/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #ifndef Compass_h #define Compass_h #include #include #include #include #include // ArduPilot Mega Declination Helper Library // compass product id #define AP_COMPASS_TYPE_UNKNOWN 0x00 #define AP_COMPASS_TYPE_HIL 0x01 #define AP_COMPASS_TYPE_HMC5843 0x02 #define AP_COMPASS_TYPE_HMC5883L 0x03 #define AP_COMPASS_TYPE_PX4 0x04 #define AP_COMPASS_TYPE_VRBRAIN 0x05 // motor compensation types (for use with motor_comp_enabled) #define AP_COMPASS_MOT_COMP_DISABLED 0x00 #define AP_COMPASS_MOT_COMP_THROTTLE 0x01 #define AP_COMPASS_MOT_COMP_CURRENT 0x02 // setup default mag orientation for each board type #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 # define MAG_BOARD_ORIENTATION ROTATION_ROLL_180 #elif CONFIG_HAL_BOARD == HAL_BOARD_APM2 # define MAG_BOARD_ORIENTATION ROTATION_NONE #elif CONFIG_HAL_BOARD == HAL_BOARD_FLYMAPLE # define MAG_BOARD_ORIENTATION ROTATION_NONE #elif CONFIG_HAL_BOARD == HAL_BOARD_PX4 # define MAG_BOARD_ORIENTATION ROTATION_NONE #elif CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL # define MAG_BOARD_ORIENTATION ROTATION_NONE #elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX # define MAG_BOARD_ORIENTATION ROTATION_YAW_90 #elif CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN # define MAG_BOARD_ORIENTATION ROTATION_NONE #else # error "You must define a default compass orientation for this board" #endif /** maximum number of compass instances available on this platform. If more than 1 then redundent sensors may be available */ #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #define COMPASS_MAX_INSTANCES 2 #elif CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN #define COMPASS_MAX_INSTANCES 2 #else #define COMPASS_MAX_INSTANCES 1 #endif class Compass { public: int16_t product_id; /// product id uint32_t last_update; ///< micros() time of last update /// Constructor /// Compass(); /// Initialize the compass device. /// /// @returns True if the compass was initialized OK, false if it was not /// found or is not functioning. /// virtual bool init(); /// Read the compass and update the mag_ variables. /// virtual bool read(void) = 0; /// use spare CPU cycles to accumulate values from the compass if /// possible virtual void accumulate(void) = 0; /// Calculate the tilt-compensated heading_ variables. /// /// @param dcm_matrix The current orientation rotation matrix /// /// @returns heading in radians /// float calculate_heading(const Matrix3f &dcm_matrix) const; /// Sets the compass offset x/y/z values. /// /// @param offsets Offsets to the raw mag_ values. /// void set_offsets(const Vector3f &offsets); /// Saves the current compass offset x/y/z values. /// /// This should be invoked periodically to save the offset values maintained by /// ::learn_offsets. /// void save_offsets(); // return the number of compass instances virtual uint8_t get_count(void) const { return 1; } /// Return the current field as a Vector3f const Vector3f &get_field(uint8_t i) const { return _field[i]; } const Vector3f &get_field(void) const { return get_field(_get_primary()); } /// Return the health of a compass bool healthy(uint8_t i) const { return _healthy[i]; } bool healthy(void) const { return healthy(_get_primary()); } /// set the current field as a Vector3f void set_field(const Vector3f &field) { _field[0] = field; } /// Returns the current offset values /// /// @returns The current compass offsets. /// const Vector3f &get_offsets(uint8_t i) const { return _offset[i]; } const Vector3f &get_offsets(void) const { return get_offsets(_get_primary()); } /// Sets the initial location used to get declination /// /// @param latitude GPS Latitude. /// @param longitude GPS Longitude. /// void set_initial_location(int32_t latitude, int32_t longitude); /// Program new offset values. /// /// @param x Offset to the raw mag_x value. /// @param y Offset to the raw mag_y value. /// @param z Offset to the raw mag_z value. /// void set_offsets(int x, int y, int z) { set_offsets(Vector3f(x, y, z)); } /// Perform automatic offset updates /// void learn_offsets(void); /// return true if the compass should be used for yaw calculations bool use_for_yaw(void) const { return _healthy[0] && _use_for_yaw; } /// Sets the local magnetic field declination. /// /// @param radians Local field declination. /// @param save_to_eeprom true to save to eeprom (false saves only to memory) /// void set_declination(float radians, bool save_to_eeprom = true); float get_declination() const; // set overall board orientation void set_board_orientation(enum Rotation orientation) { _board_orientation = orientation; } /// Set the motor compensation type /// /// @param comp_type 0 = disabled, 1 = enabled use throttle, 2 = enabled use current /// void motor_compensation_type(const uint8_t comp_type) { if (_motor_comp_type <= AP_COMPASS_MOT_COMP_CURRENT && _motor_comp_type != (int8_t)comp_type) { _motor_comp_type = (int8_t)comp_type; _thr_or_curr = 0; // set current current or throttle to zero set_motor_compensation(Vector3f(0,0,0)); // clear out invalid compensation vector } } /// get the motor compensation value. uint8_t motor_compensation_type() const { return _motor_comp_type; } /// Set the motor compensation factor x/y/z values. /// /// @param offsets Offsets multiplied by the throttle value and added to the raw mag_ values. /// void set_motor_compensation(const Vector3f &motor_comp_factor, uint8_t i=0); /// get motor compensation factors as a vector const Vector3f& get_motor_compensation(uint8_t i) const { return _motor_compensation[i]; } const Vector3f& get_motor_compensation(void) const { return get_motor_compensation(0); } /// Saves the current motor compensation x/y/z values. /// /// This should be invoked periodically to save the offset values calculated by the motor compensation auto learning /// void save_motor_compensation(); /// Returns the current motor compensation offset values /// /// @returns The current compass offsets. /// const Vector3f &get_motor_offsets(uint8_t i) const { return _motor_offset[i]; } const Vector3f &get_motor_offsets(void) const { return get_motor_offsets(0); } /// Set the throttle as a percentage from 0.0 to 1.0 /// @param thr_pct throttle expressed as a percentage from 0 to 1.0 void set_throttle(float thr_pct) { if(_motor_comp_type == AP_COMPASS_MOT_COMP_THROTTLE) { _thr_or_curr = thr_pct; } } /// Set the current used by system in amps /// @param amps current flowing to the motors expressed in amps void set_current(float amps) { if(_motor_comp_type == AP_COMPASS_MOT_COMP_CURRENT) { _thr_or_curr = amps; } } static const struct AP_Param::GroupInfo var_info[]; // settable parameters AP_Int8 _learn; /// 1 AP_Int8 _primary; ///primary instance #endif bool _null_init_done; ///< first-time-around flag used by offset nulling ///< used by offset correction static const uint8_t _mag_history_size = 20; uint8_t _mag_history_index[COMPASS_MAX_INSTANCES]; Vector3i _mag_history[COMPASS_MAX_INSTANCES][_mag_history_size]; // motor compensation AP_Int8 _motor_comp_type; // 0 = disabled, 1 = enabled for throttle, 2 = enabled for current AP_Vector3f _motor_compensation[COMPASS_MAX_INSTANCES]; // factors multiplied by throttle and added to compass outputs Vector3f _motor_offset[COMPASS_MAX_INSTANCES]; // latest compensation added to compass float _thr_or_curr; // throttle expressed as a percentage from 0 ~ 1.0 or current expressed in amps // board orientation from AHRS enum Rotation _board_orientation; }; #endif