#include "Copter.h" #include "version.h" #if LOGGING_ENABLED == ENABLED // Code to Write and Read packets from DataFlash log memory // Code to interact with the user to dump or erase logs #if CLI_ENABLED == ENABLED // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details static const struct Menu::command log_menu_commands[] = { {"dump", MENU_FUNC(dump_log)}, {"erase", MENU_FUNC(erase_logs)}, {"enable", MENU_FUNC(select_logs)}, {"disable", MENU_FUNC(select_logs)} }; // A Macro to create the Menu MENU2(log_menu, "Log", log_menu_commands, FUNCTOR_BIND(&copter, &Copter::print_log_menu, bool)); bool Copter::print_log_menu(void) { cliSerial->printf("logs enabled: "); if (0 == g.log_bitmask) { cliSerial->printf("none"); }else{ // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // the bit being set and print the name of the log option to suit. #define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf(" %s", # _s) PLOG(ATTITUDE_FAST); PLOG(ATTITUDE_MED); PLOG(GPS); PLOG(PM); PLOG(CTUN); PLOG(NTUN); PLOG(RCIN); PLOG(IMU); PLOG(CMD); PLOG(CURRENT); PLOG(RCOUT); PLOG(OPTFLOW); PLOG(COMPASS); PLOG(CAMERA); PLOG(PID); #undef PLOG } cliSerial->printf("\n"); DataFlash.ListAvailableLogs(cliSerial); return(true); } int8_t Copter::dump_log(uint8_t argc, const Menu::arg *argv) { int16_t dump_log_num; uint16_t dump_log_start; uint16_t dump_log_end; // check that the requested log number can be read dump_log_num = argv[1].i; if (dump_log_num == -2) { DataFlash.DumpPageInfo(cliSerial); return(-1); } else if (dump_log_num <= 0) { cliSerial->printf("dumping all\n"); Log_Read(0, 1, 0); return(-1); } else if ((argc != 2) || ((uint16_t)dump_log_num > DataFlash.get_num_logs())) { cliSerial->printf("bad log number\n"); return(-1); } DataFlash.get_log_boundaries(dump_log_num, dump_log_start, dump_log_end); Log_Read((uint16_t)dump_log_num, dump_log_start, dump_log_end); return (0); } int8_t Copter::erase_logs(uint8_t argc, const Menu::arg *argv) { DataFlash.EnableWrites(false); do_erase_logs(); DataFlash.EnableWrites(true); return 0; } int8_t Copter::select_logs(uint8_t argc, const Menu::arg *argv) { uint16_t bits; if (argc != 2) { cliSerial->printf("missing log type\n"); return(-1); } bits = 0; // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // that name as the argument to the command, and set the bit in // bits accordingly. // if (!strcasecmp(argv[1].str, "all")) { bits = ~0; } else { #define TARG(_s) if (!strcasecmp(argv[1].str, # _s)) bits |= MASK_LOG_ ## _s TARG(ATTITUDE_FAST); TARG(ATTITUDE_MED); TARG(GPS); TARG(PM); TARG(CTUN); TARG(NTUN); TARG(RCIN); TARG(IMU); TARG(CMD); TARG(CURRENT); TARG(RCOUT); TARG(OPTFLOW); TARG(COMPASS); TARG(CAMERA); TARG(PID); #undef TARG } if (!strcasecmp(argv[0].str, "enable")) { g.log_bitmask.set_and_save(g.log_bitmask | bits); }else{ g.log_bitmask.set_and_save(g.log_bitmask & ~bits); } return(0); } int8_t Copter::process_logs(uint8_t argc, const Menu::arg *argv) { log_menu.run(); return 0; } #endif // CLI_ENABLED void Copter::do_erase_logs(void) { gcs().send_text(MAV_SEVERITY_INFO, "Erasing logs"); DataFlash.EraseAll(); gcs().send_text(MAV_SEVERITY_INFO, "Log erase complete"); } #if AUTOTUNE_ENABLED == ENABLED struct PACKED log_AutoTune { LOG_PACKET_HEADER; uint64_t time_us; uint8_t axis; // roll or pitch uint8_t tune_step; // tuning PI or D up or down float meas_target; // target