ardupilot/ArduCopter/GCS_Mavlink.cpp

1346 lines
44 KiB
C++

#include "Copter.h"
#include "GCS_Mavlink.h"
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
MAV_TYPE GCS_Copter::frame_type() const
{
return copter.get_frame_mav_type();
}
MAV_MODE GCS_MAVLINK_Copter::base_mode() const
{
uint8_t _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (copter.control_mode) {
case AUTO:
case RTL:
case LOITER:
case AVOID_ADSB:
case FOLLOW:
case GUIDED:
case CIRCLE:
case POSHOLD:
case BRAKE:
case SMART_RTL:
_base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
default:
break;
}
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
#if HIL_MODE != HIL_MODE_DISABLED
_base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
// we are armed if we are not initialising
if (copter.motors != nullptr && copter.motors->armed()) {
_base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
_base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
return (MAV_MODE)_base_mode;
}
uint32_t GCS_Copter::custom_mode() const
{
return copter.control_mode;
}
MAV_STATE GCS_MAVLINK_Copter::system_status() const
{
// set system as critical if any failsafe have triggered
if (copter.any_failsafe_triggered()) {
return MAV_STATE_CRITICAL;
}
if (copter.ap.land_complete) {
return MAV_STATE_STANDBY;
}
return MAV_STATE_ACTIVE;
}
void GCS_MAVLINK_Copter::send_position_target_global_int()
{
Location target;
if (!copter.flightmode->get_wp(target)) {
return;
}
mavlink_msg_position_target_global_int_send(
chan,
AP_HAL::millis(), // time_boot_ms
MAV_FRAME_GLOBAL, // targets are always global altitude
0xFFF8, // ignore everything except the x/y/z components
target.lat, // latitude as 1e7
target.lng, // longitude as 1e7
target.alt * 0.01f, // altitude is sent as a float
0.0f, // vx
0.0f, // vy
0.0f, // vz
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
void GCS_MAVLINK_Copter::send_position_target_local_ned()
{
if (!copter.flightmode->in_guided_mode()) {
return;
}
const GuidedMode guided_mode = copter.mode_guided.mode();
Vector3f target_pos;
Vector3f target_vel;
uint16_t type_mask;
if (guided_mode == Guided_WP) {
type_mask = 0x0FF8; // ignore everything except position
target_pos = copter.wp_nav->get_wp_destination() * 0.01f; // convert to metres
} else if (guided_mode == Guided_Velocity) {
type_mask = 0x0FC7; // ignore everything except velocity
target_vel = copter.flightmode->get_desired_velocity() * 0.01f; // convert to m/s
} else {
type_mask = 0x0FC0; // ignore everything except position & velocity
target_pos = copter.wp_nav->get_wp_destination() * 0.01f;
target_vel = copter.flightmode->get_desired_velocity() * 0.01f;
}
mavlink_msg_position_target_local_ned_send(
chan,
AP_HAL::millis(), // time boot ms
MAV_FRAME_LOCAL_NED,
type_mask,
target_pos.x, // x in metres
target_pos.y, // y in metres
-target_pos.z, // z in metres NED frame
target_vel.x, // vx in m/s
target_vel.y, // vy in m/s
-target_vel.z, // vz in m/s NED frame
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
void GCS_MAVLINK_Copter::send_nav_controller_output() const
{
if (!copter.ap.initialised) {
return;
}
const Vector3f &targets = copter.attitude_control->get_att_target_euler_cd();
const Mode *flightmode = copter.flightmode;
mavlink_msg_nav_controller_output_send(
chan,
targets.x * 1.0e-2f,
targets.y * 1.0e-2f,
targets.z * 1.0e-2f,
flightmode->wp_bearing() * 1.0e-2f,
MIN(flightmode->wp_distance() * 1.0e-2f, UINT16_MAX),
copter.pos_control->get_alt_error() * 1.0e-2f,
0,
flightmode->crosstrack_error() * 1.0e-2f);
}
int16_t GCS_MAVLINK_Copter::vfr_hud_throttle() const
{
if (copter.motors == nullptr) {
return 0;
}
return (int16_t)(copter.motors->get_throttle() * 100);
}
/*
send PID tuning message
*/
void GCS_MAVLINK_Copter::send_pid_tuning()
{
