/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This is an INS driver for the combination L3G4200D gyro and ADXL345 accelerometer. This combination is available as a cheap 10DOF sensor on ebay */ // ADXL345 Accelerometer http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf // L3G4200D gyro http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00265057.pdf #include #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX || CONFIG_HAL_BOARD == HAL_BOARD_ERLE #include #include "AP_InertialSensor_L3G4200D.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const extern AP_HAL::HAL& hal; /////// /// Accelerometer ADXL345 register definitions #define ADXL345_ACCELEROMETER_ADDRESS 0x53 #define ADXL345_ACCELEROMETER_XL345_DEVID 0xe5 #define ADXL345_ACCELEROMETER_ADXLREG_BW_RATE 0x2c #define ADXL345_ACCELEROMETER_ADXLREG_POWER_CTL 0x2d #define ADXL345_ACCELEROMETER_ADXLREG_DATA_FORMAT 0x31 #define ADXL345_ACCELEROMETER_ADXLREG_DEVID 0x00 #define ADXL345_ACCELEROMETER_ADXLREG_DATAX0 0x32 #define ADXL345_ACCELEROMETER_ADXLREG_FIFO_CTL 0x38 #define ADXL345_ACCELEROMETER_ADXLREG_FIFO_CTL_STREAM 0x9F #define ADXL345_ACCELEROMETER_ADXLREG_FIFO_STATUS 0x39 // ADXL345 accelerometer scaling // Result will be scaled to 1m/s/s // ADXL345 in Full resolution mode (any g scaling) is 256 counts/g, so scale by 9.81/256 = 0.038320312 #define ADXL345_ACCELEROMETER_SCALE_M_S (GRAVITY_MSS / 256.0f) /// Gyro ITG3205 register definitions #define L3G4200D_I2C_ADDRESS 0x69 #define L3G4200D_REG_WHO_AM_I 0x0f #define L3G4200D_REG_WHO_AM_I_VALUE 0xd3 #define L3G4200D_REG_CTRL_REG1 0x20 #define L3G4200D_REG_CTRL_REG1_DRBW_800_110 0xf0 #define L3G4200D_REG_CTRL_REG1_PD 0x08 #define L3G4200D_REG_CTRL_REG1_XYZ_ENABLE 0x07 #define L3G4200D_REG_CTRL_REG4 0x23 #define L3G4200D_REG_CTRL_REG4_FS_2000 0x30 #define L3G4200D_REG_CTRL_REG5 0x24 #define L3G4200D_REG_CTRL_REG5_FIFO_EN 0x40 #define L3G4200D_REG_FIFO_CTL 0x2e #define L3G4200D_REG_FIFO_CTL_STREAM 0x40 #define L3G4200D_REG_FIFO_SRC 0x2f #define L3G4200D_REG_FIFO_SRC_ENTRIES_MASK 0x1f #define L3G4200D_REG_FIFO_SRC_EMPTY 0x20 #define L3G4200D_REG_FIFO_SRC_OVERRUN 0x40 #define L3G4200D_REG_XL 0x28 // this bit is ORd into the register to enable auto-increment mode #define L3G4200D_REG_AUTO_INCREMENT 0x80 // L3G4200D Gyroscope scaling // running at 2000 DPS full range, 16 bit signed data, datasheet // specifies 70 mdps per bit #define L3G4200D_GYRO_SCALE_R_S (DEG_TO_RAD * 70.0f * 0.001f) // constructor AP_InertialSensor_L3G4200D::AP_InertialSensor_L3G4200D() : AP_InertialSensor(), _accel_filter_x(800, 10), _accel_filter_y(800, 10), _accel_filter_z(800, 10), _gyro_filter_x(800, 10), _gyro_filter_y(800, 10), _gyro_filter_z(800, 10) {} uint16_t AP_InertialSensor_L3G4200D::_init_sensor( Sample_rate sample_rate ) { switch (sample_rate) { case RATE_50HZ: _default_filter_hz = 10; _sample_period_usec = (1000*1000) / 50; _gyro_samples_needed = 16; break; case RATE_100HZ: _default_filter_hz = 20; _sample_period_usec = (1000*1000) / 100; _gyro_samples_needed = 8; break; case RATE_200HZ: default: _default_filter_hz = 20; _sample_period_usec = (1000*1000) / 200; _gyro_samples_needed = 4; break; } // get pointer to i2c bus semaphore AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); // take i2c bus sempahore if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) return false; // Init the accelerometer uint8_t data = 