/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include "AP_Proximity.h" #include "AP_Proximity_Backend.h" /* base class constructor. This incorporates initialisation as well. */ AP_Proximity_Backend::AP_Proximity_Backend(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state) : frontend(_frontend), state(_state) { // initialise sector edge vector used for building the boundary fence init_boundary(); } // get distance in meters in a particular direction in degrees (0 is forward, angles increase in the clockwise direction) bool AP_Proximity_Backend::get_horizontal_distance(float angle_deg, float &distance) const { uint8_t sector; if (convert_angle_to_sector(angle_deg, sector)) { if (_distance_valid[sector]) { distance = _distance[sector]; return true; } } return false; } // get distance and angle to closest object (used for pre-arm check) // returns true on success, false if no valid readings bool AP_Proximity_Backend::get_closest_object(float& angle_deg, float &distance) const { bool sector_found = false; uint8_t sector = 0; // check all sectors for shorter distance for (uint8_t i=0; i<_num_sectors; i++) { if (_distance_valid[i]) { if (!sector_found || (_distance[i] < _distance[sector])) { sector = i; sector_found = true; } } } if (sector_found) { angle_deg = _angle[sector]; distance = _distance[sector]; } return sector_found; } // get number of objects, used for non-GPS avoidance uint8_t AP_Proximity_Backend::get_object_count() const { return _num_sectors; } // get an object's angle and distance, used for non-GPS avoidance // returns false if no angle or distance could be returned for some reason bool AP_Proximity_Backend::get_object_angle_and_distance(uint8_t object_number, float& angle_deg, float &distance) const { if (object_number < _num_sectors && _distance_valid[object_number]) { angle_deg = _angle[object_number]; distance = _distance[object_number]; return true; } return false; } // get distances in PROXIMITY_MAX_DIRECTION directions. used for sending distances to ground station bool AP_Proximity_Backend::get_horizontal_distances(AP_Proximity::Proximity_Distance_Array &prx_dist_array) const { // exit immediately if we have no good ranges bool valid_distances = false; for (uint8_t i=0; i<_num_sectors; i++) { if (_distance_valid[i]) { valid_distances = true; break; } } if (!valid_distances) { return false; } // initialise orientations and directions // see MAV_SENSOR_ORIENTATION for orientations (0 = forward, 1 = 45 degree clockwise from north, etc) // distances initialised to maximum distances bool dist_set[PROXIMITY_MAX_DIRECTION]{}; for (uint8_t i=0; i(_angle[i] * (PROXIMITY_MAX_DIRECTION / 360.0f)); if ((orientation >= 0) && (orientation < PROXIMITY_MAX_DIRECTION) && (_distance[i] < prx_dist_array.distance[orientation])) { prx_dist_array.distance[orientation] = _distance[i]; dist_set[orientation] = true; } } } // fill in missing orientations with average of adjacent orientations if necessary and possible for (uint8_t i=0; i= _num_sectors) { return; } if (push_to_OA_DB) { database_push(_angle[sector], _distance[sector]); } // find adjacent sector (clockwise) uint8_t next_sector = sector + 1; if (next_sector >= _num_sectors) { next_sector = 0; } // boundary point lies on the line between the two sectors at the shorter distance found in the two sectors float shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; if (_distance_valid[sector] && _distance_valid[next_sector]) { shortest_distance = MIN(_distance[sector], _distance[next_sector]); } else if (_distance_valid[sector]) { shortest_distance = _distance[sector]; } else if (_distance_valid[next_sector]) { shortest_distance = _distance[next_sector]; } if (shortest_distance < PROXIMITY_BOUNDARY_DIST_MIN) { shortest_distance = PROXIMITY_BOUNDARY_DIST_MIN; } _boundary_point[sector] = _sector_edge_vector[sector] * shortest_distance; // if the next sector (clockwise) has an invalid distance, set boundary to create a cup like boundary if (!