const Vector3f &gyro = AP::ahrs().get_gyro();
static const PID_TUNING_AXIS axes[] = {
PID_TUNING_ROLL,
PID_TUNING_PITCH,
PID_TUNING_YAW,
PID_TUNING_ACCZ
};
for (uint8_t i=0; i<ARRAY_SIZE(axes); i++) {
if (!(copter.g.gcs_pid_mask & (1<<(axes[i]-1)))) {
continue;
}
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
const AP_Logger::PID_Info *pid_info = nullptr;
float achieved;
switch (axes[i]) {
case PID_TUNING_ROLL:
pid_info = &copter.attitude_control->get_rate_roll_pid().get_pid_info();
achieved = degrees(gyro.x);
break;
case PID_TUNING_PITCH:
pid_info = &copter.attitude_control->get_rate_pitch_pid().get_pid_info();
achieved = degrees(gyro.y);
break;
case PID_TUNING_YAW:
pid_info = &copter.attitude_control->get_rate_yaw_pid().get_pid_info();
achieved = degrees(gyro.z);
break;
case PID_TUNING_ACCZ:
pid_info = &copter.pos_control->get_accel_z_pid().get_pid_info();
achieved = -(AP::ahrs().get_accel_ef_blended().z + GRAVITY_MSS);
break;
default:
continue;
}
if (pid_info != nullptr) {
mavlink_msg_pid_tuning_send(chan,
axes[i],
pid_info->target*0.01f,
achieved,
pid_info->FF*0.01f,
pid_info->P*0.01f,
pid_info->I*0.01f,
pid_info->D*0.01f);
}
}
}
uint8_t GCS_MAVLINK_Copter::sysid_my_gcs() const
{
return copter.g.sysid_my_gcs;
}
bool GCS_MAVLINK_Copter::sysid_enforce() const
{
return copter.g2.sysid_enforce;
}
uint32_t GCS_MAVLINK_Copter::telem_delay() const
{
return (uint32_t)(copter.g.telem_delay);
}
bool GCS_Copter::vehicle_initialised() const {
return copter.ap.initialised;
}
// try to send a message, return false if it wasn't sent
bool GCS_MAVLINK_Copter::try_send_message(enum ap_message id)
{
switch(id) {
case MSG_TERRAIN:
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
copter.terrain.send_request(chan);
#endif
break;
case MSG_WIND:
case MSG_SERVO_OUT:
case MSG_AOA_SSA:
case MSG_LANDING:
// unused
break;
case MSG_ADSB_VEHICLE:
#if ADSB_ENABLED == ENABLED
CHECK_PAYLOAD_SIZE(ADSB_VEHICLE);
copter.adsb.send_adsb_vehicle(chan);
#endif
break;
default:
return GCS_MAVLINK::try_send_message(id);
}
return true;
}
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 and SENSOR_OFFSETS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 0),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Stream rate of SYS_STATUS, POWER_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, and FENCE_STATUS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 0),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 0),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Stream rate of RC_CHANNELS_SCALED (HIL only) to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 0),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 0),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Stream rate of ATTITUDE, SIMSTATE (SITL only), AHRS2 and PID_TUNING to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 0),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Stream rate of VFR_HUD to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 0),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Stream rate of AHRS, HWSTATUS, SYSTEM_TIME, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, BATTERY2, MOUNT_STATUS, OPTICAL_FLOW, GIMBAL_REPORT, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION and RPM to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 0),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Stream rate of PARAM_VALUE to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 0),
// @Param: ADSB
// @DisplayName: ADSB stream rate to ground station
// @Description: ADSB stream rate to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("ADSB", 9, GCS_MAVLINK, streamRates[9], 0),
AP_GROUPEND
};
static const ap_message STREAM_RAW_SENSORS_msgs[] = {
MSG_RAW_IMU,
MSG_SCALED_IMU2,
MSG_SCALED_IMU3,
MSG_SCALED_PRESSURE,
