = " = NULL"
else:
init = ""
sepa = "" if typ.endswith("*") else " "
self.emit(f"{typ}{sepa}{dst.name}{init};")
def assign(self, dst: StackEffect, src: StackEffect):
if src.name == UNUSED:
return
if src.size:
# Don't write sized arrays -- it's up to the user code.
return
cast = self.cast(dst, src)
if re.match(r"^REG\(oparg(\d+)\)$", dst.name):
self.emit(f"Py_XSETREF({dst.name}, {cast}{src.name});")
else:
stmt = f"{dst.name} = {cast}{src.name};"
if src.cond:
stmt = f"if ({src.cond}) {{ {stmt} }}"
self.emit(stmt)
def cast(self, dst: StackEffect, src: StackEffect) -> str:
return f"({dst.type or 'PyObject *'})" if src.type != dst.type else ""
@dataclasses.dataclass
class InstructionFlags:
"""Construct and manipulate instruction flags"""
HAS_ARG_FLAG: bool
HAS_CONST_FLAG: bool
HAS_NAME_FLAG: bool
HAS_JUMP_FLAG: bool
def __post_init__(self):
self.bitmask = {
name : (1 << i) for i, name in enumerate(self.names())
}
@staticmethod
def fromInstruction(instr: "AnyInstruction"):
return InstructionFlags(
HAS_ARG_FLAG=variable_used(instr, "oparg"),
HAS_CONST_FLAG=variable_used(instr, "FRAME_CO_CONSTS"),
HAS_NAME_FLAG=variable_used(instr, "FRAME_CO_NAMES"),
HAS_JUMP_FLAG=variable_used(instr, "JUMPBY"),
)
@staticmethod
def newEmpty():
return InstructionFlags(False, False, False, False)
def add(self, other: "InstructionFlags") -> None:
for name, value in dataclasses.asdict(other).items():
if value:
setattr(self, name, value)
def names(self, value=None):
if value is None:
return dataclasses.asdict(self).keys()
return [n for n, v in dataclasses.asdict(self).items() if v == value]
def bitmap(self) -> int:
flags = 0
for name in self.names():
if getattr(self, name):
flags |= self.bitmask[name]
return flags
@classmethod
def emit_macros(cls, out: Formatter):
flags = cls.newEmpty()
for name, value in flags.bitmask.items():
out.emit(f"#define {name} ({value})");
for name, value in flags.bitmask.items():
out.emit(
f"#define OPCODE_{name[:-len('_FLAG')]}(OP) "
f"(_PyOpcode_opcode_metadata[(OP)].flags & ({name}))")
@dataclasses.dataclass
class ActiveCacheEffect:
"""Wraps a CacheEffect that is actually used, in context."""
effect: parser.CacheEffect
offset: int
FORBIDDEN_NAMES_IN_UOPS = (
"resume_with_error",
"kwnames",
"next_instr",
"oparg1", # Proxy for super-instructions like LOAD_FAST_LOAD_FAST
"JUMPBY",
"DISPATCH",
"INSTRUMENTED_JUMP",
"throwflag",
"exception_unwind",
"import_from",
"import_name",
"_PyObject_CallNoArgs", # Proxy for BEFORE_WITH
)
# Interpreter tiers
TIER_ONE = 1 # Specializing adaptive interpreter (PEP 659)
TIER_TWO = 2 # Experimental tracing interpreter
Tiers: typing.TypeAlias = typing.Literal[1, 2]
@dataclasses.dataclass
class Instruction:
"""An instruction with additional data and code."""
# Parts of the underlying instruction definition
inst: parser.InstDef
kind: typing.Literal["inst", "op"]
name: str
block: parser.Block
block_text: list[str] # Block.text, less curlies, less PREDICT() calls
block_line: int # First line of block in original code
# Computed by constructor
always_exits: bool
cache_offset: int
cache_effects: list[parser.CacheEffect]
input_effects: list[StackEffect]
output_effects: list[StackEffect]
unmoved_names: frozenset[str]
instr_fmt: str
instr_flags: InstructionFlags
active_caches: list[ActiveCacheEffect]
# Set later
family: parser.Family | None = None
predicted: bool = False
def __init__(self, inst: parser.InstDef):
self.inst = inst
self.kind = inst.kind
self.name = inst.name
self.block = inst.block
self.block_text, self.check_eval_breaker, self.block_line = \
extract_block_text(self.block)
self.always_exits = always_exits(self.block_text)
self.cache_effects = [
effect for effect in inst.inputs if isinstance(effect, parser.CacheEffect)
]
self.cache_offset = sum(c.size for c in self.cache_effects)
self.input_effects = [
effect for effect in inst.inputs if isinstance(effect, StackEffect)
]
self.output_effects = inst.outputs # For consistency/completeness
unmoved_names: set[str] = set()
for ieffect, oeffect in zip(self.input_effects, self.output_effects):
if ieffect.name == oeffect.name:
unmoved_names.add(ieffect.name)
else:
break
self.unmoved_names = frozenset(unmoved_names)
self.instr_flags = InstructionFlags.fromInstruction(inst)
self.active_caches = []
offset = 0
for effect in self.cache_effects:
if effect.name != UNUSED:
self.active_caches.append(ActiveCacheEffect(effect, offset))
offset += effect.size
if self.instr_flags.HAS_ARG_FLAG:
fmt = "IB"
else:
fmt = "IX"
if offset:
fmt += "C" + "0"*(offset-1)
self.instr_fmt = fmt
def is_viable_uop(self) -> bool:
"""Whether this instruction is viable as a uop."""
if self.always_exits:
# print(f"Skipping {self.name} because it always exits")
return False
if self.instr_flags.HAS_ARG_FLAG:
# If the instruction uses oparg, it cannot use any caches
if self.active_caches:
# print(f"Skipping {self.name} because it uses oparg and caches")
return False
else:
# If it doesn't use oparg, it can have one cache entry
if len(self.active_caches) > 1:
# print(f"Skipping {self.name} because it has >1 cache entries")
return False
res = True
for forbidden in FORBIDDEN_NAMES_IN_UOPS:
# NOTE: To disallow unspecialized uops, use
# if variable_used(self.inst, forbidden):
if variable_used_unspecialized(self.inst, forbidden):
# print(f"Skipping {self.name} because it uses {forbidden}")
res = False
return res
def write(self, out: Formatter, tier: Tiers = TIER_ONE) -> None:
"""Write one instruction, sans prologue and epilogue."""
