/* APM_RC_APM2.cpp - Radio Control Library for Ardupilot Mega 2.0. Arduino Code by Jordi Muņoz and Jose Julio. DIYDrones.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. RC Input : PPM signal on IC4 pin RC Output : 11 Servo outputs (standard 20ms frame) Methods: Init() : Initialization of interrupts an Timers OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10 InputCh(ch) : Read a channel input value. ch=0..7 GetState() : Returns the state of the input. 1 => New radio frame to process Automatically resets when we call InputCh to read channels */ #include "APM_RC_APM2.h" #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #else #include "WProgram.h" #endif #if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__) # error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target. #else // Variable definition for Input Capture interrupt volatile uint16_t APM_RC_APM2::_PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,2400,2400,2400,2400}; volatile uint8_t APM_RC_APM2::_radio_status=0; /**************************************************** Input Capture Interrupt ICP5 => PPM signal read ****************************************************/ void APM_RC_APM2::_timer5_capt_cb(void) { static uint16_t prev_icr; static uint8_t frame_idx; uint16_t icr; uint16_t pwidth; icr = ICR5; // Calculate pulse width assuming timer overflow TOP = 40000 if ( icr < prev_icr ) { pwidth = ( icr + 40000 ) - prev_icr; } else { pwidth = icr - prev_icr; } // Was it a sync pulse? If so, reset frame. if ( pwidth > 8000 ) { frame_idx=0; } else { // Save pulse into _PWM_RAW array. if ( frame_idx < NUM_CHANNELS ) { _PWM_RAW[ frame_idx++ ] = pwidth; // If this is the last pulse in a frame, set _radio_status. if (frame_idx >= NUM_CHANNELS) { _radio_status = 1; } } } // Save icr for next call. prev_icr = icr; } // Constructors //////////////////////////////////////////////////////////////// APM_RC_APM2::APM_RC_APM2() { } // Public Methods ////////////////////////////////////////////////////////////// void APM_RC_APM2::Init( Arduino_Mega_ISR_Registry * isr_reg ) { // --------------------- TIMER1: OUT1 and OUT2 ----------------------- pinMode(12,OUTPUT); // OUT1 (PB6/OC1B) pinMode(11,OUTPUT); // OUT2 (PB5/OC1A) // WGM: 1 1 1 0. Clear Timer on Compare, TOP is ICR1. // CS11: prescale by 8 => 0.5us tick TCCR1A =((1< 50hz freq OCR1A = 0xFFFF; // Init OCR registers to nil output signal OCR1B = 0xFFFF; // --------------- TIMER4: OUT3, OUT4, and OUT5 --------------------- pinMode(8,OUTPUT); // OUT3 (PH5/OC4C) pinMode(7,OUTPUT); // OUT4 (PH4/OC4B) pinMode(6,OUTPUT); // OUT5 (PH3/OC4A) // WGM: 1 1 1 0. Clear Timer on Compare, TOP is ICR4. // CS41: prescale by 8 => 0.5us tick TCCR4A =((1< 50hz freq //--------------- TIMER3: OUT6, OUT7, and OUT8 ---------------------- pinMode(3,OUTPUT); // OUT6 (PE5/OC3C) pinMode(2,OUTPUT); // OUT7 (PE4/OC3B) pinMode(5,OUTPUT); // OUT8 (PE3/OC3A) // WGM: 1 1 1 0. Clear timer on Compare, TOP is ICR3 // CS31: prescale by 8 => 0.5us tick TCCR3A =((1< 50hz freq //--------------- TIMER5: PPM INPUT --------------------------------- // Init PPM input on Timer 5 pinMode(48, INPUT); // PPM Input (PL1/ICP5) pinMode(45, OUTPUT); // OUT10 (PL4/OC5B) pinMode(44, OUTPUT); // OUT11 (PL5/OC5C) // WGM: 1 1 1 1. Fast PWM, TOP is OCR5A // COM all disabled. // CS51: prescale by 8 => 0.5us tick // ICES5: Input Capture on rising edge TCCR5A =((1< 50hz freq. The input capture routine // assumes this 40000 for TOP. isr_reg->register_signal( ISR_REGISTRY_TIMER5_CAPT, _timer5_capt_cb ); // Enable Input Capture interrupt TIMSK5 |= (1<>1; // Because timer runs at 0.5us we need to do value/2 result2 = _PWM_RAW[ch]>>1; if (result != result2) result = _PWM_RAW[ch]>>1; // if the results are different we make a third reading (this should be fine) // Limit values to a valid range result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH); _radio_status=0; // Radio channel read return(result); } unsigned char APM_RC_APM2::GetState(void) { return(_radio_status); } // InstantPWM is not implemented! void APM_RC_APM2::Force_Out(void) { } void APM_RC_APM2::Force_Out0_Out1(void) { } void APM_RC_APM2::Force_Out2_Out3(void) { } void APM_RC_APM2::Force_Out6_Out7(void) { } /* ---------------- OUTPUT SPEED CONTROL ------------------ */ // Output rate options: #define OUTPUT_SPEED_50HZ 0 #define OUTPUT_SPEED_200HZ 1 #define OUTPUT_SPEED_490HZ 2 void APM_RC_APM2::SetFastOutputChannels(uint32_t chmask) { if ((chmask & ( _BV(CH_1) | _BV(CH_2))) != 0) _set_speed_ch1_ch2(OUTPUT_SPEED_490HZ); if ((chmask & ( _BV(CH_3) | _BV(CH_4) | _BV(CH_5))) != 0) _set_speed_ch3_ch4_ch5(OUTPUT_SPEED_490HZ); if ((chmask & ( _BV(CH_6) | _BV(CH_7) | _BV(CH_8))) != 0) _set_speed_ch6_ch7_ch8(OUTPUT_SPEED_490HZ); } void APM_RC_APM2::_set_speed_ch1_ch2(uint8_t speed) { switch(speed) { case OUTPUT_SPEED_490HZ: ICR1 = 4096; break; case OUTPUT_SPEED_200HZ: ICR1 = 10000; break; case OUTPUT_SPEED_50HZ: default: ICR1 = 40000; break; } } void APM_RC_APM2::_set_speed_ch3_ch4_ch5(uint8_t speed) { switch(speed) { case OUTPUT_SPEED_490HZ: ICR4 = 4096; break; case OUTPUT_SPEED_200HZ: ICR4 = 10000; break; case OUTPUT_SPEED_50HZ: default: ICR4 = 40000; break; } } void APM_RC_APM2::_set_speed_ch6_ch7_ch8(uint8_t speed) { switch(speed) { case OUTPUT_SPEED_490HZ: ICR3 = 4096; break; case OUTPUT_SPEED_200HZ: ICR3 = 10000; break; case OUTPUT_SPEED_50HZ: default: ICR3 = 40000; break; } } // allow HIL override of RC values // A value of -1 means no change // A value of 0 means no override, use the real RC values bool APM_RC_APM2::setHIL(int16_t v[NUM_CHANNELS]) { uint8_t sum = 0; for (unsigned char i=0; i