#include "Copter.h" #include "mode.h" #if MODE_ACRO_ENABLED == ENABLED /* * Init and run calls for acro flight mode */ void ModeAcro::run() { // convert the input to the desired body frame rate float target_roll, target_pitch, target_yaw; get_pilot_desired_angle_rates(channel_roll->get_control_in(), channel_pitch->get_control_in(), channel_yaw->get_control_in(), target_roll, target_pitch, target_yaw); if (!motors->armed()) { // Motors should be Stopped motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN); } else if (copter.ap.throttle_zero) { // Attempting to Land motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); } else { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); } switch (motors->get_spool_state()) { case AP_Motors::SpoolState::SHUT_DOWN: // Motors Stopped attitude_control->set_attitude_target_to_current_attitude(); attitude_control->reset_rate_controller_I_terms(); break; case AP_Motors::SpoolState::GROUND_IDLE: // Landed attitude_control->set_attitude_target_to_current_attitude(); attitude_control->reset_rate_controller_I_terms_smoothly(); break; case AP_Motors::SpoolState::THROTTLE_UNLIMITED: // clear landing flag above zero throttle if (!motors->limit.throttle_lower) { set_land_complete(false); } break; case AP_Motors::SpoolState::SPOOLING_UP: case AP_Motors::SpoolState::SPOOLING_DOWN: // do nothing break; } // run attitude controller if (g2.acro_options.get() & uint8_t(AcroOptions::RATE_LOOP_ONLY)) { attitude_control->input_rate_bf_roll_pitch_yaw_2(target_roll, target_pitch, target_yaw); } else { attitude_control->input_rate_bf_roll_pitch_yaw(target_roll, target_pitch, target_yaw); } // output pilot's throttle without angle boost attitude_control->set_throttle_out(get_pilot_desired_throttle(), false, copter.g.throttle_filt); } bool ModeAcro::init(bool ignore_checks) { if (g2.acro_options.get() & uint8_t(AcroOptions::AIR_MODE)) { disable_air_mode_reset = false; copter.air_mode = AirMode::AIRMODE_ENABLED; } return true; } void ModeAcro::exit() { if (!disable_air_mode_reset && (g2.acro_options.get() & uint8_t(AcroOptions::AIR_MODE))) { copter.air_mode = AirMode::AIRMODE_DISABLED; } disable_air_mode_reset = false; } void ModeAcro::air_mode_aux_changed() { disable_air_mode_reset = true; } float ModeAcro::throttle_hover() const { if (g2.acro_thr_mid > 0) { return g2.acro_thr_mid; } return Mode::throttle_hover(); } // get_pilot_desired_angle_rates - transform pilot's roll pitch and yaw input into a desired lean angle rates // returns desired angle rates in centi-degrees-per-second void ModeAcro::get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out) { float rate_limit; Vector3f rate_ef_level, rate_bf_level, rate_bf_request; // apply circular limit to pitch and roll inputs float total_in = norm(pitch_in, roll_in); if (total_in > ROLL_PITCH_YAW_INPUT_MAX) { float ratio = (float)ROLL_PITCH_YAW_INPUT_MAX / total_in; roll_in *= ratio; pitch_in *= ratio; } // range check expo g.acro_rp_expo = constrain_float(g.acro_rp_expo, -0.5f, 1.0f); // calculate roll, pitch rate requests if (is_zero(g.acro_rp_expo)) { rate_bf_request.x = roll_in * g.acro_rp_p; rate_bf_request.y = pitch_in * g.acro_rp_p; } else { // expo variables float rp_in, rp_in3, rp_out; // roll expo rp_in = float(roll_in)/ROLL_PITCH_YAW_INPUT_MAX; rp_in3 = rp_in*rp_in*rp_in; rp_out = (g.acro_rp_expo * rp_in3) + ((1.0f - g.acro_rp_expo) * rp_in); rate_bf_request.x = ROLL_PITCH_YAW_INPUT_MAX * rp_out * g.acro_rp_p; // pitch expo rp_in = float(pitch_in)/ROLL_PITCH_YAW_INPUT_MAX; rp_in3 = rp_in*rp_in*rp_in; rp_out = (g.acro_rp_expo * rp_in3) + ((1.0f - g.acro_rp_expo) * rp_in); rate_bf_request.y = ROLL_PITCH_YAW_INPUT_MAX * rp_out * g.acro_rp_p; } // calculate yaw rate request rate_bf_request.z = get_pilot_desired_yaw_rate(yaw_in); // calculate earth frame rate corrections to pull the copter back to level while in ACRO mode if (g.acro_trainer != (uint8_t)Trainer::OFF) { // get attitude targets const Vector3f att_target = attitude_control->get_att_target_euler_cd(); // Calculate trainer mode earth frame rate command for roll int32_t roll_angle = wrap_180_cd(att_target.x); rate_ef_level.x = -constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll; // Calculate trainer mode earth frame rate command for pitch int32_t pitch_angle = wrap_180_cd(att_target.y); rate_ef_level.y = -constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch; // Calculate trainer mode earth frame rate command for yaw rate_ef_level.z = 0; // Calculate angle limiting earth frame rate commands if (g.acro_trainer == (uint8_t)Trainer::LIMITED) { const float angle_max = copter.aparm.angle_max; if (roll_angle > angle_max){ rate_ef_level.x += sqrt_controller(angle_max - roll_angle, g.acro_rp_p * 4.5, attitude_control->get_accel_roll_max(), G_Dt); }else if (roll_angle < -angle_max) { rate_ef_level.x += sqrt_controller(-angle_max - roll_angle, g.acro_rp_p * 4.5, attitude_control->get_accel_roll_max(), G_Dt); } if (pitch_angle > angle_max){ rate_ef_level.y += sqrt_controller(angle_max - pitch_angle, g.acro_rp_p * 4.5, attitude_control->get_accel_pitch_max(), G_Dt); }else if (pitch_angle < -angle_max) { rate_ef_level.y += sqrt_controller(-angle_max - pitch_angle, g.acro_rp_p * 4.5, attitude_control->get_accel_pitch_max(), G_Dt); } } // convert earth-frame level rates to body-frame level rates attitude_control->euler_rate_to_ang_vel(attitude_control->get_att_target_euler_cd()*radians(0.01f), rate_ef_level, rate_bf_level); // combine earth frame rate corrections with rate requests if (g.acro_trainer == (uint8_t)Trainer::LIMITED) { rate_bf_request.x += rate_bf_level.x; rate_bf_request.y += rate_bf_level.y; rate_bf_request.z += rate_bf_level.z; }else{ float acro_level_mix = constrain_float(1-float(MAX(MAX(abs(roll_in), abs(pitch_in)), abs(yaw_in))/4500.0), 0, 1)*ahrs.cos_pitch(); // Scale leveling rates by stick input rate_bf_level = rate_bf_level*acro_level_mix; // Calculate rate limit to prevent change of rate through inverted rate_limit = fabsf(fabsf(rate_bf_request.x)-fabsf(rate_bf_level.x)); rate_bf_request.x += rate_bf_level.x; rate_bf_request.x = constrain_float(rate_bf_request.x, -rate_limit, rate_limit); // Calculate rate limit to prevent change of rate through inverted rate_limit = fabsf(fabsf(rate_bf_request.y)-fabsf(rate_bf_level.y)); rate_bf_request.y += rate_bf_level.y; rate_bf_request.y = constrain_float(rate_bf_request.y, -rate_limit, rate_limit); // Calculate rate limit to prevent change of rate through inverted rate_limit = fabsf(fabsf(rate_bf_request.z)-fabsf(rate_bf_level.z)); rate_bf_request.z += rate_bf_level.z; rate_bf_request.z = constrain_float(rate_bf_request.z, -rate_limit, rate_limit); } } // hand back rate request roll_out = rate_bf_request.x; pitch_out = rate_bf_request.y; yaw_out = rate_bf_request.z; } #endif