achieved rotation rate float meas_min; // maximum achieved rotation rate float meas_max; // maximum achieved rotation rate float new_gain_rp; // newly calculated gain float new_gain_rd; // newly calculated gain float new_gain_sp; // newly calculated gain float new_ddt; // newly calculated gain }; // Write an Autotune data packet void Copter::Log_Write_AutoTune(uint8_t axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt) { struct log_AutoTune pkt = { LOG_PACKET_HEADER_INIT(LOG_AUTOTUNE_MSG), time_us : AP_HAL::micros64(), axis : axis, tune_step : tune_step, meas_target : meas_target, meas_min : meas_min, meas_max : meas_max, new_gain_rp : new_gain_rp, new_gain_rd : new_gain_rd, new_gain_sp : new_gain_sp, new_ddt : new_ddt }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_AutoTuneDetails { LOG_PACKET_HEADER; uint64_t time_us; float angle_cd; // lean angle in centi-degrees float rate_cds; // current rotation rate in centi-degrees / second }; // Write an Autotune data packet void Copter::Log_Write_AutoTuneDetails(float angle_cd, float rate_cds) { struct log_AutoTuneDetails pkt = { LOG_PACKET_HEADER_INIT(LOG_AUTOTUNEDETAILS_MSG), time_us : AP_HAL::micros64(), angle_cd : angle_cd, rate_cds : rate_cds }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } #endif // Write a Current data packet void Copter::Log_Write_Current() { DataFlash.Log_Write_Current(battery); // also write power status DataFlash.Log_Write_Power(); } struct PACKED log_Optflow { LOG_PACKET_HEADER; uint64_t time_us; uint8_t surface_quality; float flow_x; float flow_y; float body_x; float body_y; }; // Write an optical flow packet void Copter::Log_Write_Optflow() { #if OPTFLOW == ENABLED // exit immediately if not enabled if (!optflow.enabled()) { return; } const Vector2f &flowRate = optflow.flowRate(); const Vector2f &bodyRate = optflow.bodyRate(); struct log_Optflow pkt = { LOG_PACKET_HEADER_INIT(LOG_OPTFLOW_MSG), time_us : AP_HAL::micros64(), surface_quality : optflow.quality(), flow_x : flowRate.x, flow_y : flowRate.y, body_x : bodyRate.x, body_y : bodyRate.y }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); #endif // OPTFLOW == ENABLED } struct PACKED log_Nav_Tuning { LOG_PACKET_HEADER; uint64_t time_us; float desired_pos_x; float desired_pos_y; float pos_x; float pos_y; float desired_vel_x; float desired_vel_y; float vel_x; float vel_y; float desired_accel_x; float desired_accel_y; }; // Write an Nav Tuning packet void Copter::Log_Write_Nav_Tuning() { const Vector3f &pos_target = pos_control->get_pos_target(); const Vector3f &vel_target = pos_control->get_vel_target(); const Vector3f &accel_target = pos_control->get_accel_target(); const Vector3f &position = inertial_nav.get_position(); const Vector3f &velocity = inertial_nav.get_velocity(); struct log_Nav_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_NAV_TUNING_MSG), time_us : AP_HAL::micros64(), desired_pos_x : pos_target.x, desired_pos_y : pos_target.y, pos_x : position.x, pos_y : position.y, desired_vel_x : vel_target.x, desired_vel_y : vel_target.y, vel_x : velocity.x, vel_y : velocity.y, desired_accel_x : accel_target.x, desired_accel_y : accel_target.y }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Control_Tuning { LOG_PACKET_HEADER; uint64_t time_us; float throttle_in; float angle_boost; float throttle_out; float throttle_hover; float desired_alt; float