# Write a static assertion that a family's cache size is correct
if family := self.family:
if self.name == family.members[0]:
if cache_size := family.size:
out.emit(
f"static_assert({cache_size} == "
f'{self.cache_offset}, "incorrect cache size");'
)
# Write input stack effect variable declarations and initializations
ieffects = list(reversed(self.input_effects))
for i, ieffect in enumerate(ieffects):
isize = string_effect_size(
list_effect_size([ieff for ieff in ieffects[: i + 1]])
)
if ieffect.size:
src = StackEffect(f"(stack_pointer - {maybe_parenthesize(isize)})", "PyObject **")
elif ieffect.cond:
src = StackEffect(f"({ieffect.cond}) ? stack_pointer[-{maybe_parenthesize(isize)}] : NULL", "")
else:
src = StackEffect(f"stack_pointer[-{maybe_parenthesize(isize)}]", "")
out.declare(ieffect, src)
# Write output stack effect variable declarations
isize = string_effect_size(list_effect_size(self.input_effects))
input_names = {ieffect.name for ieffect in self.input_effects}
for i, oeffect in enumerate(self.output_effects):
if oeffect.name not in input_names:
if oeffect.size:
osize = string_effect_size(
list_effect_size([oeff for oeff in self.output_effects[:i]])
)
offset = "stack_pointer"
if isize != osize:
if isize != "0":
offset += f" - ({isize})"
if osize != "0":
offset += f" + {osize}"
src = StackEffect(offset, "PyObject **")
out.declare(oeffect, src)
else:
out.declare(oeffect, None)
# out.emit(f"next_instr += OPSIZE({self.inst.name}) - 1;")
self.write_body(out, 0, self.active_caches, tier=tier)
# Skip the rest if the block always exits
if self.always_exits:
return
# Write net stack growth/shrinkage
out.stack_adjust(
[ieff for ieff in self.input_effects],
[oeff for oeff in self.output_effects],
)
# Write output stack effect assignments
oeffects = list(reversed(self.output_effects))
for i, oeffect in enumerate(oeffects):
if oeffect.name in self.unmoved_names:
continue
osize = string_effect_size(
list_effect_size([oeff for oeff in oeffects[: i + 1]])
)
if oeffect.size:
dst = StackEffect(f"stack_pointer - {maybe_parenthesize(osize)}", "PyObject **")
else:
dst = StackEffect(f"stack_pointer[-{maybe_parenthesize(osize)}]", "")
out.assign(dst, oeffect)
# Write cache effect
if tier == TIER_ONE and self.cache_offset:
out.emit(f"next_instr += {self.cache_offset};")
def write_body(
self,
out: Formatter,
dedent: int,
active_caches: list[ActiveCacheEffect],
tier: Tiers = TIER_ONE,
) -> None:
"""Write the instruction body."""
# Write cache effect variable declarations and initializations
for active in active_caches:
ceffect = active.effect
bits = ceffect.size * BITS_PER_CODE_UNIT
if bits == 64:
# NOTE: We assume that 64-bit data in the cache
# is always an object pointer.
# If this becomes false, we need a way to specify
# syntactically what type the cache data is.
typ = "PyObject *"
func = "read_obj"
else:
typ = f"uint{bits}_t "
func = f"read_u{bits}"
if tier == TIER_ONE:
out.emit(
f"{typ}{ceffect.name} = {func}(&next_instr[{active.offset}].cache);"
)
else:
out.emit(f"{typ}{ceffect.name} = ({typ.strip()})operand;")
# Write the body, substituting a goto for ERROR_IF() and other stuff
assert dedent <= 0
extra = " " * -dedent
names_to_skip = self.unmoved_names | frozenset({UNUSED, "null"})
offset = 0
context = self.block.context
assert context is not None and context.owner is not None
filename = context.owner.filename
for line in self.block_text:
out.set_lineno(self.block_line + offset, filename)
offset += 1
if m := re.match(r"(\s*)ERROR_IF\((.+), (\w+)\);\s*(?://.*)?$", line):
space, cond, label = m.groups()
space = extra + space
# ERROR_IF() must pop the inputs from the stack.
# The code block is responsible for DECREF()ing them.
# NOTE: If the label doesn't exist, just add it to ceval.c.
# Don't pop common input/output effects at the bottom!
# These aren't DECREF'ed so they can stay.
ieffs = list(self.input_effects)
oeffs = list(self.output_effects)
while ieffs and oeffs and ieffs[0] == oeffs[0]:
ieffs.pop(0)
oeffs.pop(0)
ninputs, symbolic = list_effect_size(ieffs)
if ninputs:
label = f"pop_{ninputs}_{label}"
if symbolic:
out.write_raw(
f"{space}if ({cond}) {{ STACK_SHRINK({symbolic}); goto {label}; }}\n"
)
else:
out.write_raw(f"{space}if ({cond}) goto {label};\n")
elif m := re.match(r"(\s*)DECREF_INPUTS\(\);\s*(?://.*)?$", line):
out.reset_lineno()
space = extra + m.group(1)
for ieff in self.input_effects:
if ieff.name in names_to_skip:
continue
if ieff.size:
out.write_raw(
f"{space}for (int _i = {ieff.size}; --_i >= 0;) {{\n"
)
out.write_raw(f"{space} Py_DECREF({ieff.name}[_i]);\n")
out.write_raw(f"{space}}}\n")
else:
decref = "XDECREF" if ieff.cond else "DECREF"
out.write_raw(f"{space}Py_{decref}({ieff.name});\n")
else:
out.write_raw(extra + line)
out.reset_lineno()
InstructionOrCacheEffect = Instruction | parser.CacheEffect
StackEffectMapping = list[tuple[StackEffect, StackEffect]]
@dataclasses.dataclass
class Component:
instr: Instruction
input_mapping: StackEffectMapping
output_mapping: StackEffectMapping
active_caches: list[ActiveCacheEffect]
def write_body(self, out: Formatter) -> None:
with out.block(""):
input_names = {ieffect.name for _, ieffect in self.input_mapping}
for var, ieffect in self.input_mapping:
out.declare(ieffect, var)
for _, oeffect in self.output_mapping:
if oeffect.name not in input_names:
out.declare(oeffect, None)
self.instr.write_body(out, -4, self.active_caches)
for var, oeffect in self.output_mapping:
out.assign(var, oeffect)
MacroParts = list[Component | parser.CacheEffect]
@dataclasses.dataclass
class MacroInstruction:
"""A macro instruction."""
