#include #include const AP_HAL::HAL& hal = AP_HAL::get_HAL(); // Tests that quaternion multiplication obeys Hamilton's quaternion multiplication convention // i*i == j*j == k*k == i*j*k == -1 TEST(QuaternionTest, QuaternionMultiplicationOfBases) { const Quaternion unit(1.0f, 0.0f, 0.0f, 0.0f); const Quaternion i(0.0f, 1.0f, 0.0f, 0.0f); const Quaternion j(0.0f, 0.0f, 1.0f, 0.0f); const Quaternion k(0.0f, 0.0f, 0.0f, 1.0f); Quaternion ii, ij, ik, ji, jj, jk, ki, kj, kk, ijk; ii = i * i; ij = i * j; ik = i * k; ji = j * i; jj = j * j; jk = j * k; ki = k * i; kj = k * j; kk = k * k; ijk = i * j * k; for (int a = 0; a < 4; ++a) { EXPECT_FLOAT_EQ(ii[a], jj[a]); EXPECT_FLOAT_EQ(jj[a], kk[a]); EXPECT_FLOAT_EQ(kk[a], ijk[a]); EXPECT_FLOAT_EQ(ijk[a], -unit[a]); EXPECT_FLOAT_EQ(ij[a], k[a]); EXPECT_FLOAT_EQ(ii[a], -unit[a]); EXPECT_FLOAT_EQ(ik[a], -j[a]); EXPECT_FLOAT_EQ(ji[a], -k[a]); EXPECT_FLOAT_EQ(jj[a], -unit[a]); EXPECT_FLOAT_EQ(jk[a], i[a]); EXPECT_FLOAT_EQ(ki[a], j[a]); EXPECT_FLOAT_EQ(kj[a], -i[a]); EXPECT_FLOAT_EQ(kk[a], -unit[a]); EXPECT_FLOAT_EQ(ijk[a], -unit[a]); } } // Tests that the quaternion to rotation matrix conversion formula is correctly derived from the Hamilton's quaternion // multiplication convention. This specific example is taken from "Why and How to Avoid the Flipped Quaternion // Multiplication" (https://arxiv.org/pdf/1801.07478.pdf) TEST(QuaternionTest, QuaternionToRotationMatrix) { Matrix3f res; Quaternion(0.5f * sqrtf(2.0f), 0.0f, 0.0f, 0.5f * sqrtf(2.0f)).rotation_matrix(res); EXPECT_NEAR(res.a.x, 0.0f, 1e-6f); EXPECT_NEAR(res.a.y, -1.0f, 1e-6f); EXPECT_NEAR(res.a.z, 0.0f, 1e-6f); EXPECT_NEAR(res.b.x, 1.0f, 1e-6f); EXPECT_NEAR(res.b.y, 0.0f, 1e-6f); EXPECT_NEAR(res.b.z, 0.0f, 1e-6f); EXPECT_NEAR(res.c.x, 0.0f, 1e-6f); EXPECT_NEAR(res.c.y, 0.0f, 1e-6f); EXPECT_NEAR(res.c.z, 1.0f, 1e-6f); } // Tests that quaternion multiplication is homomorphic with rotation matrix // multiplication, or C(q0 * q1) = C(q0) * C(q1) TEST(QuaternionTest, QuaternionMultiplicationIsHomomorphism) { Quaternion l_quat(0.8365163f, 0.48296291f, 0.22414387f, -0.12940952f); Quaternion r_quat(0.9576622f, 0.03378266f, 0.12607862f, 0.25660481f); Matrix3f res_mat_0; (l_quat * r_quat).rotation_matrix(res_mat_0); Matrix3f res_mat_1, l_mat, r_mat; l_quat.rotation_matrix(l_mat); r_quat.rotation_matrix(r_mat); res_mat_1 = l_mat * r_mat; EXPECT_NEAR(res_mat_0.a.x, res_mat_1.a.x, 1e-6f); EXPECT_NEAR(res_mat_0.a.y, res_mat_1.a.y, 1e-6f); EXPECT_NEAR(res_mat_0.a.z, res_mat_1.a.z, 1e-6f); EXPECT_NEAR(res_mat_0.b.x, res_mat_1.b.x, 1e-6f); EXPECT_NEAR(res_mat_0.b.y, res_mat_1.b.y, 1e-6f); EXPECT_NEAR(res_mat_0.b.z, res_mat_1.b.z, 1e-6f); EXPECT_NEAR(res_mat_0.c.x, res_mat_1.c.x, 1e-6f); EXPECT_NEAR(res_mat_0.c.y, res_mat_1.c.y, 1e-6f); EXPECT_NEAR(res_mat_0.c.z, res_mat_1.c.z, 1e-6f); } // Tests that applying a rotation by a unit quaternion does nothing TEST(QuaternionTest, QuatenionRotationByUnitQuaternion) { Vector3f v(1.0f, 2.0f, 3.0f); Quaternion q(1.0f, 0.0f, 0.0f, 0.0f); Vector3f res = q * v; for (int i = 0; i < 3; ++i) { EXPECT_FLOAT_EQ(res[i], v[i]); } } // Tests that applying a rotation by a quaternion whose axis is parallel to the vector does nothing TEST(QuaternionTest, QuatenionRotationByParallelQuaternion) { Vector3f v(1.0f, 2.0f, 3.0f); Quaternion q(0.730296743340221, 0.182574185835055, 0.365148371670111, 0.547722557505166f); Vector3f res = q * v; for (int i = 0; i < 3; ++i) { EXPECT_FLOAT_EQ(res[i], v[i]); } } // Tests that applying a rotation by a unit quaternion does not change the vector's length TEST(QuaternionTest, QuatenionRotationLengthPreserving) { Vector3f v(1.0f, 2.0f, 3.0f); Quaternion q(0.8365163f, 0.48296291f, 0.22414387f, -0.12940952f); Vector3f