MSG_SCALED_PRESSURE2,
MSG_SCALED_PRESSURE3,
MSG_SENSOR_OFFSETS
};
static const ap_message STREAM_EXTENDED_STATUS_msgs[] = {
MSG_SYS_STATUS,
MSG_POWER_STATUS,
MSG_MEMINFO,
MSG_CURRENT_WAYPOINT, // MISSION_CURRENT
MSG_GPS_RAW,
MSG_GPS_RTK,
MSG_GPS2_RAW,
MSG_GPS2_RTK,
MSG_NAV_CONTROLLER_OUTPUT,
MSG_FENCE_STATUS,
MSG_POSITION_TARGET_GLOBAL_INT,
};
static const ap_message STREAM_POSITION_msgs[] = {
MSG_LOCATION,
MSG_LOCAL_POSITION
};
static const ap_message STREAM_RC_CHANNELS_msgs[] = {
MSG_SERVO_OUTPUT_RAW,
MSG_RC_CHANNELS,
MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection
};
static const ap_message STREAM_EXTRA1_msgs[] = {
MSG_ATTITUDE,
MSG_SIMSTATE,
MSG_AHRS2,
MSG_AHRS3,
MSG_PID_TUNING // Up to four PID_TUNING messages are sent, depending on GCS_PID_MASK parameter
};
static const ap_message STREAM_EXTRA2_msgs[] = {
MSG_VFR_HUD
};
static const ap_message STREAM_EXTRA3_msgs[] = {
MSG_AHRS,
MSG_HWSTATUS,
MSG_SYSTEM_TIME,
MSG_RANGEFINDER,
MSG_DISTANCE_SENSOR,
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
MSG_TERRAIN,
#endif
MSG_BATTERY2,
MSG_BATTERY_STATUS,
MSG_MOUNT_STATUS,
MSG_OPTICAL_FLOW,
MSG_GIMBAL_REPORT,
MSG_MAG_CAL_REPORT,
MSG_MAG_CAL_PROGRESS,
MSG_EKF_STATUS_REPORT,
MSG_VIBRATION,
MSG_RPM,
MSG_ESC_TELEMETRY,
};
static const ap_message STREAM_PARAMS_msgs[] = {
MSG_NEXT_PARAM
};
static const ap_message STREAM_ADSB_msgs[] = {
MSG_ADSB_VEHICLE
};
const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = {
MAV_STREAM_ENTRY(STREAM_RAW_SENSORS),
MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS),
MAV_STREAM_ENTRY(STREAM_POSITION),
MAV_STREAM_ENTRY(STREAM_RC_CHANNELS),
MAV_STREAM_ENTRY(STREAM_EXTRA1),
MAV_STREAM_ENTRY(STREAM_EXTRA2),
MAV_STREAM_ENTRY(STREAM_EXTRA3),
MAV_STREAM_ENTRY(STREAM_ADSB),
MAV_STREAM_ENTRY(STREAM_PARAMS),
MAV_STREAM_TERMINATOR // must have this at end of stream_entries
};
bool GCS_MAVLINK_Copter::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
#if MODE_AUTO_ENABLED == ENABLED
return copter.mode_auto.do_guided(cmd);
#else
return false;
#endif
}
void GCS_MAVLINK_Copter::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
{
// add home alt if needed
if (cmd.content.location.relative_alt) {
cmd.content.location.alt += copter.ahrs.get_home().alt;
}
// To-Do: update target altitude for loiter or waypoint controller depending upon nav mode
}
void GCS_MAVLINK_Copter::packetReceived(const mavlink_status_t &status,
const mavlink_message_t &msg)
{
#if ADSB_ENABLED == ENABLED
if (copter.g2.dev_options.get() & DevOptionADSBMAVLink) {
// optional handling of GLOBAL_POSITION_INT as a MAVLink based avoidance source
copter.avoidance_adsb.handle_msg(msg);
}
#endif
#if MODE_FOLLOW_ENABLED == ENABLED
// pass message to follow library
copter.g2.follow.handle_msg(msg);
#endif
GCS_MAVLINK::packetReceived(status, msg);
}
bool GCS_MAVLINK_Copter::params_ready() const
{
if (AP_BoardConfig::in_sensor_config_error()) {
// we may never have parameters "initialised" in this case
return true;
}
// if we have not yet initialised (including allocating the motors
// object) we drop this request. That prevents the GCS from getting
// a confusing parameter count during bootup
return copter.ap.initialised_params;
}
void GCS_MAVLINK_Copter::send_banner()
{
GCS_MAVLINK::send_banner();
send_text(MAV_SEVERITY_INFO, "Frame: %s", copter.get_frame_string());
}
// a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes
void GCS_MAVLINK_Copter::handle_rc_channels_override(const mavlink_message_t &msg)
{
copter.failsafe.last_heartbeat_ms = AP_HAL::millis();
GCS_MAVLINK::handle_rc_channels_override(msg);
}
void GCS_MAVLINK_Copter::handle_command_ack(const mavlink_message_t &msg)
{
copter.command_ack_counter++;
GCS_MAVLINK::handle_command_ack(msg);
}
