/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include "AP_Proximity.h" #include "AP_Proximity_Backend.h" /* base class constructor. This incorporates initialisation as well. */ AP_Proximity_Backend::AP_Proximity_Backend(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state) : frontend(_frontend), state(_state) { // initialise sector edge vector used for building the boundary fence init_boundary(); } // get distance and angle to closest object (used for pre-arm check) // returns true on success, false if no valid readings bool AP_Proximity_Backend::get_closest_object(float& angle_deg, float &distance) const { bool sector_found = false; uint8_t sector = 0; // check all sectors for shorter distance for (uint8_t i=0; i(_angle[i] * (PROXIMITY_MAX_DIRECTION / 360.0f)); if ((orientation >= 0) && (orientation < PROXIMITY_MAX_DIRECTION) && (_distance[i] < prx_dist_array.distance[orientation])) { prx_dist_array.distance[orientation] = _distance[i]; dist_set[orientation] = true; } } } // fill in missing orientations with average of adjacent orientations if necessary and possible for (uint8_t i=0; i= PROXIMITY_NUM_SECTORS) { return; } if (push_to_OA_DB) { database_push(_angle[sector], _distance[sector]); } // find adjacent sector (clockwise) uint8_t next_sector = sector + 1; if (next_sector >= PROXIMITY_NUM_SECTORS) { next_sector = 0; } // boundary point lies on the line between the two sectors at the shorter distance found in the two sectors float shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; if (_distance_valid[sector] && _distance_valid[next_sector]) { shortest_distance = MIN(_distance[sector], _distance[next_sector]); } else if (_distance_valid[sector]) { shortest_distance = _distance[sector]; } else if (_distance_valid[next_sector]) { shortest_distance = _distance[next_sector]; } if (shortest_distance < PROXIMITY_BOUNDARY_DIST_MIN) { shortest_distance = PROXIMITY_BOUNDARY_DIST_MIN; } _boundary_point[sector] = _sector_edge_vector[sector] * shortest_distance; // if the next sector (clockwise) has an invalid distance, set boundary to create a cup like boundary if (!_distance_valid[next_sector]) { _boundary_point[next_sector] = _sector_edge_vector[next_sector] * shortest_distance; } // repeat for edge between sector and previous sector uint8_t prev_sector = (sector == 0) ? PROXIMITY_NUM_SECTORS-1 : sector-1; shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; if (_distance_valid[prev_sector] && _distance_valid[sector]) { shortest_distance = MIN(_distance[prev_sector], _distance[sector]); } else if (_distance_valid[prev_sector]) { shortest_distance = _distance[prev_sector]; } else if (_distance_valid[sector]) { shortest_distance = _distance[sector]; } _boundary_point[prev_sector] = _sector_edge_vector[prev_sector] * shortest_distance; // if the sector counter-clockwise from the previous sector has an invalid distance, set boundary to create a cup like boundary uint8_t prev_sector_ccw = (prev_sector == 0) ? PROXIMITY_NUM_SECTORS - 1 : prev_sector - 1; if (!_distance_valid[prev_sector_ccw]) { _boundary_point[prev_sector_ccw] = _sector_edge_vector[prev_sector_ccw] * shortest_distance; } } // set status and update valid count void AP_Proximity_Backend::set_status(AP_Proximity::Status status) { state.status = status; } uint8_t AP_Proximity_Backend::convert_angle_to_sector(float angle_degrees) const { return wrap_360(angle_degrees + (PROXIMITY_SECTOR_WIDTH_DEG * 0.5f)) / 45.0f; } // check if a reading should be ignored because it falls into an ignore area bool AP_Proximity_Backend::ignore_reading(uint16_t angle_deg) const { // check angle vs each ignore area for (uint8_t i=0; i < PROXIMITY_MAX_IGNORE; i++) { if (frontend._ignore_width_deg[i] != 0) { if (abs(angle_deg - frontend._ignore_angle_deg[i]) <= (frontend._ignore_width_deg[i]/2)) { return true; } } } return false; } // returns true if database is ready to be pushed to and all cached data is ready bool AP_Proximity_Backend::database_prepare_for_push(Vector2f ¤t_pos, float ¤t_heading) { AP_OADatabase *oaDb = AP::oadatabase(); if (oaDb == nullptr || !oaDb->healthy()) { return false; } if (!AP::ahrs().get_relative_position_NE_origin(current_pos)) { return false; } current_heading = AP::ahrs().yaw_sensor * 0.01f; return true; } // update Object Avoidance database with Earth-frame point void AP_Proximity_Backend::database_push(float angle, float distance) { Vector2f current_pos; float current_heading; if (database_prepare_for_push(current_pos, current_heading)) { database_push(angle, distance, AP_HAL::millis(), current_pos, current_heading); } } // update Object Avoidance database with Earth-frame point void AP_Proximity_Backend::database_push(float angle, float distance, uint32_t timestamp_ms, const Vector2f ¤t_pos, float current_heading) { AP_OADatabase *oaDb = AP::oadatabase(); if (oaDb == nullptr || !oaDb->healthy()) { return; } Vector2f temp_pos = current_pos; temp_pos.offset_bearing(wrap_180(current_heading + angle), distance); oaDb->queue_push(temp_pos, timestamp_ms, distance); }