/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Simulator for the IntelligentEnergy 2.4kWh FuelCell generator */ #include #include "SIM_IntelligentEnergy24.h" #include "SITL.h" #include #include extern const AP_HAL::HAL& hal; using namespace SITL; #define MAX_TANK_PRESSURE 300 //(bar) // table of user settable parameters const AP_Param::GroupInfo IntelligentEnergy24::var_info[] = { // @Param: ENABLE // @DisplayName: IntelligentEnergy 2.4kWh FuelCell sim enable/disable // @Description: Allows you to enable (1) or disable (0) the FuelCell simulator // @Values: 0:Disabled,1:V1 Protocol,2:V2 Protocol // @User: Advanced AP_GROUPINFO("ENABLE", 1, IntelligentEnergy24, enabled, 0), // @Param: STATE // @DisplayName: Explicitly set state // @Description: Explicitly specify a state for the generator to be in // @User: Advanced AP_GROUPINFO("STATE", 2, IntelligentEnergy24, set_state, -1), // @Param: ERROR // @DisplayName: Explicitly set error code // @Description: Explicitly specify an error code to send to the generator // @User: Advanced AP_GROUPINFO("ERROR", 3, IntelligentEnergy24, err_code, 0), AP_GROUPEND }; IntelligentEnergy24::IntelligentEnergy24() : IntelligentEnergy::IntelligentEnergy() { AP_Param::setup_object_defaults(this, var_info); } void IntelligentEnergy24::update(const struct sitl_input &input) { if (!enabled.get()) { return; } update_send(); } void IntelligentEnergy24::update_send() { // just send a chunk of data at 2 Hz: const uint32_t now = AP_HAL::millis(); if (now - last_data_sent_ms < 500) { return; } // Simulate constant current charge/discharge of the battery float amps = discharge ? -20.0f : 20.0f; // Update pack capacity remaining bat_capacity_mAh += amps*(now - last_data_sent_ms)/3600.0f; // From capacity remaining approximate voltage by linear interpolation const float min_bat_vol = 42.0f; const float max_bat_vol = 50.4f; const float max_bat_capactiy_mAh = 3300; // Simulate tank pressure // Scale tank pressure linearly to a percentage. // Min = 5 bar, max = 300 bar, PRESS_GRAD = 1/295. const int16_t tank_bar = linear_interpolate(5, MAX_TANK_PRESSURE, bat_capacity_mAh / max_bat_capactiy_mAh, 0, 1); battery_voltage = bat_capacity_mAh / max_bat_capactiy_mAh * (max_bat_vol - min_bat_vol) + min_bat_vol; // Decide if we need to charge or discharge the battery if (battery_voltage <= min_bat_vol) { discharge = false; } else if (battery_voltage >= max_bat_vol) { discharge = true; } int32_t battery_pwr = battery_voltage * amps; // Watts // These are non-physical values const int32_t pwr_out = float_to_int32(battery_pwr*1.4f); const uint32_t spm_pwr = float_to_uint32(battery_pwr*0.3f); uint32_t state = set_state; if (set_state == -1) { state = 2; // Running } last_data_sent_ms = now; char message[128]; if (enabled.get() == 1) { // V1 Protocol hal.util->snprintf(message, ARRAY_SIZE(message), "<%i,%.1f,%i,%u,%i,%u,%u>\n", tank_bar, battery_voltage, (signed)pwr_out, (unsigned)spm_pwr, (signed)battery_pwr, (unsigned)state, (unsigned)err_code); } else { // V2 Protocol // version message sent at 0.2 Hz if (now - last_ver_sent_ms > 5e3) { // PCM software part number, software version number, protocol number, hardware serial number, check-sum hal.util->snprintf(message, ARRAY_SIZE(message), "[10011867,2.132,4,IE12160A8040015,7]\n"); if ((unsigned)write_to_autopilot(message, strlen(message)) != strlen(message)) { AP_HAL::panic("Failed to write to autopilot: %s", strerror(errno)); } last_ver_sent_ms = now; } // data message memset(&message, 0, sizeof(message)); int8_t tank_remaining_pct = (float)tank_bar / MAX_TANK_PRESSURE * 100.0; hal.util->snprintf(message, ARRAY_SIZE(message), "<%i,%.2f,%.1f,%i,%u,%i,%i,%u,%u,%i,%s,", // last blank , is for fuel cell to send info string up to 32 char ASCII tank_remaining_pct, 0.67f, // inlet pressure (bar) battery_voltage, (signed)pwr_out, (unsigned)spm_pwr, 0, // unit at fault (0 = no fault) (signed)battery_pwr, (unsigned)state, (unsigned)err_code, 0, // fault state 2 (0 = no fault) get_error_string(err_code)); // calculate the checksum uint8_t checksum = 0; for (uint8_t i = 0; i < ARRAY_SIZE(message); i++) { if (message[i] == 0) { break; } checksum += message[i]; } // checksum is inverted 8-bit checksum = ~checksum; // add the checksum to the end of the message char data_end[7]; hal.util->snprintf(data_end, ARRAY_SIZE(data_end), "%u>\n", checksum); strncat(message, data_end, ARRAY_SIZE(data_end)); } if ((unsigned)write_to_autopilot(message, strlen(message)) != strlen(message)) { AP_HAL::panic("Failed to write to autopilot: %s", strerror(errno)); } } const char * IntelligentEnergy24::get_error_string(const uint32_t code) { switch (code) { case 20: return "THERMAL MNGMT"; default: break; } return ""; }