inav_alt; int32_t baro_alt; int16_t desired_rangefinder_alt; int16_t rangefinder_alt; float terr_alt; int16_t target_climb_rate; int16_t climb_rate; }; // Write a control tuning packet void Copter::Log_Write_Control_Tuning() { // get terrain altitude float terr_alt = 0.0f; #if AP_TERRAIN_AVAILABLE && AC_TERRAIN if (terrain.height_above_terrain(terr_alt, true)) { terr_alt = 0.0f; } #endif struct log_Control_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_CONTROL_TUNING_MSG), time_us : AP_HAL::micros64(), throttle_in : attitude_control->get_throttle_in(), angle_boost : attitude_control->angle_boost(), throttle_out : motors->get_throttle(), throttle_hover : motors->get_throttle_hover(), desired_alt : pos_control->get_alt_target() / 100.0f, inav_alt : inertial_nav.get_altitude() / 100.0f, baro_alt : baro_alt, desired_rangefinder_alt : (int16_t)target_rangefinder_alt, rangefinder_alt : rangefinder_state.alt_cm, terr_alt : terr_alt, target_climb_rate : (int16_t)pos_control->get_vel_target_z(), climb_rate : climb_rate }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Performance { LOG_PACKET_HEADER; uint64_t time_us; uint16_t num_long_running; uint16_t num_loops; uint32_t max_time; int16_t pm_test; uint8_t i2c_lockup_count; uint16_t ins_error_count; uint32_t log_dropped; uint32_t mem_avail; }; // Write a performance monitoring packet void Copter::Log_Write_Performance() { struct log_Performance pkt = { LOG_PACKET_HEADER_INIT(LOG_PERFORMANCE_MSG), time_us : AP_HAL::micros64(), num_long_running : perf_info_get_num_long_running(), num_loops : perf_info_get_num_loops(), max_time : perf_info_get_max_time(), pm_test : pmTest1, i2c_lockup_count : 0, ins_error_count : ins.error_count(), log_dropped : DataFlash.num_dropped() - perf_info_get_num_dropped(), hal.util->available_memory() }; DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt)); } // Write an attitude packet void Copter::Log_Write_Attitude() { Vector3f targets = attitude_control->get_att_target_euler_cd(); targets.z = wrap_360_cd(targets.z); DataFlash.Log_Write_Attitude(ahrs, targets); DataFlash.Log_Write_Rate(ahrs, *motors, *attitude_control, *pos_control); if (should_log(MASK_LOG_PID)) { DataFlash.Log_Write_PID(LOG_PIDR_MSG, attitude_control->get_rate_roll_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDP_MSG, attitude_control->get_rate_pitch_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDY_MSG, attitude_control->get_rate_yaw_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDA_MSG, g.pid_accel_z.get_pid_info() ); } } // Write an EKF and POS packet void Copter::Log_Write_EKF_POS() { #if OPTFLOW == ENABLED DataFlash.Log_Write_EKF(ahrs,optflow.enabled()); #else DataFlash.Log_Write_EKF(ahrs,false); #endif DataFlash.Log_Write_AHRS2(ahrs); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL sitl.Log_Write_SIMSTATE(&DataFlash); #endif DataFlash.Log_Write_POS(ahrs); } struct PACKED log_MotBatt { LOG_PACKET_HEADER; uint64_t time_us; float lift_max; float bat_volt; float bat_res; float th_limit; }; // Write an rate packet void Copter::Log_Write_MotBatt() { #if FRAME_CONFIG != HELI_FRAME struct log_MotBatt pkt_mot = { LOG_PACKET_HEADER_INIT(LOG_MOTBATT_MSG), time_us : AP_HAL::micros64(), lift_max : (float)(motors->get_lift_max()), bat_volt : (float)(motors->get_batt_voltage_filt()), bat_res : (float)(motors->get_batt_resistance()), th_limit : (float)(motors->get_throttle_limit()) }; DataFlash.WriteBlock(&pkt_mot, sizeof(pkt_mot)); #endif } struct PACKED log_Event { LOG_PACKET_HEADER; uint64_t time_us; uint8_t id; }; // Wrote an event packet void Copter::Log_Write_Event(uint8_t id) { if (should_log(MASK_LOG_ANY)) { struct log_Event pkt = { LOG_PACKET_HEADER_INIT(LOG_EVENT_MSG), time_us : AP_HAL::micros64(), id : id }; DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_Int16t { LOG_PACKET_HEADER; uint64_t time_us; uint8_t id; int16_t data_value; }; // Write an int16_t data packet UNUSED_FUNCTION void Copter::Log_Write_Data(uint8_t id, int16_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_Int16t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_INT16_MSG), time_us : AP_HAL::micros64(), id : id, data_value : value }; DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_UInt16t { LOG_PACKET_HEADER; uint64_t time_us; uint8_t id; uint16_t data_value; }; // Write an uint16_t data packet UNUSED_FUNCTION void Copter::Log_Write_Data(uint8_t id, uint16_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_UInt16t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_UINT16_MSG), time_us : AP_HAL::micros64(), id : id, data_value : value }; DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_Int32t { LOG_PACKET_HEADER; uint64_t time_us; uint8_t id; int32_t data_value; }; // Write an int32_t data packet void Copter::Log_Write_Data(uint8_t id, int32_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_Int32t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_INT32_MSG), time_us : AP_HAL::micros64(), id : id, data_value : value }; DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_UInt32t { LOG_PACKET_HEADER; uint64_t time_us; uint8_t id; uint32_t data_value; }; // Write a uint32_t data packet void Copter::Log_Write_Data(uint8_t id, uint32_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_UInt32t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_UINT32_MSG), time_us : AP_HAL::micros64(), id : id, data_value : value }; DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_Float { LOG_PACKET_HEADER; uint64_t time_us; uint8_t id; float data_value; }; // Write a float data packet UNUSED_FUNCTION void Copter::Log_Write_Data(uint8_t id, float value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_Float pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_FLOAT_MSG), time_us : AP_HAL::micros64(), id : id, data_value : value }; DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Error { LOG_PACKET_HEADER; uint64_t time_us; uint8_t sub_system; uint8_t error_code; }; // Write an error packet void Copter::Log_Write_Error(uint8_t sub_system, uint8_t error_code) { struct log_Error pkt = { LOG_PACKET_HEADER_INIT(LOG_ERROR_MSG), time_us : AP_HAL::micros64(), sub_system : sub_system, error_code : error_code, }; DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt)); } void Copter::Log_Write_Baro(void) { if (!ahrs.have_ekf_logging()) { DataFlash.Log_Write_Baro(barometer); } } struct PACKED log_ParameterTuning { LOG_PACKET_HEADER; uint64_t time_us; uint8_t parameter; // parameter we are tuning, e.g. 39 is CH6_CIRCLE_RATE float tuning_value; // normalized value used inside tuning() function int16_t control_in; // raw tune input value int16_t tuning_low; // tuning low end value int16_t tuning_high; // tuning high end value }; void