0; hal.i2c->readRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_DEVID, &data); if (data != ADXL345_ACCELEROMETER_XL345_DEVID) { hal.scheduler->panic(PSTR("AP_InertialSensor_L3G4200D: could not find ADXL345 accelerometer sensor")); } hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_POWER_CTL, 0x00); hal.scheduler->delay(5); hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_POWER_CTL, 0xff); hal.scheduler->delay(5); // Measure mode: hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_POWER_CTL, 0x08); hal.scheduler->delay(5); // Full resolution, 8g: // Caution, this must agree with ADXL345_ACCELEROMETER_SCALE_1G // In full resoution mode, the scale factor need not change hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_DATA_FORMAT, 0x08); hal.scheduler->delay(5); // Normal power, 800Hz Output Data Rate, 400Hz bandwidth: hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_BW_RATE, 0x0d); hal.scheduler->delay(5); // enable FIFO in stream mode. This will allow us to read the accelerometers much less frequently hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_FIFO_CTL, ADXL345_ACCELEROMETER_ADXLREG_FIFO_CTL_STREAM); // Init the Gyro // Expect to read the right 'WHO_AM_I' value hal.i2c->readRegister(L3G4200D_I2C_ADDRESS, L3G4200D_REG_WHO_AM_I, &data); if (data != L3G4200D_REG_WHO_AM_I_VALUE) hal.scheduler->panic(PSTR("AP_InertialSensor_L3G4200D: could not find L3G4200D gyro sensor")); // setup for 800Hz sampling with 110Hz filter hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, L3G4200D_REG_CTRL_REG1, L3G4200D_REG_CTRL_REG1_DRBW_800_110 | L3G4200D_REG_CTRL_REG1_PD | L3G4200D_REG_CTRL_REG1_XYZ_ENABLE); hal.scheduler->delay(1); hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, L3G4200D_REG_CTRL_REG1, L3G4200D_REG_CTRL_REG1_DRBW_800_110 | L3G4200D_REG_CTRL_REG1_PD | L3G4200D_REG_CTRL_REG1_XYZ_ENABLE); hal.scheduler->delay(1); hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, L3G4200D_REG_CTRL_REG1, L3G4200D_REG_CTRL_REG1_DRBW_800_110 | L3G4200D_REG_CTRL_REG1_PD | L3G4200D_REG_CTRL_REG1_XYZ_ENABLE); hal.scheduler->delay(1); // setup for 2000 degrees/sec full range hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, L3G4200D_REG_CTRL_REG4, L3G4200D_REG_CTRL_REG4_FS_2000); hal.scheduler->delay(1); // enable FIFO hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, L3G4200D_REG_CTRL_REG5, L3G4200D_REG_CTRL_REG5_FIFO_EN); hal.scheduler->delay(1); // enable FIFO in stream mode. This will allow us to read the gyros much less frequently hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, L3G4200D_REG_FIFO_CTL, L3G4200D_REG_FIFO_CTL_STREAM); hal.scheduler->delay(1); // Set up the filter desired _set_filter_frequency(_mpu6000_filter); // give back i2c semaphore i2c_sem->give(); // start the timer process to read samples hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_L3G4200D::_accumulate)); clock_gettime(CLOCK_MONOTONIC, &_next_sample_ts); _next_sample_ts.tv_nsec += _sample_period_usec * 1000UL; if (_next_sample_ts.tv_nsec >= 1.0e9) { _next_sample_ts.tv_nsec -= 1.0e9; _next_sample_ts.tv_sec++; } return AP_PRODUCT_ID_L3G4200D; } /* set the filter frequency */ void AP_InertialSensor_L3G4200D::_set_filter_frequency(uint8_t filter_hz) { if (filter_hz == 0) filter_hz = _default_filter_hz; _accel_filter_x.set_cutoff_frequency(800, filter_hz); _accel_filter_y.set_cutoff_frequency(800, filter_hz); _accel_filter_z.set_cutoff_frequency(800, filter_hz); _gyro_filter_x.set_cutoff_frequency(800, filter_hz); _gyro_filter_y.set_cutoff_frequency(800, filter_hz); _gyro_filter_z.set_cutoff_frequency(800, filter_hz); } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ bool AP_InertialSensor_L3G4200D::update(void) { Vector3f accel_scale = _accel_scale[0].get(); _previous_accel[0] = _accel[0]; hal.scheduler->suspend_timer_procs(); _accel[0] = _accel_filtered; _gyro[0] = _gyro_filtered; _delta_time = _gyro_samples_available * (1.0f/800); _gyro_samples_available = 0; hal.scheduler->resume_timer_procs(); // add offsets and rotation _accel[0].rotate(_board_orientation); // Adjust for chip scaling to get m/s/s _accel[0] *= ADXL345_ACCELEROMETER_SCALE_M_S; // Now the calibration scale factor _accel[0].x *= accel_scale.x; _accel[0].y *= accel_scale.y; _accel[0].z *= accel_scale.z; _accel[0] -= _accel_offset[0]; _gyro[0].rotate(_board_orientation); // Adjust for chip scaling to get radians/sec _gyro[0] *= L3G4200D_GYRO_SCALE_R_S; _gyro[0] -= _gyro_offset[0]; if (_last_filter_hz != _mpu6000_filter) { _set_filter_frequency(_mpu6000_filter); _last_filter_hz = _mpu6000_filter; } return true; } float AP_InertialSensor_L3G4200D::get_delta_time(void) const { return _delta_time; } float AP_InertialSensor_L3G4200D::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute (a guess) return ToRad(0.5/60); } // Accumulate values from accels and gyros void AP_InertialSensor_L3G4200D::_accumulate(void) { // get pointer to i2c bus semaphore AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); // take i2c bus sempahore if (!i2c_sem->take_nonblocking()) return; uint8_t num_samples_available; uint8_t fifo_status = 0; // Read gyro FIFO status fifo_status = 0; hal.i2c->readRegister(L3G4200D_I2C_ADDRESS, L3G4200D_REG_FIFO_SRC, &fifo_status); if (fifo_status & L3G4200D_REG_FIFO_SRC_OVERRUN) { // FIFO is full num_samples_available = 32; } else if (fifo_status & L3G4200D_REG_FIFO_SRC_EMPTY) { // FIFO is empty num_samples_available = 0; } else { // FIFO is partly full num_samples_available = fifo_status & L3G4200D_REG_FIFO_SRC_ENTRIES_MASK; } if (num_samples_available > 0) { // read all the entries in one go, using AUTO_INCREMENT. This saves a lot of time on I2C setup int16_t buffer[num_samples_available][3]; if (hal.i2c->readRegisters(L3G4200D_I2C_ADDRESS, L3G4200D_REG_XL | L3G4200D_REG_AUTO_INCREMENT, sizeof(buffer), (uint8_t *)&buffer[0][0]) == 0) { for (uint8_t i=0; ireadRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_FIFO_STATUS, &fifo_status); num_samples_available = fifo_status & 0x3F; #if 1 // read the samples and apply the filter if (num_samples_available > 0) { int16_t buffer[num_samples_available][3]; if (hal.i2c->readRegistersMultiple(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_DATAX0, sizeof(buffer[0]), num_samples_available, (uint8_t *)&buffer[0][0]) == 0) { for (uint8_t i=0; igive(); } bool AP_InertialSensor_L3G4200D::_sample_available(void) { return (_gyro_samples_available >= _gyro_samples_needed); } bool AP_InertialSensor_L3G4200D::wait_for_sample(uint16_t timeout_ms) { uint32_t start_us = hal.scheduler->micros(); while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &_next_sample_ts, NULL) == -1 && errno == EINTR) ; _next_sample_ts.tv_nsec += _sample_period_usec * 1000UL; if (_next_sample_ts.tv_nsec >= 1.0e9) { _next_sample_ts.tv_nsec -= 1.0e9; _next_sample_ts.tv_sec++; } //_accumulate(); return true; } #endif // CONFIG_HAL_BOARD