#!/usr/bin/env python from aircraft import Aircraft import euclid, util, time, math class Motor(object): def __init__(self, angle, clockwise, servo): self.angle = angle # angle in degrees from front self.clockwise = clockwise # clockwise == true, anti-clockwise == false self.servo = servo # what servo output drives this motor def build_motors(frame): '''build a motors list given a frame type''' frame = frame.lower() if frame in [ 'quad', '+', 'x' ]: motors = [ Motor(90, False, 1), Motor(270, False, 2), Motor(0, True, 3), Motor(180, True, 4), ] if frame in [ 'x', 'quadx' ]: for i in range(4): motors[i].angle -= 45.0 elif frame in ["y6"]: motors = [ Motor(60, False, 1), Motor(60, True, 7), Motor(180, True, 4), Motor(180, False, 8), Motor(-60, True, 2), Motor(-60, False, 3), ] elif frame in ["hexa", "hexa+"]: motors = [ Motor(0, True, 1), Motor(60, False, 4), Motor(120, True, 8), Motor(180, False, 2), Motor(240, True, 3), Motor(300, False, 7), ] elif frame in ["hexax"]: motors = [ Motor(30, False, 7), Motor(90, True, 1), Motor(150, False, 4), Motor(210, True, 8), Motor(270, False, 2), Motor(330, True, 3), ] elif frame in ["octa", "octa+", "octax" ]: motors = [ Motor(0, True, 1), Motor(180, True, 2), Motor(45, False, 3), Motor(135, False, 4), Motor(-45, False, 7), Motor(-135, False, 8), Motor(270, True, 10), Motor(90, True, 11), ] if frame == 'octax': for i in range(8): motors[i].angle += 22.5 else: raise RuntimeError("Unknown multicopter frame type '%s'" % frame) return motors class MultiCopter(Aircraft): '''a MultiCopter''' def __init__(self, frame='+', hover_throttle=0.37, terminal_velocity=30.0, frame_height=0.1, mass=1.0): Aircraft.__init__(self) self.motors = build_motors(frame) self.motor_speed = [ 0.0 ] * len(self.motors) self.mass = mass # Kg self.hover_throttle = hover_throttle self.terminal_velocity = terminal_velocity self.terminal_rotation_rate = 4*360.0 self.frame_height = frame_height # scaling from total motor power to Newtons. Allows the copter # to hover against gravity when each motor is at hover_throttle self.thrust_scale = (self.mass * self.gravity) / (len(self.motors) * self.hover_throttle) self.last_time = time.time() def update(self, servos): for i in range(0, len(self.motors)): servo = servos[self.motors[i].servo-1] if servo <= 0.0: self.motor_speed[i] = 0 else: self.motor_speed[i] = servo m = self.motor_speed # how much time has passed? t = time.time() delta_time = t - self.last_time self.last_time = t # rotational acceleration, in degrees/s/s, in body frame roll_accel = 0.0 pitch_accel = 0.0 yaw_accel = 0.0 thrust = 0.0 for i in range(len(self.motors)): roll_accel += -5000.0 * math.sin(math.radians(self.motors[i].angle)) * m[i] pitch_accel += 5000.0 * math.cos(math.radians(self.motors[i].angle)) * m[i] if self.motors[i].clockwise: yaw_accel -= m[i] * 400.0 else: yaw_accel += m[i] * 400.0 thrust += m[i] * self.thrust_scale # newtons # rotational resistance roll_accel -= (self.pDeg / self.terminal_rotation_rate) * 5000.0 pitch_accel -= (self.qDeg / self.terminal_rotation_rate) * 5000.0 yaw_accel -= (self.rDeg / self.terminal_rotation_rate) * 400.0 # update rotational rates in body frame self.pDeg += roll_accel * delta_time self.qDeg += pitch_accel * delta_time self.rDeg += yaw_accel * delta_time # calculate rates in earth frame (self.roll_rate, self.pitch_rate, self.yaw_rate) = util.BodyRatesToEarthRates(self.roll, self.pitch, self.yaw, self.pDeg, self.qDeg, self.rDeg) # update rotation self.roll += self.roll_rate * delta_time self.pitch += self.pitch_rate * delta_time self.yaw += self.yaw_rate * delta_time # air resistance air_resistance = - self.velocity * (self.gravity/self.terminal_velocity) # normalise rotations self.normalise() accel = thrust / self.mass accel3D = util.RPY_to_XYZ(self.roll, self.pitch, self.yaw, accel) accel3D += euclid.Vector3(0, 0, -self.gravity) accel3D += air_resistance # add in some wind accel3D += self.wind.accel(self.velocity) # new velocity vector self.velocity += accel3D * delta_time self.accel = accel3D # new position vector old_position = self.position.copy() self.position += self.velocity * delta_time # constrain height to the ground if self.position.z + self.home_altitude < self.ground_level + self.frame_height: if old_position.z + self.home_altitude > self.ground_level + self.frame_height: print("Hit ground at %f m/s" % (-self.velocity.z)) self.velocity = euclid.Vector3(0, 0, 0) self.roll_rate = 0 self.pitch_rate = 0 self.yaw_rate = 0 self.roll = 0 self.pitch = 0 self.accel = euclid.Vector3(0, 0, 0) self.position = euclid.Vector3(self.position.x, self.position.y, self.ground_level + self.frame_height - self.home_altitude) # update lat/lon/altitude self.update_position()