Copter::Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, int16_t control_in, int16_t tune_low, int16_t tune_high) { struct log_ParameterTuning pkt_tune = { LOG_PACKET_HEADER_INIT(LOG_PARAMTUNE_MSG), time_us : AP_HAL::micros64(), parameter : param, tuning_value : tuning_val, control_in : control_in, tuning_low : tune_low, tuning_high : tune_high }; DataFlash.WriteBlock(&pkt_tune, sizeof(pkt_tune)); } // log EKF origin and ahrs home to dataflash void Copter::Log_Write_Home_And_Origin() { // log ekf origin if set Location ekf_orig; if (ahrs.get_origin(ekf_orig)) { DataFlash.Log_Write_Origin(LogOriginType::ekf_origin, ekf_orig); } // log ahrs home if set if (ap.home_state != HOME_UNSET) { DataFlash.Log_Write_Origin(LogOriginType::ahrs_home, ahrs.get_home()); } } // logs when baro or compass becomes unhealthy void Copter::Log_Sensor_Health() { // check baro if (sensor_health.baro != barometer.healthy()) { sensor_health.baro = barometer.healthy(); Log_Write_Error(ERROR_SUBSYSTEM_BARO, (sensor_health.baro ? ERROR_CODE_ERROR_RESOLVED : ERROR_CODE_UNHEALTHY)); } // check compass if (sensor_health.compass != compass.healthy()) { sensor_health.compass = compass.healthy(); Log_Write_Error(ERROR_SUBSYSTEM_COMPASS, (sensor_health.compass ? ERROR_CODE_ERROR_RESOLVED : ERROR_CODE_UNHEALTHY)); } // check primary GPS if (sensor_health.primary_gps != gps.primary_sensor()) { sensor_health.primary_gps = gps.primary_sensor(); Log_Write_Event(DATA_GPS_PRIMARY_CHANGED); } } struct PACKED log_Heli { LOG_PACKET_HEADER; uint64_t time_us; float desired_rotor_speed; float main_rotor_speed; }; #if FRAME_CONFIG == HELI_FRAME // Write an helicopter packet void Copter::Log_Write_Heli() { struct log_Heli pkt_heli = { LOG_PACKET_HEADER_INIT(LOG_HELI_MSG), time_us : AP_HAL::micros64(), desired_rotor_speed : motors->get_desired_rotor_speed(), main_rotor_speed : motors->get_main_rotor_speed(), }; DataFlash.WriteBlock(&pkt_heli, sizeof(pkt_heli)); } #endif // precision landing logging struct PACKED log_Precland { LOG_PACKET_HEADER; uint64_t time_us; uint8_t healthy; uint8_t target_acquired; float pos_x; float pos_y; float vel_x; float vel_y; }; // Write an optical flow packet void Copter::Log_Write_Precland() { #if PRECISION_LANDING == ENABLED // exit immediately if not enabled if (!precland.enabled()) { return; } Vector2f target_pos_rel = Vector2f(0.0f,0.0f); Vector2f target_vel_rel = Vector2f(0.0f,0.0f); precland.get_target_position_relative_cm(target_pos_rel); precland.get_target_velocity_relative_cms(target_vel_rel); struct log_Precland pkt = { LOG_PACKET_HEADER_INIT(LOG_PRECLAND_MSG), time_us : AP_HAL::micros64(), healthy : precland.healthy(), target_acquired : precland.target_acquired(), pos_x : target_pos_rel.x, pos_y : target_pos_rel.y, vel_x : target_vel_rel.x, vel_y : target_vel_rel.y }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); #endif // PRECISION_LANDING == ENABLED } // precision landing logging struct PACKED log_GuidedTarget { LOG_PACKET_HEADER; uint64_t time_us; uint8_t type; float pos_target_x; float pos_target_y; float pos_target_z; float vel_target_x; float vel_target_y; float vel_target_z; }; // Write a Guided mode target void Copter::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target) { struct log_GuidedTarget pkt = { LOG_PACKET_HEADER_INIT(LOG_GUIDEDTARGET_MSG), time_us : AP_HAL::micros64(), type : target_type, pos_target_x : pos_target.x, pos_target_y : pos_target.y, pos_target_z : pos_target.z, vel_target_x : vel_target.x, vel_target_y : vel_target.y, vel_target_z : vel_target.z }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } // precision landing logging struct PACKED log_Throw { LOG_PACKET_HEADER; uint64_t time_us; uint8_t stage; float velocity; float velocity_z; float accel; float ef_accel_z; uint8_t throw_detect; uint8_t attitude_ok; uint8_t height_ok; uint8_t pos_ok; }; // Write a Throw mode details void Copter::Log_Write_Throw(ThrowModeStage stage, float velocity, float velocity_z, float accel, float ef_accel_z, bool throw_detect, bool attitude_ok, bool height_ok, bool pos_ok) { struct log_Throw pkt = { LOG_PACKET_HEADER_INIT(LOG_THROW_MSG), time_us : AP_HAL::micros64(), stage : (uint8_t)stage, velocity : velocity, velocity_z : velocity_z, accel : accel, ef_accel_z : ef_accel_z, throw_detect : throw_detect, attitude_ok : attitude_ok, height_ok : height_ok, pos_ok : pos_ok }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } // Write proximity sensor distances void Copter::Log_Write_Proximity() { #if PROXIMITY_ENABLED == ENABLED DataFlash.Log_Write_Proximity(g2.proximity); #endif } // Write beacon position and distances void Copter::Log_Write_Beacon() { // exit immediately if feature is disabled if (!g2.beacon.enabled()) { return; } DataFlash.Log_Write_Beacon(g2.beacon); } const struct LogStructure Copter::log_structure[] = { LOG_COMMON_STRUCTURES, #if AUTOTUNE_ENABLED == ENABLED { LOG_AUTOTUNE_MSG, sizeof(log_AutoTune), "ATUN", "QBBfffffff", "TimeUS,Axis,TuneStep,Targ,Min,Max,RP,RD,SP,ddt" }, { LOG_AUTOTUNEDETAILS_MSG, sizeof(log_AutoTuneDetails), "ATDE", "Qff", "TimeUS,Angle,Rate" }, #endif { LOG_PARAMTUNE_MSG, sizeof(log_ParameterTuning), "PTUN", "QBfHHH", "TimeUS,Param,TunVal,CtrlIn,TunLo,TunHi" }, { LOG_OPTFLOW_MSG, sizeof(log_Optflow), "OF", "QBffff", "TimeUS,Qual,flowX,flowY,bodyX,bodyY" }, { LOG_NAV_TUNING_MSG, sizeof(log_Nav_Tuning), "NTUN", "Qffffffffff", "TimeUS,DPosX,DPosY,PosX,PosY,DVelX,DVelY,VelX,VelY,DAccX,DAccY" }, { LOG_CONTROL_TUNING_MSG, sizeof(log_Control_Tuning), "CTUN", "Qffffffeccfhh", "TimeUS,ThI,ABst,ThO,ThH,DAlt,Alt,BAlt,DSAlt,SAlt,TAlt,DCRt,CRt" }, { LOG_PERFORMANCE_MSG, sizeof(log_Performance), "PM", "QHHIhBHII", "TimeUS,NLon,NLoop,MaxT,PMT,I2CErr,INSErr,LogDrop,Mem" }, { LOG_MOTBATT_MSG, sizeof(log_MotBatt), "MOTB", "Qffff", "TimeUS,LiftMax,BatVolt,BatRes,ThLimit" }, { LOG_EVENT_MSG, sizeof(log_Event), "EV", "QB", "TimeUS,Id" }, { LOG_DATA_INT16_MSG, sizeof(log_Data_Int16t), "D16", "QBh", "TimeUS,Id,Value" }, { LOG_DATA_UINT16_MSG, sizeof(log_Data_UInt16t), "DU16", "QBH", "TimeUS,Id,Value" }, { LOG_DATA_INT32_MSG, sizeof(log_Data_Int32t), "D32", "QBi", "TimeUS,Id,Value" }, { LOG_DATA_UINT32_MSG, sizeof(log_Data_UInt32t), "DU32", "QBI", "TimeUS,Id,Value" }, { LOG_DATA_FLOAT_MSG, sizeof(log_Data_Float), "DFLT", "QBf", "TimeUS,Id,Value" }, { LOG_ERROR_MSG, sizeof(log_Error), "ERR", "QBB", "TimeUS,Subsys,ECode" }, { LOG_HELI_MSG, sizeof(log_Heli), "HELI", "Qff", "TimeUS,DRRPM,ERRPM" }, { LOG_PRECLAND_MSG, sizeof(log_Precland), "PL", "QBBffff", "TimeUS,Heal,TAcq,pX,pY,vX,vY" }, { LOG_GUIDEDTARGET_MSG, sizeof(log_GuidedTarget), "GUID", "QBffffff", "TimeUS,Type,pX,pY,pZ,vX,vY,vZ" }, { LOG_THROW_MSG, sizeof(log_Throw), "THRO", "QBffffbbbb", "TimeUS,Stage,Vel,VelZ,Acc,AccEfZ,Throw,AttOk,HgtOk,PosOk" }, }; #if