MAV_RESULT GCS_MAVLINK_Copter::_handle_command_preflight_calibration(const mavlink_command_long_t &packet)
{
if (is_equal(packet.param6,1.0f)) {
// compassmot calibration
return copter.mavlink_compassmot(*this);
}
return GCS_MAVLINK::_handle_command_preflight_calibration(packet);
}
MAV_RESULT GCS_MAVLINK_Copter::handle_command_do_set_roi(const Location &roi_loc)
{
if (!roi_loc.check_latlng()) {
return MAV_RESULT_FAILED;
}
copter.flightmode->auto_yaw.set_roi(roi_loc);
return MAV_RESULT_ACCEPTED;
}
bool GCS_MAVLINK_Copter::set_home_to_current_location(bool lock) {
return copter.set_home_to_current_location(lock);
}
bool GCS_MAVLINK_Copter::set_home(const Location& loc, bool lock) {
return copter.set_home(loc, lock);
}
MAV_RESULT GCS_MAVLINK_Copter::handle_command_int_packet(const mavlink_command_int_t &packet)
{
switch(packet.command) {
case MAV_CMD_DO_FOLLOW:
#if MODE_FOLLOW_ENABLED == ENABLED
// param1: sysid of target to follow
if ((packet.param1 > 0) && (packet.param1 <= 255)) {
copter.g2.follow.set_target_sysid((uint8_t)packet.param1);
return MAV_RESULT_ACCEPTED;
}
#endif
return MAV_RESULT_UNSUPPORTED;
default:
return GCS_MAVLINK::handle_command_int_packet(packet);
}
}
MAV_RESULT GCS_MAVLINK_Copter::handle_command_mount(const mavlink_command_long_t &packet)
{
// if the mount doesn't do pan control then yaw the entire vehicle instead:
switch (packet.command) {
#if MOUNT == ENABLED
case MAV_CMD_DO_MOUNT_CONTROL:
if(!copter.camera_mount.has_pan_control()) {
copter.flightmode->auto_yaw.set_fixed_yaw(
(float)packet.param3 * 0.01f,
0.0f,
0,0);
}
break;
#endif
default:
break;
}
return GCS_MAVLINK::handle_command_mount(packet);
}
bool GCS_MAVLINK_Copter::allow_disarm() const
{
return copter.ap.land_complete;
}
MAV_RESULT GCS_MAVLINK_Copter::handle_command_long_packet(const mavlink_command_long_t &packet)
{
switch(packet.command) {
case MAV_CMD_NAV_TAKEOFF: {
// param3 : horizontal navigation by pilot acceptable
// param4 : yaw angle (not supported)
// param5 : latitude (not supported)
// param6 : longitude (not supported)
// param7 : altitude [metres]
float takeoff_alt = packet.param7 * 100; // Convert m to cm
if (!copter.flightmode->do_user_takeoff(takeoff_alt, is_zero(packet.param3))) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
case MAV_CMD_NAV_LOITER_UNLIM:
if (!copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
if (!copter.set_mode(RTL, MODE_REASON_GCS_COMMAND)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_LAND:
if (!copter.set_mode(LAND, MODE_REASON_GCS_COMMAND)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
#if MODE_FOLLOW_ENABLED == ENABLED
case MAV_CMD_DO_FOLLOW:
// param1: sysid of target to follow
if ((packet.param1 > 0) && (packet.param1 <= 255)) {
copter.g2.follow.set_target_sysid((uint8_t)packet.param1);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
#endif
case MAV_CMD_CONDITION_YAW:
// param1 : target angle [0-360]
// param2 : speed during change [deg per second]
// param3 : direction (-1:ccw, +1:cw)
// param4 : relative offset (1) or absolute angle (0)
if ((packet.param1 >= 0.0f) &&
(packet.param1 <= 360.0f) &&
(is_zero(packet.param4) || is_equal(packet.param4,1.0f))) {
copter.flightmode->auto_yaw.set_fixed_yaw(
packet.param1,
packet.param2,
(int8_t)packet.param3,
is_positive(packet.param4));
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_CHANGE_SPEED:
// param1 : unused
// param2 : new speed in m/s
// param3 : unused
// param4 : unused
if (packet.param2 > 0.0f) {
if (packet.param1 > 2.9f) { // 3 = speed down
copter.wp_nav->set_speed_down(packet.param2 * 100.0f);
} else if (packet.param1 > 1.9f) { // 2 = speed up
copter.wp_nav->set_speed_up(packet.param2 * 100.0f);
} else {
copter.wp_nav->set_speed_xy(packet.param2 * 100.0f);
}
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
