/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "AP_Proximity.h" #include "AP_Proximity_Backend.h" /* base class constructor. This incorporates initialisation as well. */ AP_Proximity_Backend::AP_Proximity_Backend(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state) : frontend(_frontend), state(_state) { // initialise sector edge vector used for building the boundary fence init_boundary(); } // get distance in meters in a particular direction in degrees (0 is forward, angles increase in the clockwise direction) bool AP_Proximity_Backend::get_horizontal_distance(float angle_deg, float &distance) const { uint8_t sector; if (convert_angle_to_sector(angle_deg, sector)) { if (_distance_valid[sector]) { distance = _distance[sector]; return true; } } return false; } // get distance and angle to closest object (used for pre-arm check) // returns true on success, false if no valid readings bool AP_Proximity_Backend::get_closest_object(float& angle_deg, float &distance) const { bool sector_found = false; uint8_t sector = 0; // check all sectors for shorter distance for (uint8_t i=0; i<_num_sectors; i++) { if (_distance_valid[i]) { if (!sector_found || (_distance[i] < _distance[sector])) { sector = i; sector_found = true; } } } if (sector_found) { angle_deg = _angle[sector]; distance = _distance[sector]; } return sector_found; } // get number of objects, used for non-GPS avoidance uint8_t AP_Proximity_Backend::get_object_count() const { return _num_sectors; } // get an object's angle and distance, used for non-GPS avoidance // returns false if no angle or distance could be returned for some reason bool AP_Proximity_Backend::get_object_angle_and_distance(uint8_t object_number, float& angle_deg, float &distance) const { if (object_number < _num_sectors && _distance_valid[object_number]) { angle_deg = _angle[object_number]; distance = _distance[object_number]; return true; } return false; } // get distances in 8 directions. used for sending distances to ground station bool AP_Proximity_Backend::get_horizontal_distances(AP_Proximity::Proximity_Distance_Array &prx_dist_array) const { // exit immediately if we have no good ranges bool valid_distances = false; for (uint8_t i=0; i<_num_sectors; i++) { if (_distance_valid[i]) { valid_distances = true; } } if (!valid_distances) { return false; } // initialise orientations and directions // see MAV_SENSOR_ORIENTATION for orientations (0 = forward, 1 = 45 degree clockwise from north, etc) // distances initialised to maximum distances bool dist_set[8]; for (uint8_t i=0; i<8; i++) { prx_dist_array.orientation[i] = i; prx_dist_array.distance[i] = distance_max(); dist_set[i] = false; } // cycle through all sectors filling in distances for (uint8_t i=0; i<_num_sectors; i++) { if (_distance_valid[i]) { // convert angle to orientation int16_t orientation = _angle[i] / 45; if ((orientation >= 0) && (orientation < 8) && (_distance[i] < prx_dist_array.distance[orientation])) { prx_dist_array.distance[orientation] = _distance[i]; dist_set[orientation] = true; } } } // fill in missing orientations with average of adjacent orientations if necessary and possible for (uint8_t i=0; i<8; i++) { if (!dist_set[i]) { uint8_t orient_before = (i==0) ? 7 : (i-1); uint8_t orient_after = (i==7) ? 0 : (i+1); if (dist_set[orient_before] && dist_set[orient_after]) { prx_dist_array.distance[i] = (prx_dist_array.distance[orient_before] + prx_dist_array.distance[orient_after]) / 2.0f; } } } return true; } // get boundary points around vehicle for use by avoidance // returns nullptr and sets num_points to zero if no boundary can be returned const Vector2f* AP_Proximity_Backend::get_boundary_points(uint16_t& num_points) const { // high-level status check if (state.status != AP_Proximity::Proximity_Good) { num_points = 0; return nullptr; } // check at least one sector has valid data, if not, exit bool some_valid = false; for (uint8_t i=0; i<_num_sectors; i++) { if (_distance_valid[i]) { some_valid = true; break; } } if (!some_valid) { num_points = 0; return nullptr; } // return boundary points num_points = _num_sectors; return _boundary_point; } // initialise the boundary and sector_edge_vector array used for object avoidance // should be called if the sector_middle_deg or _setor_width_deg arrays are changed void AP_Proximity_Backend::init_boundary() { for (uint8_t sector=0; sector < _num_sectors; sector++) { float angle_rad = radians((float)_sector_middle_deg[sector]+(float)_sector_width_deg[sector]/2.0f); _sector_edge_vector[sector].x = cosf(angle_rad) * 100.0f; _sector_edge_vector[sector].y = sinf(angle_rad) * 100.0f; _boundary_point[sector] = _sector_edge_vector[sector] * PROXIMITY_BOUNDARY_DIST_DEFAULT; } } // update boundary points used for object avoidance based on a single sector's distance changing // the