CLI_ENABLED == ENABLED // Read the DataFlash log memory void Copter::Log_Read(uint16_t list_entry, uint16_t start_page, uint16_t end_page) { cliSerial->printf("\n" FIRMWARE_STRING "\nFree RAM: %u\n" "\nFrame: %s\n", (unsigned) hal.util->available_memory(), get_frame_string()); cliSerial->printf("%s\n", HAL_BOARD_NAME); DataFlash.LogReadProcess(list_entry, start_page, end_page, FUNCTOR_BIND_MEMBER(&Copter::print_flight_mode, void, AP_HAL::BetterStream *, uint8_t), cliSerial); } #endif // CLI_ENABLED void Copter::Log_Write_Vehicle_Startup_Messages() { // only 200(?) bytes are guaranteed by DataFlash DataFlash.Log_Write_MessageF("Frame: %s", get_frame_string()); DataFlash.Log_Write_Mode(control_mode, control_mode_reason); #if AC_RALLY DataFlash.Log_Write_Rally(rally); #endif Log_Write_Home_And_Origin(); gps.Write_DataFlash_Log_Startup_messages(); } void Copter::log_init(void) { DataFlash.Init(log_structure, ARRAY_SIZE(log_structure)); gcs().reset_cli_timeout(); } #else // LOGGING_ENABLED #if CLI_ENABLED == ENABLED bool Copter::print_log_menu(void) { return true; } int8_t Copter::dump_log(uint8_t argc, const Menu::arg *argv) { return 0; } int8_t Copter::erase_logs(uint8_t argc, const Menu::arg *argv) { return 0; } int8_t Copter::select_logs(uint8_t argc, const Menu::arg *argv) { return 0; } int8_t Copter::process_logs(uint8_t argc, const Menu::arg *argv) { return 0; } void Copter::Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page) {} #endif // CLI_ENABLED == ENABLED void Copter::do_erase_logs(void) {} void Copter::Log_Write_AutoTune(uint8_t axis, uint8_t tune_step, float meas_target, \ float meas_min, float meas_max, float new_gain_rp, \ float new_gain_rd, float new_gain_sp, float new_ddt) {} void Copter::Log_Write_AutoTuneDetails(float angle_cd, float rate_cds) {} void Copter::Log_Write_Current() {} void Copter::Log_Write_Nav_Tuning() {} void Copter::Log_Write_Control_Tuning() {} void Copter::Log_Write_Performance() {} void Copter::Log_Write_Attitude(void) {} void Copter::Log_Write_EKF_POS() {} void Copter::Log_Write_MotBatt() {} void Copter::Log_Write_Event(uint8_t id) {} void Copter::Log_Write_Data(uint8_t id, int32_t value) {} void Copter::Log_Write_Data(uint8_t id, uint32_t value) {} void Copter::Log_Write_Data(uint8_t id, int16_t value) {} void Copter::Log_Write_Data(uint8_t id, uint16_t value) {} void Copter::Log_Write_Data(uint8_t id, float value) {} void Copter::Log_Write_Error(uint8_t sub_system, uint8_t error_code) {} void Copter::Log_Write_Baro(void) {} void Copter::Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, int16_t control_in, int16_t tune_low, int16_t tune_high) {} void Copter::Log_Write_Home_And_Origin() {} void Copter::Log_Sensor_Health() {} void Copter::Log_Write_Precland() {} void Copter::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target) {} void Copter::Log_Write_Throw(ThrowModeStage stage, float velocity, float velocity_z, float accel, float ef_accel_z, bool throw_detect, bool attitude_ok, bool height_ok, bool pos_ok) {} void Copter::Log_Write_Proximity() {} void Copter::Log_Write_Beacon() {} void Copter::Log_Write_Vehicle_Startup_Messages() {} #if FRAME_CONFIG == HELI_FRAME void Copter::Log_Write_Heli() {} #endif #if OPTFLOW == ENABLED void Copter::Log_Write_Optflow() {} #endif void Copter::log_init(void) {} #endif // LOGGING_ENABLED