name: str
stack: list[StackEffect]
initial_sp: int
final_sp: int
instr_fmt: str
instr_flags: InstructionFlags
macro: parser.Macro
parts: MacroParts
cache_offset: int
predicted: bool = False
@dataclasses.dataclass
class PseudoInstruction:
"""A pseudo instruction."""
name: str
targets: list[Instruction]
instr_fmt: str
instr_flags: InstructionFlags
@dataclasses.dataclass
class OverriddenInstructionPlaceHolder:
name: str
AnyInstruction = Instruction | MacroInstruction | PseudoInstruction
INSTR_FMT_PREFIX = "INSTR_FMT_"
class Analyzer:
"""Parse input, analyze it, and write to output."""
input_filenames: list[str]
output_filename: str
metadata_filename: str
pymetadata_filename: str
executor_filename: str
errors: int = 0
emit_line_directives: bool = False
def __init__(
self,
input_filenames: list[str],
output_filename: str,
metadata_filename: str,
pymetadata_filename: str,
executor_filename: str,
):
"""Read the input file."""
self.input_filenames = input_filenames
self.output_filename = output_filename
self.metadata_filename = metadata_filename
self.pymetadata_filename = pymetadata_filename
self.executor_filename = executor_filename
def error(self, msg: str, node: parser.Node) -> None:
lineno = 0
filename = "<unknown file>"
if context := node.context:
filename = context.owner.filename
# Use line number of first non-comment in the node
for token in context.owner.tokens[context.begin : context.end]:
lineno = token.line
if token.kind != "COMMENT":
break
print(f"{filename}:{lineno}: {msg}", file=sys.stderr)
self.errors += 1
everything: list[
parser.InstDef | parser.Macro | parser.Pseudo | OverriddenInstructionPlaceHolder
]
instrs: dict[str, Instruction] # Includes ops
macros: dict[str, parser.Macro]
macro_instrs: dict[str, MacroInstruction]
families: dict[str, parser.Family]
pseudos: dict[str, parser.Pseudo]
pseudo_instrs: dict[str, PseudoInstruction]
def parse(self) -> None:
"""Parse the source text.
We only want the parser to see the stuff between the
begin and end markers.
"""
self.everything = []
self.instrs = {}
self.macros = {}
self.families = {}
self.pseudos = {}
instrs_idx: dict[str, int] = dict()
for filename in self.input_filenames:
self.parse_file(filename, instrs_idx)
files = " + ".join(self.input_filenames)
print(
f"Read {len(self.instrs)} instructions/ops, "
f"{len(self.macros)} macros, {len(self.pseudos)} pseudos, "
f"and {len(self.families)} families from {files}",
file=sys.stderr,
)
def parse_file(self, filename: str, instrs_idx: dict[str, int]) -> None:
with open(filename) as file:
src = file.read()
filename = os.path.relpath(filename, ROOT)
# Make filename more user-friendly and less platform-specific
filename = filename.replace("\\", "/")
if filename.startswith("./"):
filename = filename[2:]
psr = parser.Parser(src, filename=filename)
# Skip until begin marker
while tkn := psr.next(raw=True):
if tkn.text == BEGIN_MARKER:
break
else:
raise psr.make_syntax_error(
f"Couldn't find {BEGIN_MARKER!r} in {psr.filename}"
)
start = psr.getpos()
# Find end marker, then delete everything after it
while tkn := psr.next(raw=True):
if tkn.text == END_MARKER:
break
del psr.tokens[psr.getpos() - 1 :]
# Parse from start
psr.setpos(start)
thing: parser.InstDef | parser.Macro | parser.Pseudo | parser.Family | None
thing_first_token = psr.peek()
while thing := psr.definition():
if ws := [w for w in RESERVED_WORDS if variable_used(thing, w)]:
self.error(f"'{ws[0]}' is a reserved word. {RESERVED_WORDS[ws[0]]}", thing)
match thing:
case parser.InstDef(name=name):
if name in self.instrs:
if not thing.override:
raise psr.make_syntax_error(
f"Duplicate definition of '{name}' @ {thing.context} "
f"previous definition @ {self.instrs[name].inst.context}",
thing_first_token,
)
self.everything[instrs_idx[name]] = OverriddenInstructionPlaceHolder(name=name)
if name not in self.instrs and thing.override:
raise psr.make_syntax_error(
f"Definition of '{name}' @ {thing.context} is supposed to be "
"an override but no previous definition exists.",
thing_first_token,
)
self.instrs[name] = Instruction(thing)
instrs_idx[name] = len(self.everything)
self.everything.append(thing)
case parser.Macro(name):
self.macros[name] = thing
self.everything.append(thing)
case parser.Family(name):
self.families[name] = thing
case parser.Pseudo(name):
self.pseudos[name] = thing
self.everything.append(thing)
case _:
typing.assert_never(thing)
if not psr.eof():
raise psr.make_syntax_error(f"Extra stuff at the end of {filename}")
def analyze(self) -> None:
"""Analyze the inputs.
Raises SystemExit if there is an error.
