// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Copter.h" void Copter::init_barometer(bool full_calibration) { gcs_send_text(MAV_SEVERITY_INFO, "Calibrating barometer"); if (full_calibration) { barometer.calibrate(); }else{ barometer.update_calibration(); } gcs_send_text(MAV_SEVERITY_INFO, "Barometer calibration complete"); } // return barometric altitude in centimeters void Copter::read_barometer(void) { barometer.update(); if (should_log(MASK_LOG_IMU)) { Log_Write_Baro(); } baro_alt = barometer.get_altitude() * 100.0f; baro_climbrate = barometer.get_climb_rate() * 100.0f; motors.set_air_density_ratio(barometer.get_air_density_ratio()); } void Copter::init_rangefinder(void) { #if RANGEFINDER_ENABLED == ENABLED rangefinder.init(); rangefinder_state.alt_cm_filt.set_cutoff_frequency(RANGEFINDER_WPNAV_FILT_HZ); rangefinder_state.enabled = (rangefinder.num_sensors() >= 1); #endif } // return rangefinder altitude in centimeters void Copter::read_rangefinder(void) { #if RANGEFINDER_ENABLED == ENABLED rangefinder.update(); rangefinder_state.alt_healthy = ((rangefinder.status() == RangeFinder::RangeFinder_Good) && (rangefinder.range_valid_count() >= RANGEFINDER_HEALTH_MAX)); int16_t temp_alt = rangefinder.distance_cm(); #if RANGEFINDER_TILT_CORRECTION == ENABLED // correct alt for angle of the rangefinder temp_alt = (float)temp_alt * MAX(0.707f, ahrs.get_rotation_body_to_ned().c.z); #endif rangefinder_state.alt_cm = temp_alt; // filter rangefinder for use by AC_WPNav uint32_t now = AP_HAL::millis(); if (rangefinder_state.alt_healthy) { if (now - rangefinder_state.last_healthy_ms > RANGEFINDER_TIMEOUT_MS) { // reset filter if we haven't used it within the last second rangefinder_state.alt_cm_filt.reset(rangefinder_state.alt_cm); } else { rangefinder_state.alt_cm_filt.apply(rangefinder_state.alt_cm, 0.05f); } rangefinder_state.last_healthy_ms = now; } // send rangefinder altitude and health to waypoint navigation library wp_nav.set_rangefinder_alt(rangefinder_state.enabled, rangefinder_state.alt_healthy, rangefinder_state.alt_cm_filt.get()); #else rangefinder_state.enabled = false; rangefinder_state.alt_healthy = false; rangefinder_state.alt_cm = 0; #endif } // return true if rangefinder_alt can be used bool Copter::rangefinder_alt_ok() { return (rangefinder_state.enabled && rangefinder_state.alt_healthy); } /* update RPM sensors */ void Copter::rpm_update(void) { rpm_sensor.update(); if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) { if (should_log(MASK_LOG_RCIN)) { DataFlash.Log_Write_RPM(rpm_sensor); } } } // initialise compass void Copter::init_compass() { if (!compass.init() || !compass.read()) { // make sure we don't pass a broken compass to DCM cliSerial->println("COMPASS INIT ERROR"); Log_Write_Error(ERROR_SUBSYSTEM_COMPASS,ERROR_CODE_FAILED_TO_INITIALISE); return; } ahrs.set_compass(&compass); } // initialise optical flow sensor void Copter::init_optflow() { #if OPTFLOW == ENABLED // exit immediately if not enabled if (!optflow.enabled()) { return; } // initialise optical flow sensor optflow.init(); #endif // OPTFLOW == ENABLED } // called at 200hz #if OPTFLOW == ENABLED void Copter::update_optical_flow(void) { static uint32_t last_of_update = 0; // exit immediately if not enabled if (!optflow.enabled()) { return; } // read from sensor optflow.update(); // write to log and send to EKF if new data has arrived if (optflow.last_update() != last_of_update) { last_of_update = optflow.last_update(); uint8_t flowQuality = optflow.quality(); Vector2f flowRate = optflow.flowRate(); Vector2f bodyRate = optflow.bodyRate(); ahrs.writeOptFlowMeas(flowQuality, flowRate, bodyRate, last_of_update); if (g.log_bitmask & MASK_LOG_OPTFLOW) { Log_Write_Optflow(); } } } #endif // OPTFLOW == ENABLED // read_battery - check battery voltage and current and invoke failsafe if necessary // called at 10hz void Copter::read_battery(void) { battery.read(); // update compass with current value if (battery.has_current()) { compass.set_current(battery.current_amps()); } // update motors with voltage and current if (battery.get_type() != AP_BattMonitor::BattMonitor_TYPE_NONE) { motors.set_voltage(battery.voltage()); } if (battery.has_current()) { motors.set_current(battery.current_amps()); } // check for low voltage or current if the low voltage check hasn't already been triggered // we only check when we're not powered by USB to avoid false alarms during bench tests if (!ap.usb_connected && !failsafe.battery && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah)) { failsafe_battery_event(); } // log battery info to the dataflash if (should_log(MASK_LOG_CURRENT)) { Log_Write_Current(); } } // read the receiver RSSI as an 8 bit number for MAVLink // RC_CHANNELS_SCALED message void Copter::read_receiver_rssi(void) { receiver_rssi = rssi.read_receiver_rssi_uint8(); } void Copter::compass_cal_update() { static uint32_t compass_cal_stick_gesture_begin = 0; if (!hal.util->get_soft_armed()) { compass.compass_cal_update(); } #ifdef CAL_ALWAYS_REBOOT if (compass.compass_cal_requires_reboot()) { hal.scheduler->delay(1000); hal.scheduler->reboot(false); return; } #endif if (compass.is_calibrating()) { if (channel_yaw->get_control_in() < -4000 && channel_throttle->get_control_in() > 900) { compass.cancel_calibration_all(); } } else { bool stick_gesture_detected = compass_cal_stick_gesture_begin != 0 && !motors.armed() && channel_yaw->get_control_in() > 4000 && channel_throttle->get_control_in() > 900; uint32_t tnow = millis(); if (!stick_gesture_detected) { compass_cal_stick_gesture_begin = tnow; } else if (tnow-compass_cal_stick_gesture_begin > 1000*COMPASS_CAL_STICK_GESTURE_TIME) { compass.start_calibration_all(true,true,COMPASS_CAL_STICK_DELAY,false); } } } void Copter::accel_cal_update() { if (hal.util->get_soft_armed()) { return; } ins.acal_update(); // check if new trim values, and set them float trim_roll, trim_pitch; if(ins.get_new_trim(trim_roll, trim_pitch)) { ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); } #ifdef CAL_ALWAYS_REBOOT if (ins.accel_cal_requires_reboot()) { hal.scheduler->delay(1000); hal.scheduler->reboot(false); } #endif } #if EPM_ENABLED == ENABLED // epm update - moves epm pwm output back to neutral after grab or release is completed void Copter::epm_update() { epm.update(); } #endif /* update AP_Button */ void Copter::button_update(void) { g2.button.update(); } // initialise proximity sensor void Copter::init_proximity(void) { #if PROXIMITY_ENABLED == ENABLED proximity.init(); #endif } // update proximity sensor void Copter::update_proximity(void) { #if PROXIMITY_ENABLED == ENABLED proximity.update(); #endif }