#if MODE_AUTO_ENABLED == ENABLED
case MAV_CMD_MISSION_START:
if (copter.motors->armed() && copter.set_mode(AUTO, MODE_REASON_GCS_COMMAND)) {
copter.set_auto_armed(true);
if (copter.mode_auto.mission.state() != AP_Mission::MISSION_RUNNING) {
copter.mode_auto.mission.start_or_resume();
}
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
#endif
#if PARACHUTE == ENABLED
case MAV_CMD_DO_PARACHUTE:
// configure or release parachute
switch ((uint16_t)packet.param1) {
case PARACHUTE_DISABLE:
copter.parachute.enabled(false);
copter.Log_Write_Event(DATA_PARACHUTE_DISABLED);
return MAV_RESULT_ACCEPTED;
case PARACHUTE_ENABLE:
copter.parachute.enabled(true);
copter.Log_Write_Event(DATA_PARACHUTE_ENABLED);
return MAV_RESULT_ACCEPTED;
case PARACHUTE_RELEASE:
// treat as a manual release which performs some additional check of altitude
copter.parachute_manual_release();
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
#endif
case MAV_CMD_DO_MOTOR_TEST:
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
// param5 : num_motors (in sequence)
// param6 : compass learning (0: disabled, 1: enabled)
return copter.mavlink_motor_test_start(*this,
(uint8_t)packet.param1,
(uint8_t)packet.param2,
(uint16_t)packet.param3,
packet.param4,
(uint8_t)packet.param5);
#if WINCH_ENABLED == ENABLED
case MAV_CMD_DO_WINCH:
// param1 : winch number (ignored)
// param2 : action (0=relax, 1=relative length control, 2=rate control). See WINCH_ACTIONS enum.
if (!copter.g2.winch.enabled()) {
return MAV_RESULT_FAILED;
}
switch ((uint8_t)packet.param2) {
case WINCH_RELAXED:
copter.g2.winch.relax();
copter.Log_Write_Event(DATA_WINCH_RELAXED);
return MAV_RESULT_ACCEPTED;
case WINCH_RELATIVE_LENGTH_CONTROL: {
copter.g2.winch.release_length(packet.param3, fabsf(packet.param4));
copter.Log_Write_Event(DATA_WINCH_LENGTH_CONTROL);
return MAV_RESULT_ACCEPTED;
}
case WINCH_RATE_CONTROL:
if (fabsf(packet.param4) <= copter.g2.winch.get_rate_max()) {
copter.g2.winch.set_desired_rate(packet.param4);
copter.Log_Write_Event(DATA_WINCH_RATE_CONTROL);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
default:
break;
}
return MAV_RESULT_FAILED;
#endif
case MAV_CMD_AIRFRAME_CONFIGURATION: {
// Param 1: Select which gear, not used in ArduPilot
// Param 2: 0 = Deploy, 1 = Retract
// For safety, anything other than 1 will deploy
switch ((uint8_t)packet.param2) {
case 1:
copter.landinggear.set_position(AP_LandingGear::LandingGear_Retract);
return MAV_RESULT_ACCEPTED;
default:
copter.landinggear.set_position(AP_LandingGear::LandingGear_Deploy);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
/* Solo user presses Fly button */
case MAV_CMD_SOLO_BTN_FLY_CLICK: {
if (copter.failsafe.radio) {
return MAV_RESULT_ACCEPTED;
}
// set mode to Loiter or fall back to AltHold
if (!copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) {
copter.set_mode(ALT_HOLD, MODE_REASON_GCS_COMMAND);
}
return MAV_RESULT_ACCEPTED;
}
/* Solo user holds down Fly button for a couple of seconds */
case MAV_CMD_SOLO_BTN_FLY_HOLD: {
if (copter.failsafe.radio) {
return MAV_RESULT_ACCEPTED;
}
if (!copter.motors->armed()) {
// if disarmed, arm motors
copter.arming.arm(AP_Arming::Method::MAVLINK);
} else if (copter.ap.land_complete) {
// if armed and landed, takeoff
if (copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) {
copter.flightmode->do_user_takeoff(packet.param1*100, true);
}
} else {
// if flying, land
copter.set_mode(LAND, MODE_REASON_GCS_COMMAND);
}
return MAV_RESULT_ACCEPTED;
}
/* Solo user presses pause button */
case MAV_CMD_SOLO_BTN_PAUSE_CLICK: {
if (copter.failsafe.radio) {
return MAV_RESULT_ACCEPTED;
}
if (copter.motors->armed()) {
if (copter.ap.land_complete) {
// if landed, disarm motors
copter.arming.disarm();
} else {
// assume that shots modes are all done in guided.