"""
self.analyze_macros_and_pseudos()
self.find_predictions()
self.map_families()
self.check_families()
def find_predictions(self) -> None:
"""Find the instructions that need PREDICTED() labels."""
for instr in self.instrs.values():
targets: set[str] = set()
for line in instr.block_text:
if m := re.match(RE_PREDICTED, line):
targets.add(m.group(1))
for target in targets:
if target_instr := self.instrs.get(target):
target_instr.predicted = True
elif target_macro := self.macro_instrs.get(target):
target_macro.predicted = True
else:
self.error(
f"Unknown instruction {target!r} predicted in {instr.name!r}",
instr.inst, # TODO: Use better location
)
def map_families(self) -> None:
"""Link instruction names back to their family, if they have one."""
for family in self.families.values():
for member in family.members:
if member_instr := self.instrs.get(member):
if member_instr.family not in (family, None):
self.error(
f"Instruction {member} is a member of multiple families "
f"({member_instr.family.name}, {family.name}).",
family,
)
else:
member_instr.family = family
elif member_macro := self.macro_instrs.get(member):
for part in member_macro.parts:
if isinstance(part, Component):
if part.instr.family not in (family, None):
self.error(
f"Component {part.instr.name} of macro {member} "
f"is a member of multiple families "
f"({part.instr.family.name}, {family.name}).",
family,
)
else:
part.instr.family = family
else:
self.error(
f"Unknown instruction {member!r} referenced in family {family.name!r}",
family,
)
def check_families(self) -> None:
"""Check each family:
- Must have at least 2 members
- All members must be known instructions
- All members must have the same cache, input and output effects
"""
for family in self.families.values():
if len(family.members) < 2:
self.error(f"Family {family.name!r} has insufficient members", family)
members = [
member
for member in family.members
if member in self.instrs or member in self.macro_instrs
]
if members != family.members:
unknown = set(family.members) - set(members)
self.error(
f"Family {family.name!r} has unknown members: {unknown}", family
)
if len(members) < 2:
continue
expected_effects = self.effect_counts(members[0])
for member in members[1:]:
member_effects = self.effect_counts(member)
if member_effects != expected_effects:
self.error(
f"Family {family.name!r} has inconsistent "
f"(cache, input, output) effects:\n"
f" {family.members[0]} = {expected_effects}; "
f"{member} = {member_effects}",
family,
)
def effect_counts(self, name: str) -> tuple[int, int, int]:
if instr := self.instrs.get(name):
cache = instr.cache_offset
input = len(instr.input_effects)
output = len(instr.output_effects)
elif mac := self.macro_instrs.get(name):
cache = mac.cache_offset
input, output = 0, 0
for part in mac.parts:
if isinstance(part, Component):
# A component may pop what the previous component pushed,
# so we offset the input/output counts by that.
delta_i = len(part.instr.input_effects)
delta_o = len(part.instr.output_effects)
offset = min(delta_i, output)
input += delta_i - offset
output += delta_o - offset
else:
assert False, f"Unknown instruction {name!r}"
return cache, input, output
def analyze_macros_and_pseudos(self) -> None:
"""Analyze each macro and pseudo instruction."""
self.macro_instrs = {}
self.pseudo_instrs = {}
for name, macro in self.macros.items():
self.macro_instrs[name] = self.analyze_macro(macro)
for name, pseudo in self.pseudos.items():
self.pseudo_instrs[name] = self.analyze_pseudo(pseudo)
def analyze_macro(self, macro: parser.Macro) -> MacroInstruction:
components = self.check_macro_components(macro)
stack, initial_sp = self.stack_analysis(components)
sp = initial_sp
parts: MacroParts = []
flags = InstructionFlags.newEmpty()
offset = 0
for component in components:
match component:
case parser.CacheEffect() as ceffect:
parts.append(ceffect)
offset += ceffect.size
case Instruction() as instr:
part, sp, offset = self.analyze_instruction(instr, stack, sp, offset)
parts.append(part)
flags.add(instr.instr_flags)
case _:
typing.assert_never(component)
final_sp = sp
format = "IB"
if offset:
format += "C" + "0"*(offset-1)
return MacroInstruction(
macro.name, stack, initial_sp, final_sp, format, flags, macro, parts, offset
)
def analyze_pseudo(self, pseudo: parser.Pseudo) -> PseudoInstruction:
targets = [self.instrs[target] for target in pseudo.targets]
assert targets
# Make sure the targets have the same fmt
fmts = list(set([t.instr_fmt for t in targets]))
assert(len(fmts) == 1)
assert(len(list(set([t.instr_flags.bitmap() for t in targets]))) == 1)
return PseudoInstruction(pseudo.name, targets, fmts[0], targets[0].instr_flags)
def analyze_instruction(
self, instr: Instruction, stack: list[StackEffect], sp: int, offset: int
) -> tuple[Component, int, int]:
input_mapping: StackEffectMapping = []
for ieffect in reversed(instr.input_effects):
sp -= 1
input_mapping.append((stack[sp], ieffect))
output_mapping: StackEffectMapping = []
for oeffect in instr.output_effects:
output_mapping.append((stack[sp], oeffect))
sp += 1
active_effects: list[ActiveCacheEffect] = []
for ceffect in instr.cache_effects:
if ceffect.name != UNUSED:
active_effects.append(ActiveCacheEffect(ceffect, offset))
offset += ceffect.size
return Component(instr, input_mapping, output_mapping, active_effects), sp, offset
def check_macro_components(
self, macro: parser.Macro
) -> list[InstructionOrCacheEffect]:
components: list[InstructionOrCacheEffect] = []
for uop in macro.uops:
match uop:
case parser.OpName(name):
if name not in self.instrs:
self.error(f"Unknown instruction {name!r}", macro)
components.append(self.instrs[name])
case parser.CacheEffect():
components.append(uop)
case _:
typing.assert_never(uop)
return components
def stack_analysis(
self, components: typing.Iterable[InstructionOrCacheEffect]
) -> tuple[list[StackEffect], int]:
"""Analyze a macro.