boundary points lie on the line between sectors meaning two boundary points may be updated based on a single sector's distance changing // the boundary point is set to the shortest distance found in the two adjacent sectors, this is a conservative boundary around the vehicle void AP_Proximity_Backend::update_boundary_for_sector(uint8_t sector) { // sanity check if (sector >= _num_sectors) { return; } // find adjacent sector (clockwise) uint8_t next_sector = sector + 1; if (next_sector >= _num_sectors) { next_sector = 0; } // boundary point lies on the line between the two sectors at the shorter distance found in the two sectors float shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; if (_distance_valid[sector] && _distance_valid[next_sector]) { shortest_distance = MIN(_distance[sector], _distance[next_sector]); } else if (_distance_valid[sector]) { shortest_distance = _distance[sector]; } else if (_distance_valid[next_sector]) { shortest_distance = _distance[next_sector]; } if (shortest_distance < PROXIMITY_BOUNDARY_DIST_MIN) { shortest_distance = PROXIMITY_BOUNDARY_DIST_MIN; } _boundary_point[sector] = _sector_edge_vector[sector] * shortest_distance; // if the next sector (clockwise) has an invalid distance, set boundary to create a cup like boundary if (!_distance_valid[next_sector]) { _boundary_point[next_sector] = _sector_edge_vector[next_sector] * shortest_distance; } // repeat for edge between sector and previous sector uint8_t prev_sector = (sector == 0) ? _num_sectors-1 : sector-1; shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; if (_distance_valid[prev_sector] && _distance_valid[sector]) { shortest_distance = MIN(_distance[prev_sector], _distance[sector]); } else if (_distance_valid[prev_sector]) { shortest_distance = _distance[prev_sector]; } else if (_distance_valid[sector]) { shortest_distance = _distance[sector]; } _boundary_point[prev_sector] = _sector_edge_vector[prev_sector] * shortest_distance; // if the sector counter-clockwise from the previous sector has an invalid distance, set boundary to create a cup like boundary uint8_t prev_sector_ccw = (prev_sector == 0) ? _num_sectors-1 : prev_sector-1; if (!_distance_valid[prev_sector_ccw]) { _boundary_point[prev_sector_ccw] = _sector_edge_vector[prev_sector_ccw] * shortest_distance; } } // set status and update valid count void AP_Proximity_Backend::set_status(AP_Proximity::Proximity_Status status) { state.status = status; } bool AP_Proximity_Backend::convert_angle_to_sector(float angle_degrees, uint8_t §or) const { // sanity check angle if (angle_degrees > 360.0f || angle_degrees < -180.0f) { return false; } // convert to 0 ~ 360 if (angle_degrees < 0.0f) { angle_degrees += 360.0f; } bool closest_found = false; uint8_t closest_sector; float closest_angle; // search for which sector angle_degrees falls into for (uint8_t i = 0; i < _num_sectors; i++) { float angle_diff = fabsf(wrap_180(_sector_middle_deg[i] - angle_degrees)); // record if closest if (!closest_found || angle_diff < closest_angle) { closest_found = true; closest_sector = i; closest_angle = angle_diff; } if (fabsf(angle_diff) <= _sector_width_deg[i] / 2.0f) { sector = i; return true; } } // angle_degrees might have been within a gap between sectors if (closest_found) { sector = closest_sector; return true; } return false; } // get ignore area info uint8_t AP_Proximity_Backend::get_ignore_area_count() const { // count number of ignore sectors uint8_t count = 0; for (uint8_t i=0; i < PROXIMITY_MAX_IGNORE; i++) { if (frontend._ignore_width_deg[i] != 0) { count++; } } return count; } // get next ignore angle bool AP_Proximity_Backend::get_ignore_area(uint8_t index, uint16_t &angle_deg, uint8_t &width_deg) const { if (index >= PROXIMITY_MAX_IGNORE) { return false; } angle_deg = frontend._ignore_angle_deg[index]; width_deg = frontend._ignore_width_deg[index]; return true; } // retrieve start or end angle of next ignore area (i.e. closest ignore area higher than the start_angle) // start_or_end = 0 to get start, 1 to retrieve end bool AP_Proximity_Backend::get_next_ignore_start_or_end(uint8_t start_or_end, int16_t start_angle, int16_t &ignore_start) const { bool found = false; int16_t smallest_angle_diff = 0; int16_t smallest_angle_start = 0; for (uint8_t i=0; i < PROXIMITY_MAX_IGNORE; i++) { if (frontend._ignore_width_deg[i] != 0) { int16_t offset = start_or_end == 0 ? -frontend._ignore_width_deg[i] : +frontend._ignore_width_deg[i]; int16_t ignore_start_angle = wrap_360(frontend._ignore_angle_deg[i] + offset/2.0f); int16_t ang_diff = wrap_360(ignore_start_angle - start_angle); if (!found || ang_diff < smallest_angle_diff) { smallest_angle_diff = ang_diff; smallest_angle_start = ignore_start_angle; found = true; } } } if (found) { ignore_start = smallest_angle_start; } return found; }