// NOTE: this may need to change if we add a non-guided shot mode
bool shot_mode = (!is_zero(packet.param1) && (copter.control_mode == GUIDED || copter.control_mode == GUIDED_NOGPS));
if (!shot_mode) {
#if MODE_BRAKE_ENABLED == ENABLED
if (copter.set_mode(BRAKE, MODE_REASON_GCS_COMMAND)) {
copter.mode_brake.timeout_to_loiter_ms(2500);
} else {
copter.set_mode(ALT_HOLD, MODE_REASON_GCS_COMMAND);
}
#else
copter.set_mode(ALT_HOLD, MODE_REASON_GCS_COMMAND);
#endif
} else {
// SoloLink is expected to handle pause in shots
}
}
}
return MAV_RESULT_ACCEPTED;
}
default:
return GCS_MAVLINK::handle_command_long_packet(packet);
}
}
void GCS_MAVLINK_Copter::handle_mount_message(const mavlink_message_t &msg)
{
switch (msg.msgid) {
#if MOUNT == ENABLED
case MAVLINK_MSG_ID_MOUNT_CONTROL:
if(!copter.camera_mount.has_pan_control()) {
// if the mount doesn't do pan control then yaw the entire vehicle instead:
copter.flightmode->auto_yaw.set_fixed_yaw(
mavlink_msg_mount_control_get_input_c(&msg) * 0.01f,
0.0f,
0,
0);
break;
}
#endif
}
GCS_MAVLINK::handle_mount_message(msg);
}
void GCS_MAVLINK_Copter::handleMessage(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_HEARTBEAT: // MAV ID: 0
{
// We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
if(msg.sysid != copter.g.sysid_my_gcs) break;
copter.failsafe.last_heartbeat_ms = AP_HAL::millis();
break;
}
case MAVLINK_MSG_ID_MANUAL_CONTROL:
{
if (msg.sysid != copter.g.sysid_my_gcs) {
break; // only accept control from our gcs
}
mavlink_manual_control_t packet;
mavlink_msg_manual_control_decode(&msg, &packet);
if (packet.target != copter.g.sysid_this_mav) {
break; // only accept control aimed at us
}
if (packet.z < 0) { // Copter doesn't do negative thrust
break;
}
uint32_t tnow = AP_HAL::millis();
manual_override(copter.channel_roll, packet.y, 1000, 2000, tnow);
manual_override(copter.channel_pitch, packet.x, 1000, 2000, tnow, true);
manual_override(copter.channel_throttle, packet.z, 0, 1000, tnow);
manual_override(copter.channel_yaw, packet.r, 1000, 2000, tnow);
// a manual control message is considered to be a 'heartbeat' from the ground station for failsafe purposes
copter.failsafe.last_heartbeat_ms = tnow;
break;
}
#if MODE_GUIDED_ENABLED == ENABLED
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: // MAV ID: 82
{
// decode packet
mavlink_set_attitude_target_t packet;
mavlink_msg_set_attitude_target_decode(&msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if (!copter.flightmode->in_guided_mode()) {
break;
}
// ensure type_mask specifies to use attitude and thrust
if ((packet.type_mask & ((1<<7)|(1<<6))) != 0) {
break;
}
// convert thrust to climb rate
packet.thrust = constrain_float(packet.thrust, 0.0f, 1.0f);
float climb_rate_cms = 0.0f;
if (is_equal(packet.thrust, 0.5f)) {
climb_rate_cms = 0.0f;
} else if (packet.thrust > 0.5f) {
// climb at up to WPNAV_SPEED_UP
climb_rate_cms = (packet.thrust - 0.5f) * 2.0f * copter.wp_nav->get_default_speed_up();
} else {
// descend at up to WPNAV_SPEED_DN
climb_rate_cms = (0.5f - packet.thrust) * 2.0f * -fabsf(copter.wp_nav->get_default_speed_down());
}
// if the body_yaw_rate field is ignored, use the commanded yaw position
// otherwise use the commanded yaw rate
bool use_yaw_rate = false;
if ((packet.type_mask & (1<<2)) == 0) {
use_yaw_rate = true;
}
copter.mode_guided.set_angle(Quaternion(packet.q[0],packet.q[1],packet.q[2],packet.q[3]),
climb_rate_cms, use_yaw_rate, packet.body_yaw_rate);
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84
{
// decode packet
mavlink_set_position_target_local_ned_t packet;
mavlink_msg_set_position_target_local_ned_decode(&msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if (!copter.flightmode->in_guided_mode()) {
break;
}
// check for supported coordinate frames
if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED &&
packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) {
break;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
/*
* for future use:
* bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE;
*/
// prepare position
Vector3f pos_vector;
if (!pos_ignore) {
// convert to cm
pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f);
// rotate to body-frame if necessary
if (packet.coordinate_frame == MAV_FRAME_BODY_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