Ignore cache effects.
Return the list of variables (as StackEffects) and the initial stack pointer.
"""
lowest = current = highest = 0
conditions: dict[int, str] = {} # Indexed by 'current'.
last_instr: Instruction | None = None
for thing in components:
if isinstance(thing, Instruction):
last_instr = thing
for thing in components:
match thing:
case Instruction() as instr:
if any(
eff.size for eff in instr.input_effects + instr.output_effects
):
# TODO: Eventually this will be needed, at least for macros.
self.error(
f"Instruction {instr.name!r} has variable-sized stack effect, "
"which are not supported in macro instructions",
instr.inst, # TODO: Pass name+location of macro
)
if any(eff.cond for eff in instr.input_effects):
self.error(
f"Instruction {instr.name!r} has conditional input stack effect, "
"which are not supported in macro instructions",
instr.inst, # TODO: Pass name+location of macro
)
if any(eff.cond for eff in instr.output_effects) and instr is not last_instr:
self.error(
f"Instruction {instr.name!r} has conditional output stack effect, "
"but is not the last instruction in a macro",
instr.inst, # TODO: Pass name+location of macro
)
current -= len(instr.input_effects)
lowest = min(lowest, current)
for eff in instr.output_effects:
if eff.cond:
conditions[current] = eff.cond
current += 1
highest = max(highest, current)
case parser.CacheEffect():
pass
case _:
typing.assert_never(thing)
# At this point, 'current' is the net stack effect,
# and 'lowest' and 'highest' are the extremes.
# Note that 'lowest' may be negative.
stack = [
StackEffect(f"_tmp_{i}", "", conditions.get(highest - i, ""))
for i in reversed(range(1, highest - lowest + 1))
]
return stack, -lowest
def get_stack_effect_info(
self, thing: parser.InstDef | parser.Macro | parser.Pseudo
) -> tuple[AnyInstruction | None, str | None, str | None]:
def effect_str(effects: list[StackEffect]) -> str:
n_effect, sym_effect = list_effect_size(effects)
if sym_effect:
return f"{sym_effect} + {n_effect}" if n_effect else sym_effect
return str(n_effect)
instr: AnyInstruction | None
match thing:
case parser.InstDef():
if thing.kind != "op":
instr = self.instrs[thing.name]
popped = effect_str(instr.input_effects)
pushed = effect_str(instr.output_effects)
else:
instr = None
popped = ""
pushed = ""
case parser.Macro():
instr = self.macro_instrs[thing.name]
parts = [comp for comp in instr.parts if isinstance(comp, Component)]
# Note: stack_analysis() already verifies that macro components
# have no variable-sized stack effects.
low = 0
sp = 0
high = 0
pushed_symbolic: list[str] = []
for comp in parts:
for effect in comp.instr.input_effects:
assert not effect.cond, effect
assert not effect.size, effect
sp -= 1
low = min(low, sp)
for effect in comp.instr.output_effects:
assert not effect.size, effect
if effect.cond:
pushed_symbolic.append(maybe_parenthesize(f"{maybe_parenthesize(effect.cond)} ? 1 : 0"))
sp += 1
high = max(sp, high)
if high != max(0, sp):
# If you get this, intermediate stack growth occurs,
# and stack size calculations may go awry.
# E.g. [push, pop]. The fix would be for stack size
# calculations to use the micro ops.
self.error("Macro has virtual stack growth", thing)
popped = str(-low)
pushed_symbolic.append(str(sp - low - len(pushed_symbolic)))
pushed = " + ".join(pushed_symbolic)
case parser.Pseudo():
instr = self.pseudo_instrs[thing.name]
popped = pushed = None
# Calculate stack effect, and check that it's the the same
# for all targets.
for target in self.pseudos[thing.name].targets:
target_instr = self.instrs.get(target)
# Currently target is always an instr. This could change
# in the future, e.g., if we have a pseudo targetting a
# macro instruction.
assert target_instr
target_popped = effect_str(target_instr.input_effects)
target_pushed = effect_str(target_instr.output_effects)
if popped is None and pushed is None:
popped, pushed = target_popped, target_pushed
else:
assert popped == target_popped
assert pushed == target_pushed
case _:
typing.assert_never(thing)
return instr, popped, pushed
def write_stack_effect_functions(self) -> None:
popped_data: list[tuple[AnyInstruction, str]] = []
pushed_data: list[tuple[AnyInstruction, str]] = []
for thing in self.everything:
if isinstance(thing, OverriddenInstructionPlaceHolder):
continue
instr, popped, pushed = self.get_stack_effect_info(thing)
if instr is not None:
assert popped is not None and pushed is not None
popped_data.append((instr, popped))
pushed_data.append((instr, pushed))
def write_function(
direction: str, data: list[tuple[AnyInstruction, str]]
) -> None:
self.out.emit("")
self.out.emit("#ifndef NEED_OPCODE_METADATA")
self.out.emit(f"extern int _PyOpcode_num_{direction}(int opcode, int oparg, bool jump);")
self.out.emit("#else")
self.out.emit("int")
self.out.emit(f"_PyOpcode_num_{direction}(int opcode, int oparg, bool jump) {{")
self.out.emit(" switch(opcode) {")
for instr, effect in data:
self.out.emit(f" case {instr.name}:")
self.out.emit(f" return {effect};")
self.out.emit(" default:")
self.out.emit(" return -1;")
self.out.emit(" }")
self.out.emit("}")
self.out.emit("#endif")
write_function("popped", popped_data)
write_function("pushed", pushed_data)
self.out.emit("")
def from_source_files(self) -> str:
paths = f"\n{self.out.comment} ".join(
os.path.relpath(filename, ROOT).replace(os.path.sep, posixpath.sep)
for filename in self.input_filenames
)
return f"{self.out.comment} from:\n{self.out.comment} {paths}\n"
def write_provenance_header(self):
self.out.write_raw(f"{self.out.comment} This file is generated by {THIS}\n")
self.out.write_raw(self.from_source_files())
self.out.write_raw(f"{self.out.comment} Do not edit!\n")
def write_metadata(self) -> None:
"""Write instruction metadata to output file."""