res = q * v; EXPECT_FLOAT_EQ(res.length(), v.length()); } // Tests that calling the quaternion rotation operator is equivalent to the formula q * v * q.inverse(), and to // converting to rotation matrix followed by matrix multiplication TEST(QuaternionTest, QuatenionRotationFormulaEquivalence) { Vector3f res_1, res_0, res_2; Vector3f v(1.0f, 2.0f, 3.0f); Quaternion q(0.8365163f, 0.48296291f, 0.22414387f, -0.12940952f); res_0 = q * v; Quaternion qv(0.0f, v.x, v.y, v.z); Quaternion res_qv = q * qv * q.inverse(); res_1 = Vector3f(res_qv.q2, res_qv.q3, res_qv.q4); Matrix3f q_equiv_mat; q.rotation_matrix(q_equiv_mat); res_2 = q_equiv_mat * v; for (int i = 0; i < 3; ++i) { EXPECT_FLOAT_EQ(res_0[i], res_1[i]); EXPECT_FLOAT_EQ(res_0[i], res_2[i]); } } // Tests that the calling the rotation operator on a inverted quaternion is equivalent to q.inverse() * v * q, and to // converting to rotation matrix, taking transpose, followed by matrix multiplication TEST(QuaternionTest, QuatenionInverseRotationFormulaEquivalence) { Vector3f res_0, res_1, res_2; Vector3f v(1.0f, 2.0f, 3.0f); Quaternion q(0.8365163f, 0.48296291f, 0.22414387f, -0.12940952f); res_0 = q.inverse() * v; Quaternion qv(0.0f, v.x, v.y, v.z); Quaternion res_qv = q.inverse() * qv * q; res_1 = Vector3f(res_qv.q2, res_qv.q3, res_qv.q4); Matrix3f q_equiv_mat; q.rotation_matrix(q_equiv_mat); res_2 = q_equiv_mat.transposed() * v; for (int i = 0; i < 3; ++i) { EXPECT_FLOAT_EQ(res_0[i], res_1[i]); EXPECT_FLOAT_EQ(res_0[i], res_2[i]); } } // Test zero() TEST(QuaternionTest, Quaternion_zero) { Quaternion q {0.0, 0.0, 0.0, 0.0}; q.zero(); EXPECT_TRUE(q.is_zero()); q = Quaternion{0.8365163, 0.48296291, 0.22414387, -0.12940952}; q.zero(); EXPECT_TRUE(q.is_zero()); // unit length q = Quaternion{1.0, 0.0, 0.0, 0.0}; q.zero(); EXPECT_TRUE(q.is_zero()); } // Tests is_zero() TEST(QuaternionTest, Quaternion_is_zero) { Quaternion q {0.0, 0.0, 0.0, 0.0}; EXPECT_TRUE(q.is_zero()); q = Quaternion{0.8365163, 0.48296291, 0.22414387, -0.12940952}; EXPECT_FALSE(q.is_zero()); q = Quaternion{0.9, 0.0, 0.0, 0.0}; EXPECT_FALSE(q.is_zero()); } // Tests is_unit_length() TEST(QuaternionTest, Quaternion_is_unit_length) { // zero length Quaternion q {0.0, 0.0, 0.0, 0.0}; EXPECT_FALSE(q.is_unit_length()); // Length == 1.0 - 0.0009, slightly within the tolerance q = Quaternion{0.8361398, 0.4827455, 0.2240430, -0.1293512}; EXPECT_TRUE(q.is_unit_length()); // unit length q = Quaternion{0.8365163, 0.48296291, 0.22414387, -0.12940952}; EXPECT_TRUE(q.is_unit_length()); // unit length q = Quaternion{1.0, 0.0, 0.0, 0.0}; EXPECT_TRUE(q.is_unit_length()); // Length == 1.0 + 0.0009, slightly within the tolerance q = Quaternion{0.8368926, 0.4831802, 0.2242447, -0.1294677}; EXPECT_TRUE(q.is_unit_length()); // Length == 1.2 q = Quaternion{1.00382, 0.579555, 0.268973, -0.155291}; EXPECT_FALSE(q.is_unit_length()); } // Tests length_squared() TEST(QuaternionTest, Quaternion_length_squared) { // zero length Quaternion q {0.0, 0.0, 0.0, 0.0}; EXPECT_FLOAT_EQ(q.length_squared(), 0.0); // Length == 1.0 - 0.0009, slightly within the tolerance q = Quaternion{0.8361398, 0.4827455, 0.2240430, -0.1293512}; EXPECT_FLOAT_EQ(q.length_squared(), 1.0 - 0.0009); // unit length q = Quaternion{0.8365163, 0.48296291, 0.22414387, -0.12940952}; EXPECT_FLOAT_EQ(q.length_squared(), 1.0); // unit length q = Quaternion{1.0, 0.0, 0.0, 0.0}; EXPECT_FLOAT_EQ(q.length_squared(), 1.0); // Length == 1.0 + 0.0009, slightly within the tolerance q = Quaternion{0.8368926, 0.4831802, 0.2242447, -0.1294677}; EXPECT_FLOAT_EQ(q.length_squared(), 1.0 + 0.0009); // Length == 1.2 q = Quaternion{1.00382, 0.579555, 0.268973, -0.155291}; EXPECT_FLOAT_EQ(q.length_squared(), 1.44); } AP_GTEST_MAIN()