copter.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y);
}
// add body offset if necessary
if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
pos_vector += copter.inertial_nav.get_position();
} else {
// convert from alt-above-home to alt-above-ekf-origin
if (!AP::ahrs().home_is_set()) {
break;
}
Location origin;
pos_vector.z += AP::ahrs().get_home().alt;
if (copter.ahrs.get_origin(origin)) {
pos_vector.z -= origin.alt;
}
}
}
// prepare velocity
Vector3f vel_vector;
if (!vel_ignore) {
// convert to cm
vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f);
// rotate to body-frame if necessary
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
copter.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y);
}
}
// prepare yaw
float yaw_cd = 0.0f;
bool yaw_relative = false;
float yaw_rate_cds = 0.0f;
if (!yaw_ignore) {
yaw_cd = ToDeg(packet.yaw) * 100.0f;
yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED;
}
if (!yaw_rate_ignore) {
yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
}
// send request
if (!pos_ignore && !vel_ignore && acc_ignore) {
copter.mode_guided.set_destination_posvel(pos_vector, vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
} else if (pos_ignore && !vel_ignore && acc_ignore) {
copter.mode_guided.set_velocity(vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
} else if (!pos_ignore && vel_ignore && acc_ignore) {
copter.mode_guided.set_destination(pos_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
}
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86
{
// decode packet
mavlink_set_position_target_global_int_t packet;
mavlink_msg_set_position_target_global_int_decode(&msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if (!copter.flightmode->in_guided_mode()) {
break;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
/*
* for future use:
* bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE;
*/
Vector3f pos_neu_cm; // position (North, East, Up coordinates) in centimeters
if(!pos_ignore) {
// sanity check location
if (!check_latlng(packet.lat_int, packet.lon_int)) {
break;
}
Location::AltFrame frame;
if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)packet.coordinate_frame, frame)) {
// unknown coordinate frame
break;
}
const Location loc{
packet.lat_int,
packet.lon_int,
int32_t(packet.alt*100),
frame,
};
if (!loc.get_vector_from_origin_NEU(pos_neu_cm)) {
break;
}
}
// prepare yaw
float yaw_cd = 0.0f;
bool yaw_relative = false;
float yaw_rate_cds = 0.0f;
if (!yaw_ignore) {
yaw_cd = ToDeg(packet.yaw) * 100.0f;
yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED;
}
if (!yaw_rate_ignore) {
yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
}
if (!pos_ignore && !vel_ignore && acc_ignore) {
copter.mode_guided.set_destination_posvel(pos_neu_cm, Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f), !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
} else if (pos_ignore && !vel_ignore && acc_ignore) {
copter.mode_guided.set_velocity(Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f), !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
} else if (!pos_ignore && vel_ignore && acc_ignore) {
copter.mode_guided.set_destination(pos_neu_cm, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
}
break;
}
#endif
case MAVLINK_MSG_ID_DISTANCE_SENSOR:
{
copter.rangefinder.handle_msg(msg);
#if PROXIMITY_ENABLED == ENABLED
copter.g2.proximity.handle_msg(msg);
#endif
break;
}
case MAVLINK_MSG_ID_OBSTACLE_DISTANCE:
{
#if PROXIMITY_ENABLED == ENABLED
copter.g2.proximity.handle_msg(msg);
#endif
break;
}
#if HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_HIL_STATE: // MAV ID: 90
{
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(&msg, &packet);
// sanity check location
if (!check_latlng(packet.lat, packet.lon)) {
break;
}
// set gps hil sensor
Location loc;
loc.lat = packet.lat;
loc.lng = packet.lon;
loc.alt = packet.alt/10;
Vector3f vel(packet.vx, packet.vy, packet.vz);
vel *= 0.01f;
gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D,
packet.time_usec/1000,
loc, vel, 10, 0);
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * (GRAVITY_MSS/1000.0f);
accels.y = packet.yacc * (GRAVITY_MSS/1000.0f);
accels.z = packet.zacc * (GRAVITY_MSS/1000.0f);
ins.set_gyro(0, gyros);
