#define ARM_DELAY 10 #define DISARM_DELAY 10 void arm_motors() { static byte arming_counter; // Arm motor output : Throttle down and full yaw right for more than 2 seconds if (rc_3.control_in == 0){ if (rc_4.control_in > 2700) { if (arming_counter > ARM_DELAY) { motor_armed = true; } else{ arming_counter++; } }else if (rc_4.control_in < -2700) { if (arming_counter > DISARM_DELAY){ motor_armed = false; }else{ arming_counter++; } }else{ arming_counter = 0; } } } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ void set_servos_4() { static byte num; static byte counteri; // Quadcopter mix if (motor_armed == true && motor_auto_safe == true) { int out_min = rc_3.radio_min; // Throttle is 0 to 1000 only rc_3.servo_out = constrain(rc_3.servo_out, 0, 1000); if(rc_3.servo_out > 0) out_min = rc_3.radio_min + 50; //Serial.printf("out: %d %d %d %d\t\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out); // creates the radio_out and pwm_out values rc_1.calc_pwm(); rc_2.calc_pwm(); rc_3.calc_pwm(); rc_4.calc_pwm(); //Serial.printf("out: %d %d %d %d\n", rc_1.radio_out, rc_2.radio_out, rc_3.radio_out, rc_4.radio_out); //Serial.printf("yaw: %d ", rc_4.radio_out); if(frame_type == PLUS_FRAME){ motor_out[RIGHT] = rc_3.radio_out - rc_1.pwm_out; motor_out[LEFT] = rc_3.radio_out + rc_1.pwm_out; motor_out[FRONT] = rc_3.radio_out + rc_2.pwm_out; motor_out[BACK] = rc_3.radio_out - rc_2.pwm_out; motor_out[RIGHT] += rc_4.pwm_out; motor_out[LEFT] += rc_4.pwm_out; motor_out[FRONT] -= rc_4.pwm_out; motor_out[BACK] -= rc_4.pwm_out; }else if(frame_type == X_FRAME){ int roll_out = rc_1.pwm_out / 2; int pitch_out = rc_2.pwm_out / 2; motor_out[FRONT] = rc_3.radio_out + roll_out + pitch_out; motor_out[LEFT] = rc_3.radio_out + roll_out - pitch_out; motor_out[RIGHT] = rc_3.radio_out - roll_out + pitch_out; motor_out[BACK] = rc_3.radio_out - roll_out - pitch_out; //Serial.printf("\tb4: %d %d %d %d ", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]); motor_out[RIGHT] += rc_4.pwm_out; motor_out[LEFT] += rc_4.pwm_out; motor_out[FRONT] -= rc_4.pwm_out; motor_out[BACK] -= rc_4.pwm_out; //Serial.printf("\tl8r: %d %d %d %d\n", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]); }else if(frame_type == TRI_FRAME){ // Tri-copter power distribution int roll_out = (float)rc_1.pwm_out * .866; int pitch_out = rc_2.pwm_out / 2; // front two motors motor_out[LEFT] = rc_3.radio_out + roll_out + pitch_out; motor_out[RIGHT] = rc_3.radio_out - roll_out + pitch_out; // rear motors motor_out[BACK] = rc_3.radio_out - rc_2.pwm_out; // servo Yaw //motor_out[FRONT] = rc_4.radio_out; APM_RC.OutputCh(CH_7,rc_4.radio_out); }else if (frame_type == HEXA_FRAME) { int roll_out = (float)rc_1.pwm_out * .866; int pitch_out = rc_2.pwm_out / 2; motor_out[FRONT] = rc_3.radio_out + roll_out + pitch_out; // CCW motor_out[RIGHTFRONT] = rc_3.radio_out - roll_out + pitch_out; // CW motor_out[LEFT] = rc_3.radio_out + rc_1.pwm_out; // CW motor_out[RIGHT] = rc_3.radio_out - rc_1.pwm_out; // CCW motor_out[LEFTBACK] = rc_3.radio_out + roll_out - pitch_out; // CW motor_out[BACK] = rc_3.radio_out - roll_out - pitch_out; // CCW motor_out[FRONT] += rc_4.pwm_out; // CCW motor_out[RIGHTFRONT] -= rc_4.pwm_out; // CW motor_out[LEFT] -= rc_4.pwm_out; // CW motor_out[RIGHT] += rc_4.pwm_out; // CCW motor_out[LEFTBACK] += rc_4.pwm_out; // CW motor_out[BACK] -= rc_4.pwm_out; // CCW /* if(counteri == 5) { Serial.printf(" %d %d \n%d %d %d %d \n %d %d \n\n", motor_out[FRONT], motor_out[RIGHTFRONT], motor_out[LEFT], motor_out[RIGHT], roll_out, pitch_out, motor_out[LEFTBACK], motor_out[BACK]); counteri = 0; } counteri++; */ } else { Serial.print("frame error"); } motor_out[RIGHT] = constrain(motor_out[RIGHT], out_min, rc_3.radio_max); motor_out[LEFT] = constrain(motor_out[LEFT], out_min, rc_3.radio_max); motor_out[FRONT] = constrain(motor_out[FRONT], out_min, rc_3.radio_max); motor_out[BACK] = constrain(motor_out[BACK], out_min, rc_3.radio_max); num++; if (num > 10){ num = 0; //Serial.print("!"); //debugging with Channel 6 /* // ROLL and PITCH // make sure you init_pids() after changing the kP pid_stabilize_roll.kP((float)rc_6.control_in / 1000); init_pids(); //Serial.print("kP: "); //Serial.println(pid_stabilize_roll.kP(),3); */ /* // YAW // make sure you init_pids() after changing the kP pid_yaw.kP((float)rc_6.control_in / 1000); init_pids(); */ } // Send commands to motors if(rc_3.servo_out > 0){ APM_RC.OutputCh(CH_1, motor_out[RIGHT]); APM_RC.OutputCh(CH_2, motor_out[LEFT]); APM_RC.OutputCh(CH_3, motor_out[FRONT]); APM_RC.OutputCh(CH_4, motor_out[BACK]); // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); if (frame_type == HEXA_FRAME) { APM_RC.OutputCh(CH_7, motor_out[RIGHTFRONT]); APM_RC.OutputCh(CH_8, motor_out[LEFTBACK]); APM_RC.Force_Out6_Out7(); } }else{ APM_RC.OutputCh(CH_1, rc_3.radio_min); APM_RC.OutputCh(CH_2, rc_3.radio_min); APM_RC.OutputCh(CH_3, rc_3.radio_min); APM_RC.OutputCh(CH_4, rc_3.radio_min); // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); if (frame_type == HEXA_FRAME) { APM_RC.OutputCh(CH_7, rc_3.radio_min); APM_RC.OutputCh(CH_8, rc_3.radio_min); APM_RC.Force_Out6_Out7(); } } }else{ num++; if (num > 10){ num = 0; //Serial.print("-"); } reset_I(); if(rc_3.control_in > 0){ // we have pushed up the throttle // remove safety motor_auto_safe = true; } // Send commands to motors APM_RC.OutputCh(CH_1, rc_3.radio_min); APM_RC.OutputCh(CH_2, rc_3.radio_min); APM_RC.OutputCh(CH_3, rc_3.radio_min); APM_RC.OutputCh(CH_4, rc_3.radio_min); if (frame_type == HEXA_FRAME) { APM_RC.OutputCh(CH_7, rc_3.radio_min); APM_RC.OutputCh(CH_8, rc_3.radio_min); } // reset I terms of PID controls reset_I(); // Initialize yaw command to actual yaw when throttle is down... rc_4.control_in = ToDeg(yaw); } }