_distance_valid[next_sector]) { _boundary_point[next_sector] = _sector_edge_vector[next_sector] * shortest_distance; } // repeat for edge between sector and previous sector uint8_t prev_sector = (sector == 0) ? _num_sectors-1 : sector-1; shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; if (_distance_valid[prev_sector] && _distance_valid[sector]) { shortest_distance = MIN(_distance[prev_sector], _distance[sector]); } else if (_distance_valid[prev_sector]) { shortest_distance = _distance[prev_sector]; } else if (_distance_valid[sector]) { shortest_distance = _distance[sector]; } _boundary_point[prev_sector] = _sector_edge_vector[prev_sector] * shortest_distance; // if the sector counter-clockwise from the previous sector has an invalid distance, set boundary to create a cup like boundary uint8_t prev_sector_ccw = (prev_sector == 0) ? _num_sectors-1 : prev_sector-1; if (!_distance_valid[prev_sector_ccw]) { _boundary_point[prev_sector_ccw] = _sector_edge_vector[prev_sector_ccw] * shortest_distance; } } // set status and update valid count void AP_Proximity_Backend::set_status(AP_Proximity::Status status) { state.status = status; } bool AP_Proximity_Backend::convert_angle_to_sector(float angle_degrees, uint8_t §or) const { // sanity check angle if (angle_degrees > 360.0f || angle_degrees < -180.0f) { return false; } // convert to 0 ~ 360 if (angle_degrees < 0.0f) { angle_degrees += 360.0f; } bool closest_found = false; uint8_t closest_sector; float closest_angle; // search for which sector angle_degrees falls into for (uint8_t i = 0; i < _num_sectors; i++) { float angle_diff = fabsf(wrap_180(_sector_middle_deg[i] - angle_degrees)); // record if closest if (!closest_found || angle_diff < closest_angle) { closest_found = true; closest_sector = i; closest_angle = angle_diff; } if (fabsf(angle_diff) <= _sector_width_deg[i] / 2.0f) { sector = i; return true; } } // angle_degrees might have been within a gap between sectors if (closest_found) { sector = closest_sector; return true; } return false; } // get ignore area info uint8_t AP_Proximity_Backend::get_ignore_area_count() const { // count number of ignore sectors uint8_t count = 0; for (uint8_t i=0; i < PROXIMITY_MAX_IGNORE; i++) { if (frontend._ignore_width_deg[i] != 0) { count++; } } return count; } // get next ignore angle bool AP_Proximity_Backend::get_ignore_area(uint8_t index, uint16_t &angle_deg, uint8_t &width_deg) const { if (index >= PROXIMITY_MAX_IGNORE) { return false; } angle_deg = frontend._ignore_angle_deg[index]; width_deg = frontend._ignore_width_deg[index]; return true; } // retrieve start or end angle of next ignore area (i.e. closest ignore area higher than the start_angle) // start_or_end = 0 to get start, 1 to retrieve end bool AP_Proximity_Backend::get_next_ignore_start_or_end(uint8_t start_or_end, int16_t start_angle, int16_t &ignore_start) const { bool found = false; int16_t smallest_angle_diff = 0; int16_t smallest_angle_start = 0; for (uint8_t i=0; i < PROXIMITY_MAX_IGNORE; i++) { if (frontend._ignore_width_deg[i] != 0) { int16_t offset = start_or_end == 0 ? -frontend._ignore_width_deg[i] : +frontend._ignore_width_deg[i]; int16_t ignore_start_angle = wrap_360(frontend._ignore_angle_deg[i] + offset/2.0f); int16_t ang_diff = wrap_360(ignore_start_angle - start_angle); if (!found || ang_diff < smallest_angle_diff) { smallest_angle_diff = ang_diff; smallest_angle_start = ignore_start_angle; found = true; } } } if (found) { ignore_start = smallest_angle_start; } return found; } // returns true if database is ready to be pushed to and all cached data is ready bool AP_Proximity_Backend::database_prepare_for_push(Location ¤t_loc, float ¤t_vehicle_bearing) { AP_OADatabase *oaDb = AP::oadatabase(); if (oaDb == nullptr || !oaDb->healthy()) { return false; } if (!AP::ahrs().get_position(current_loc)) { return false; } current_vehicle_bearing = AP::ahrs().yaw_sensor * 0.01f; return true; } // update Object Avoidance database with Earth-frame point void AP_Proximity_Backend::database_push(const float angle, const float distance) { Location current_loc; float current_vehicle_bearing; if (database_prepare_for_push(current_loc, current_vehicle_bearing) == true) { database_push(angle, distance, AP_HAL::millis(), current_loc, current_vehicle_bearing); } } // update Object Avoidance database with Earth-frame point void AP_Proximity_Backend::database_push(const float angle, const float distance, const uint32_t timestamp_ms, const Location ¤t_loc, const float current_vehicle_bearing) { AP_OADatabase *oaDb = AP::oadatabase(); if (oaDb == nullptr || !oaDb->healthy()) { return; } Location temp_loc = current_loc; temp_loc.offset_bearing(wrap_180(current_vehicle_bearing + angle), distance); oaDb->queue_push(temp_loc, timestamp_ms, distance, angle); }