# Compute the set of all instruction formats.
all_formats: set[str] = set()
for thing in self.everything:
match thing:
case OverriddenInstructionPlaceHolder():
continue
case parser.InstDef():
format = self.instrs[thing.name].instr_fmt
case parser.Macro():
format = self.macro_instrs[thing.name].instr_fmt
case parser.Pseudo():
format = None
for target in self.pseudos[thing.name].targets:
target_instr = self.instrs.get(target)
assert target_instr
if format is None:
format = target_instr.instr_fmt
else:
assert format == target_instr.instr_fmt
case _:
typing.assert_never(thing)
all_formats.add(format)
# Turn it into a list of enum definitions.
format_enums = [INSTR_FMT_PREFIX + format for format in sorted(all_formats)]
with open(self.metadata_filename, "w") as f:
# Create formatter
self.out = Formatter(f, 0)
self.write_provenance_header()
self.write_pseudo_instrs()
self.out.emit("")
self.write_uop_items(lambda name, counter: f"#define {name} {counter}")
self.write_stack_effect_functions()
# Write type definitions
self.out.emit(f"enum InstructionFormat {{ {', '.join(format_enums)} }};")
InstructionFlags.emit_macros(self.out)
with self.out.block("struct opcode_metadata", ";"):
self.out.emit("bool valid_entry;")
self.out.emit("enum InstructionFormat instr_format;")
self.out.emit("int flags;")
self.out.emit("")
with self.out.block("struct opcode_macro_expansion", ";"):
self.out.emit("int nuops;")
self.out.emit("struct { int16_t uop; int8_t size; int8_t offset; } uops[8];")
self.out.emit("")
for key, value in OPARG_SIZES.items():
self.out.emit(f"#define {key} {value}")
self.out.emit("")
self.out.emit("#define OPCODE_METADATA_FMT(OP) "
"(_PyOpcode_opcode_metadata[(OP)].instr_format)")
self.out.emit("#define SAME_OPCODE_METADATA(OP1, OP2) \\")
self.out.emit(" (OPCODE_METADATA_FMT(OP1) == OPCODE_METADATA_FMT(OP2))")
self.out.emit("")
# Write metadata array declaration
self.out.emit("#ifndef NEED_OPCODE_METADATA")
self.out.emit("extern const struct opcode_metadata _PyOpcode_opcode_metadata[512];")
self.out.emit("extern const struct opcode_macro_expansion _PyOpcode_macro_expansion[256];")
self.out.emit("extern const char * const _PyOpcode_uop_name[512];")
self.out.emit("#else // if NEED_OPCODE_METADATA")
self.out.emit("const struct opcode_metadata _PyOpcode_opcode_metadata[512] = {")
# Write metadata for each instruction
for thing in self.everything:
match thing:
case OverriddenInstructionPlaceHolder():
continue
case parser.InstDef():
if thing.kind != "op":
self.write_metadata_for_inst(self.instrs[thing.name])
case parser.Macro():
self.write_metadata_for_macro(self.macro_instrs[thing.name])
case parser.Pseudo():
self.write_metadata_for_pseudo(self.pseudo_instrs[thing.name])
case _:
typing.assert_never(thing)
# Write end of array
self.out.emit("};")
with self.out.block(
"const struct opcode_macro_expansion _PyOpcode_macro_expansion[256] =",
";",
):
# Write macro expansion for each non-pseudo instruction
for thing in self.everything:
match thing:
case OverriddenInstructionPlaceHolder():
pass
case parser.InstDef(name=name):
instr = self.instrs[name]
# Since an 'op' is not a bytecode, it has no expansion; but 'inst' is
if instr.kind == "inst" and instr.is_viable_uop():
# Construct a dummy Component -- input/output mappings are not used
part = Component(instr, [], [], instr.active_caches)
self.write_macro_expansions(instr.name, [part])
elif instr.kind == "inst" and variable_used(instr.inst, "oparg1"):
assert variable_used(instr.inst, "oparg2"), "Half super-instr?"
self.write_super_expansions(instr.name)
case parser.Macro():
mac = self.macro_instrs[thing.name]
self.write_macro_expansions(mac.name, mac.parts)
case parser.Pseudo():
pass
case _:
typing.assert_never(thing)
with self.out.block("const char * const _PyOpcode_uop_name[512] =", ";"):
self.write_uop_items(lambda name, counter: f"[{counter}] = \"{name}\",")
self.out.emit("#endif // NEED_OPCODE_METADATA")
with open(self.pymetadata_filename, "w") as f:
# Create formatter
self.out = Formatter(f, 0, comment = "#")
self.write_provenance_header()
self.out.emit("")
self.out.emit("_specializations = {")
for name, family in self.families.items():
assert len(family.members) > 1
with self.out.indent():
self.out.emit(f"\"{family.members[0]}\": [")
with self.out.indent():
for m in family.members[1:]:
self.out.emit(f"\"{m}\",")
self.out.emit(f"],")
self.out.emit("}")
# Handle special case
self.out.emit("")
self.out.emit("# An irregular case:")
self.out.emit(
"_specializations[\"BINARY_OP\"].append("
"\"BINARY_OP_INPLACE_ADD_UNICODE\")")
# Make list of specialized instructions
self.out.emit("")
self.out.emit(
"_specialized_instructions = ["
"opcode for family in _specializations.values() for opcode in family"
"]")
def write_pseudo_instrs(self) -> None:
"""Write the IS_PSEUDO_INSTR macro"""
self.out.emit("\n\n#define IS_PSEUDO_INSTR(OP) ( \\")
for op in self.pseudos:
self.out.emit(f" ((OP) == {op}) || \\")
self.out.emit(f" 0)")
def write_uop_items(self, make_text: typing.Callable[[str, int], str]) -> None:
"""Write '#define XXX NNN' for each uop"""
counter = 300 # TODO: Avoid collision with pseudo instructions
def add(name: str) -> None:
nonlocal counter
self.out.emit(make_text(name, counter))
counter += 1
add("EXIT_TRACE")
add("SAVE_IP")
add("_POP_JUMP_IF_FALSE")
add("_POP_JUMP_IF_TRUE")
add("JUMP_TO_TOP")
for instr in self.instrs.values():
if instr.kind == "op" and instr.is_viable_uop():
add(instr.name)
def write_macro_expansions(self, name: str, parts: MacroParts) -> None:
"""Write the macro expansions for a macro-instruction."""