ins.set_accel(0, accels);
AP::baro().setHIL(packet.alt*0.001f);
copter.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw);
copter.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw);
break;
}
#endif // HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS: // MAV ID: 109
{
handle_radio_status(msg, copter.should_log(MASK_LOG_PM));
break;
}
#if PRECISION_LANDING == ENABLED
case MAVLINK_MSG_ID_LANDING_TARGET:
copter.precland.handle_msg(msg);
break;
#endif
case MAVLINK_MSG_ID_TERRAIN_DATA:
case MAVLINK_MSG_ID_TERRAIN_CHECK:
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
copter.terrain.handle_data(chan, msg);
#endif
break;
case MAVLINK_MSG_ID_SET_HOME_POSITION:
{
mavlink_set_home_position_t packet;
mavlink_msg_set_home_position_decode(&msg, &packet);
if((packet.latitude == 0) && (packet.longitude == 0) && (packet.altitude == 0)) {
if (!copter.set_home_to_current_location(true)) {
// silently ignored
}
} else {
Location new_home_loc;
new_home_loc.lat = packet.latitude;
new_home_loc.lng = packet.longitude;
new_home_loc.alt = packet.altitude / 10;
if (!copter.set_home(new_home_loc, true)) {
// silently ignored
}
}
break;
}
case MAVLINK_MSG_ID_ADSB_VEHICLE:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CFG:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_DYNAMIC:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_TRANSCEIVER_HEALTH_REPORT:
#if ADSB_ENABLED == ENABLED
copter.adsb.handle_message(chan, msg);
#endif
break;
#if TOY_MODE_ENABLED == ENABLED
case MAVLINK_MSG_ID_NAMED_VALUE_INT:
copter.g2.toy_mode.handle_message(msg);
break;
#endif
default:
handle_common_message(msg);
break;
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
void Copter::mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs().chan(0).initialised) return;
logger.EnableWrites(false);
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs().send_message(MSG_HEARTBEAT);
gcs().send_message(MSG_SYS_STATUS);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs().update_receive();
gcs().update_send();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs().send_text(MAV_SEVERITY_INFO, "Initialising APM");
}
logger.EnableWrites(true);
}
AP_AdvancedFailsafe *GCS_MAVLINK_Copter::get_advanced_failsafe() const
{
#if ADVANCED_FAILSAFE == ENABLED
return &copter.g2.afs;
#else
return nullptr;
#endif
}
MAV_RESULT GCS_MAVLINK_Copter::handle_flight_termination(const mavlink_command_long_t &packet) {
MAV_RESULT result = MAV_RESULT_FAILED;
#if ADVANCED_FAILSAFE == ENABLED
if (GCS_MAVLINK::handle_flight_termination(packet) != MAV_RESULT_ACCEPTED) {
#endif
if (packet.param1 > 0.5f) {
copter.arming.disarm();
result = MAV_RESULT_ACCEPTED;
}
#if ADVANCED_FAILSAFE == ENABLED
} else {
result = MAV_RESULT_ACCEPTED;
}
#endif
return result;
}
bool GCS_MAVLINK_Copter::set_mode(const uint8_t mode)
{
#ifdef DISALLOW_GCS_MODE_CHANGE_DURING_RC_FAILSAFE
if (copter.failsafe.radio) {
// don't allow mode changes while in radio failsafe
return false;
}
#endif
return copter.set_mode((control_mode_t)mode, MODE_REASON_GCS_COMMAND);
}
float GCS_MAVLINK_Copter::vfr_hud_alt() const
{
if (copter.g2.dev_options.get() & DevOptionVFR_HUDRelativeAlt) {
// compatibility option for older mavlink-aware devices that
// assume Copter returns a relative altitude in VFR_HUD.alt
return copter.current_loc.alt * 0.01f;
}
return GCS_MAVLINK::vfr_hud_alt();
}
uint64_t GCS_MAVLINK_Copter::capabilities() const
{
return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT |
MAV_PROTOCOL_CAPABILITY_PARAM_FLOAT |
MAV_PROTOCOL_CAPABILITY_MISSION_INT |
MAV_PROTOCOL_CAPABILITY_COMMAND_INT |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT |
MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION |
MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET |
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
(copter.terrain.enabled() ? MAV_PROTOCOL_CAPABILITY_TERRAIN : 0) |
#endif
MAV_PROTOCOL_CAPABILITY_COMPASS_CALIBRATION |
GCS_MAVLINK::capabilities());
}
MAV_LANDED_STATE GCS_MAVLINK_Copter::landed_state() const
{
if (copter.ap.land_complete) {
return MAV_LANDED_STATE_ON_GROUND;
}
if (copter.flightmode->is_landing()) {
return MAV_LANDED_STATE_LANDING;
}
if (copter.flightmode->is_taking_off()) {
return MAV_LANDED_STATE_TAKEOFF;
}
return MAV_LANDED_STATE_IN_AIR;
}