/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* very simple plane simulator class. Not aerodynamically accurate, just enough to be able to debug control logic for new frame types */ #include "SIM_Plane.h" #include using namespace SITL; Plane::Plane(const char *home_str, const char *frame_str) : Aircraft(home_str, frame_str) { mass = 1.0f; /* scaling from motor power to Newtons. Allows the plane to hold vertically against gravity when the motor is at hover_throttle */ thrust_scale = (mass * GRAVITY_MSS) / hover_throttle; frame_height = 0.1f; if (strstr(frame_str, "-revthrust")) { reverse_thrust = true; } if (strstr(frame_str, "-elevon")) { elevons = true; } else if (strstr(frame_str, "-vtail")) { vtail = true; } } /* the following functions are from last_letter https://github.com/Georacer/last_letter/blob/master/last_letter/src/aerodynamicsLib.cpp many thanks to Georacer! */ float Plane::liftCoeff(float alpha) const { const float alpha0 = coefficient.alpha_stall; const float M = coefficient.mcoeff; const float c_lift_0 = coefficient.c_lift_0; const float c_lift_a0 = coefficient.c_lift_a; double sigmoid = ( 1+exp(-M*(alpha-alpha0))+exp(M*(alpha+alpha0)) ) / (1+exp(-M*(alpha-alpha0))) / (1+exp(M*(alpha+alpha0))); double linear = (1.0-sigmoid) * (c_lift_0 + c_lift_a0*alpha); //Lift at small AoA double flatPlate = sigmoid*(2*copysign(1,alpha)*pow(sin(alpha),2)*cos(alpha)); //Lift beyond stall float result = linear+flatPlate; return result; } float Plane::dragCoeff(float alpha) const { const float b = coefficient.b; const float s = coefficient.s; const float c_drag_p = coefficient.c_drag_p; const float c_lift_0 = coefficient.c_lift_0; const float c_lift_a0 = coefficient.c_lift_a; const float oswald = coefficient.oswald; double AR = pow(b,2)/s; double c_drag_a = c_drag_p + pow(c_lift_0+c_lift_a0*alpha,2)/(M_PI*oswald*AR); return c_drag_a; } // Torque calculation function Vector3f Plane::getTorque(float inputAileron, float inputElevator, float inputRudder, const Vector3f &force) const { const float alpha = angle_of_attack; const float s = coefficient.s; const float c = coefficient.c; const float b = coefficient.b; const float c_l_0 = coefficient.c_l_0; const float c_l_b = coefficient.c_l_b; const float c_l_p = coefficient.c_l_p; const float c_l_r = coefficient.c_l_r; const float c_l_deltaa = coefficient.c_l_deltaa; const float c_l_deltar = coefficient.c_l_deltar; const float c_m_0 = coefficient.c_m_0; const float c_m_a = coefficient.c_m_a; const float c_m_q = coefficient.c_m_q; const float c_m_deltae = coefficient.c_m_deltae; const float c_n_0 = coefficient.c_n_0; const float c_n_b = coefficient.c_n_b; const float c_n_p = coefficient.c_n_p; const float c_n_r = coefficient.c_n_r; const float c_n_deltaa = coefficient.c_n_deltaa; const float c_n_deltar = coefficient.c_n_deltar; const Vector3f &CGOffset = coefficient.CGOffset; float rho = air_density; //read angular rates double p = gyro.x; double q = gyro.y; double r = gyro.z; //calculate aerodynamic torque double qbar = 1.0/2.0*rho*pow(airspeed,2)*s; //Calculate dynamic pressure double la, na, ma; if (is_zero(airspeed)) { la = 0; ma = 0; na = 0; } else { la = qbar*b*(c_l_0 + c_l_b*beta + c_l_p*b*p/(2*airspeed) + c_l_r*b*r/(2*airspeed) + c_l_deltaa*inputAileron + c_l_deltar*inputRudder); ma = qbar*c*(c_m_0 + c_m_a*alpha + c_m_q*c*q/(2*airspeed) + c_m_deltae*inputElevator); na = qbar*b*(c_n_0 + c_n_b*beta + c_n_p*b*p/(2*airspeed) + c_n_r*b*r/(2*airspeed) + c_n_deltaa*inputAileron + c_n_deltar*inputRudder); } // Add torque to to force misalignment with CG // r x F, where r is the distance from CoG to CoL la += CGOffset.y * force.z - CGOffset.z * force.y; ma += -CGOffset.x * force.z + CGOffset.z * force.x; na += -CGOffset.y * force.x + CGOffset.x * force.y; return Vector3f(la, ma, na); } // Force calculation function from last_letter Vector3f Plane::getForce(float inputAileron, float inputElevator, float inputRudder) const { const float alpha = angle_of_attack; const float c_drag_q = coefficient.c_drag_q; const float c_lift_q = coefficient.c_lift_q; const float s = coefficient.s; const float c = coefficient.c; const float b = coefficient.b; const float c_drag_deltae = coefficient.c_drag_deltae; const float c_lift_deltae = coefficient.c_lift_deltae; const float c_y_0 = coefficient.c_y_0; const float c_y_b = coefficient.c_y_b; const float c_y_p = coefficient.c_y_p; const float c_y_r = coefficient.c_y_r; const float c_y_deltaa = coefficient.c_y_deltaa; const float c_y_deltar = coefficient.c_y_deltar; float rho = air_density; //request lift and drag alpha-coefficients from the corresponding functions double c_lift_a = liftCoeff(alpha); double c_drag_a = dragCoeff(alpha); //convert coefficients to the body frame double c_x_a = -c_drag_a*cos(alpha)+c_lift_a*sin(alpha); double c_x_q = -c_drag_q*cos(alpha)+c_lift_q*sin(alpha); double c_z_a = -c_drag_a*sin(alpha)-c_lift_a*cos(alpha); double c_z_q = -c_drag_q*sin(alpha)-c_lift_q*cos(alpha); //read angular rates double p = gyro.x; double q = gyro.y; double r = gyro.z; //calculate aerodynamic force double qbar = 1.0/2.0*rho*pow(airspeed,2)*s; //Calculate dynamic pressure double ax, ay, az; if (is_zero(airspeed)) { ax = 0; ay = 0; az = 0; } else { ax = qbar*(c_x_a + c_x_q*c*q/(2*airspeed) - c_drag_deltae*cos(alpha)*fabs(inputElevator) + c_lift_deltae*sin(alpha)*inputElevator); // split c_x_deltae to include "abs" term ay = qbar*(c_y_0 + c_y_b*beta + c_y_p*b*p/(2*airspeed) + c_y_r*b*r/(2*airspeed) + c_y_deltaa*inputAileron + c_y_deltar*inputRudder); az = qbar*(c_z_a + c_z_q*c*q/(2*airspeed) - c_drag_deltae*sin(alpha)*fabs(inputElevator) - c_lift_deltae*cos(alpha)*inputElevator); // split c_z_deltae to include "abs" term } return Vector3f(ax, ay, az); } void Plane::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel) { float aileron = (input.servos[0]-1500)/500.0f; float elevator = (input.servos[1]-1500)/500.0f; float rudder = (input.servos[3]-1500)/500.0f; float throttle; if (elevons) { // fake an elevon plane float ch1 = aileron; float ch2 = elevator; aileron = (ch2-ch1)/2.0f; // the minus does away with the need for RC2_REV=-1 elevator = -(ch2+ch1)/2.0f; } else if (vtail) { // fake a vtail plane float ch1 = elevator; float ch2 = rudder; // this matches VTAIL_OUTPUT==2 elevator = (ch2-ch1)/2.0f; rudder = (ch2+ch1)/2.0f; } if (reverse_thrust) { throttle = constrain_float((input.servos[2]-1500)/500.0f, -1, 1); } else { throttle = constrain_float((input.servos[2]-1000)/1000.0f, 0, 1); } float thrust = throttle; // calculate angle of attack angle_of_attack = atan2f(velocity_air_bf.z, velocity_air_bf.x); beta = atan2f(velocity_air_bf.y,velocity_air_bf.x); Vector3f force = getForce(aileron, elevator, rudder); rot_accel = getTorque(aileron, elevator, rudder, force); // scale thrust to newtons thrust *= thrust_scale; accel_body = Vector3f(thrust/mass, 0, 0); accel_body += force; // add some noise if (thrust_scale > 0) { add_noise(fabsf(thrust) / thrust_scale); } } /* update the plane simulation by one time step */ void Plane::update(const struct sitl_input &input) { Vector3f rot_accel; update_wind(input); calculate_forces(input, rot_accel, accel_body); update_dynamics(rot_accel); // update lat/lon/altitude update_position(); }