# TODO: Refactor to share code with write_cody(), is_viaible_uop(), etc.
offset = 0 # Cache effect offset
expansions: list[tuple[str, int, int]] = [] # [(name, size, offset), ...]
for part in parts:
if isinstance(part, Component):
# All component instructions must be viable uops
if not part.instr.is_viable_uop():
print(f"NOTE: Part {part.instr.name} of {name} is not a viable uop")
return
if part.instr.instr_flags.HAS_ARG_FLAG or not part.active_caches:
size, offset = OPARG_SIZES["OPARG_FULL"], 0
else:
# If this assert triggers, is_viable_uops() lied
assert len(part.active_caches) == 1, (name, part.instr.name)
cache = part.active_caches[0]
size, offset = cache.effect.size, cache.offset
expansions.append((part.instr.name, size, offset))
assert len(expansions) > 0, f"Macro {name} has empty expansion?!"
self.write_expansions(name, expansions)
def write_super_expansions(self, name: str) -> None:
"""Write special macro expansions for super-instructions.
If you get an assertion failure here, you probably have accidentally
violated one of the assumptions here.
- A super-instruction's name is of the form FIRST_SECOND where
FIRST and SECOND are regular instructions whose name has the
form FOO_BAR. Thus, there must be exactly 3 underscores.
Example: LOAD_CONST_STORE_FAST.
- A super-instruction's body uses `oparg1 and `oparg2`, and no
other instruction's body uses those variable names.
- A super-instruction has no active (used) cache entries.
In the expansion, the first instruction's operand is all but the
bottom 4 bits of the super-instruction's oparg, and the second
instruction's operand is the bottom 4 bits. We use the special
size codes OPARG_TOP and OPARG_BOTTOM for these.
"""
pieces = name.split("_")
assert len(pieces) == 4, f"{name} doesn't look like a super-instr"
name1 = "_".join(pieces[:2])
name2 = "_".join(pieces[2:])
assert name1 in self.instrs, f"{name1} doesn't match any instr"
assert name2 in self.instrs, f"{name2} doesn't match any instr"
instr1 = self.instrs[name1]
instr2 = self.instrs[name2]
assert not instr1.active_caches, f"{name1} has active caches"
assert not instr2.active_caches, f"{name2} has active caches"
expansions = [
(name1, OPARG_SIZES["OPARG_TOP"], 0),
(name2, OPARG_SIZES["OPARG_BOTTOM"], 0),
]
self.write_expansions(name, expansions)
def write_expansions(self, name: str, expansions: list[tuple[str, int, int]]) -> None:
pieces = [f"{{ {name}, {size}, {offset} }}" for name, size, offset in expansions]
self.out.emit(
f"[{name}] = "
f"{{ .nuops = {len(pieces)}, .uops = {{ {', '.join(pieces)} }} }},"
)
def emit_metadata_entry(
self, name: str, fmt: str, flags: InstructionFlags
) -> None:
flag_names = flags.names(value=True)
if not flag_names:
flag_names.append("0")
self.out.emit(
f" [{name}] = {{ true, {INSTR_FMT_PREFIX}{fmt},"
f" {' | '.join(flag_names)} }},"
)
def write_metadata_for_inst(self, instr: Instruction) -> None:
"""Write metadata for a single instruction."""
self.emit_metadata_entry(instr.name, instr.instr_fmt, instr.instr_flags)
def write_metadata_for_macro(self, mac: MacroInstruction) -> None:
"""Write metadata for a macro-instruction."""
self.emit_metadata_entry(mac.name, mac.instr_fmt, mac.instr_flags)
def write_metadata_for_pseudo(self, ps: PseudoInstruction) -> None:
"""Write metadata for a macro-instruction."""
self.emit_metadata_entry(ps.name, ps.instr_fmt, ps.instr_flags)
def write_instructions(self) -> None:
"""Write instructions to output file."""
with open(self.output_filename, "w") as f:
# Create formatter
self.out = Formatter(f, 8, self.emit_line_directives)
self.write_provenance_header()
# Write and count instructions of all kinds
n_instrs = 0
n_macros = 0
n_pseudos = 0
for thing in self.everything:
match thing:
case OverriddenInstructionPlaceHolder():
self.write_overridden_instr_place_holder(thing)
case parser.InstDef():
if thing.kind != "op":
n_instrs += 1
self.write_instr(self.instrs[thing.name])
case parser.Macro():
n_macros += 1
self.write_macro(self.macro_instrs[thing.name])
case parser.Pseudo():
n_pseudos += 1
case _:
typing.assert_never(thing)
print(
f"Wrote {n_instrs} instructions, {n_macros} macros, "
f"and {n_pseudos} pseudos to {self.output_filename}",
file=sys.stderr,
)
def write_executor_instructions(self) -> None:
"""Generate cases for the Tier 2 interpreter."""
with open(self.executor_filename, "w") as f:
self.out = Formatter(f, 8, self.emit_line_directives)
self.write_provenance_header()
for thing in self.everything:
match thing:
case OverriddenInstructionPlaceHolder():
# TODO: Is this helpful?
self.write_overridden_instr_place_holder(thing)
case parser.InstDef():
instr = self.instrs[thing.name]
if instr.is_viable_uop():
self.out.emit("")
with self.out.block(f"case {thing.name}:"):
instr.write(self.out, tier=TIER_TWO)
self.out.emit("break;")
case parser.Macro():
pass
case parser.Pseudo():
pass
case _:
typing.assert_never(thing)
print(
f"Wrote some stuff to {self.executor_filename}",
file=sys.stderr,
)
def write_overridden_instr_place_holder(self,
place_holder: OverriddenInstructionPlaceHolder) -> None:
self.out.emit("")
self.out.emit(
f"{self.out.comment} TARGET({place_holder.name}) overridden by later definition")
def write_instr(self, instr: Instruction) -> None:
name = instr.name
self.out.emit("")
if instr.inst.override:
self.out.emit("{self.out.comment} Override")
with self.out.block(f"TARGET({name})"):
if instr.predicted:
self.out.emit(f"PREDICTED({name});")
instr.write(self.out)
if not instr.always_exits:
if instr.check_eval_breaker:
self.out.emit("CHECK_EVAL_BREAKER();")
self.out.emit(f"DISPATCH();")
def write_macro(self, mac: MacroInstruction) -> None:
"""Write code for a macro instruction."""
last_instr: Instruction | None = None
with self.wrap_macro(mac):
cache_adjust = 0
for part in mac.parts:
match part:
case parser.CacheEffect(size=size):
cache_adjust += size
case Component() as comp:
last_instr = comp.instr
comp.write_body(self.out)
cache_adjust += comp.instr.cache_offset
if cache_adjust:
self.out.emit(f"next_instr += {cache_adjust};")
if (
last_instr
and (family := last_instr.family)
and mac.name == family.members[0]
and (cache_size := family.size)
):
self.out.emit(
f"static_assert({cache_size} == "
f'{cache_adjust}, "incorrect cache size");'
)
@contextlib.contextmanager
def wrap_macro(self, mac: MacroInstruction):
"""Boilerplate for macro instructions."""
# TODO: Somewhere (where?) make it so that if one instruction
# has an output that is input to another, and the variable names
# and types match and don't conflict with other instructions,
# that variable is declared with the right name and type in the
# outer block, rather than trusting the compiler to optimize it.
self.out.emit("")
with self.out.block(f"TARGET({mac.name})"):
if mac.predicted:
self.out.emit(f"PREDICTED({mac.name});")
# The input effects should have no conditionals.
# Only the output effects do (for now).
ieffects = [
StackEffect(eff.name, eff.type) if eff.cond else eff
for eff in mac.stack
]
for i, var in reversed(list(enumerate(ieffects))):
src = None
if i < mac.initial_sp:
src = StackEffect(f"stack_pointer[-{mac.initial_sp - i}]", "")
self.out.declare(var, src)
yield
self.out.stack_adjust(ieffects[:mac.initial_sp], mac.stack[:mac.final_sp])
for i, var in enumerate(reversed(mac.stack[: mac.final_sp]), 1):
dst = StackEffect(f"stack_pointer[-{i}]", "")
self.out.assign(dst, var)
self.out.emit(f"DISPATCH();")
def extract_block_text(block: parser.Block) -> tuple[list[str], bool, int]:
# Get lines of text with proper dedent
blocklines = block.text.splitlines(True)
first_token: lx.Token = block.tokens[0] # IndexError means the context is broken
block_line = first_token.begin[0]
# Remove blank lines from both ends
while blocklines and not blocklines[0].strip():
blocklines.pop(0)
block_line += 1
while blocklines and not blocklines[-1].strip():
blocklines.pop()
# Remove leading and trailing braces
assert blocklines and blocklines[0].strip() == "{"
assert blocklines and blocklines[-1].strip() == "}"
blocklines.pop()
blocklines.pop(0)
block_line += 1
# Remove trailing blank lines
while blocklines and not blocklines[-1].strip():
blocklines.pop()
# Separate CHECK_EVAL_BREAKER() macro from end
check_eval_breaker = \
blocklines != [] and blocklines[-1].strip() == "CHECK_EVAL_BREAKER();"
if check_eval_breaker:
del blocklines[-1]
return blocklines, check_eval_breaker, block_line
def always_exits(lines: list[str]) -> bool:
"""Determine whether a block always ends in a return/goto/etc."""
if not lines:
return False
line = lines[-1].rstrip()
# Indent must match exactly (TODO: Do something better)
if line[:12] != " " * 12:
return False
line = line[12:]
return line.startswith(
(
"goto ",
"return ",
"DISPATCH",
"GO_TO_",
"Py_UNREACHABLE()",
"ERROR_IF(true, ",
)
)
def variable_used(node: parser.Node, name: str) -> bool:
"""Determine whether a variable with a given name is used in a node."""
return any(
token.kind == "IDENTIFIER" and token.text == name for token in node.tokens
)
def variable_used_unspecialized(node: parser.Node, name: str) -> bool:
"""Like variable_used(), but skips #if ENABLE_SPECIALIZATION blocks."""
tokens: list[lx.Token] = []
skipping = False
for i, token in enumerate(node.tokens):
if token.kind == "MACRO":
text = "".join(token.text.split())
# TODO: Handle nested #if
if text == "#if":
if (
i + 1 < len(node.tokens)
and node.tokens[i + 1].text == "ENABLE_SPECIALIZATION"
):
skipping = True
elif text in ("#else", "#endif"):
skipping = False
if not skipping:
tokens.append(token)
return any(token.kind == "IDENTIFIER" and token.text == name for token in tokens)
def main():
"""Parse command line, parse input, analyze, write output."""
args = arg_parser.parse_args() # Prints message and sys.exit(2) on error
if len(args.input) == 0:
args.input.append(DEFAULT_INPUT)
# Raises OSError if input unreadable
a = Analyzer(args.input, args.output, args.metadata, args.pymetadata, args.executor_cases)
if args.emit_line_directives:
a.emit_line_directives = True
a.parse() # Raises SyntaxError on failure
a.analyze() # Prints messages and sets a.errors on failure
if a.errors:
sys.exit(f"Found {a.errors} errors")
a.write_instructions() # Raises OSError if output can't be written
a.write_metadata()
a.write_executor_instructions()
if __name__ == "__main__":
main()