/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * sensor information url * . */ #include #include #include #include "AP_InertialSensor_SCHA63T.h" #if defined(HAL_GPIO_PIN_SCHA63T_RESET) #include #endif #define BACKEND_SAMPLE_RATE 1000 #define BACKEND_SAMPLE_RATE_MAX 4000 extern const AP_HAL::HAL& hal; #define SCHA63T_UNO 0 #define SCHA63T_DUE 1 #define G_FILT 0x2424 // Ry/Ry2 filter 300Hz 3rd order filter #define HW_RES 0x0001 // HardReset #define RES_EOI 0x0002 // End Of Initialization #define MODE_NORM 0x0000 // Mode #define A_FILT 0x0444 // Ax/Ay/Az filter 300Hz 3rd order filter static constexpr int16_t combine(uint8_t msb, uint8_t lsb) { return (msb << 8u) | lsb; } AP_InertialSensor_SCHA63T::AP_InertialSensor_SCHA63T(AP_InertialSensor &imu, AP_HAL::OwnPtr _dev_uno, AP_HAL::OwnPtr _dev_due, enum Rotation _rotation) : AP_InertialSensor_Backend(imu) , dev_uno(std::move(_dev_uno)) , dev_due(std::move(_dev_due)) , rotation(_rotation) { } AP_InertialSensor_Backend* AP_InertialSensor_SCHA63T::probe(AP_InertialSensor &imu, AP_HAL::OwnPtr dev_uno, AP_HAL::OwnPtr dev_due, enum Rotation rotation) { if (!dev_uno || !dev_due) { return nullptr; } auto sensor = new AP_InertialSensor_SCHA63T(imu, std::move(dev_uno), std::move(dev_due), rotation); if (!sensor) { return nullptr; } #if defined(HAL_GPIO_PIN_SCHA63T_RESET) palSetLine(HAL_GPIO_PIN_SCHA63T_RESET); #endif if (!sensor->init()) { delete sensor; return nullptr; } return sensor; } void AP_InertialSensor_SCHA63T::start() { if (!_imu.register_accel(accel_instance, BACKEND_SAMPLE_RATE, dev_uno->get_bus_id_devtype(DEVTYPE_INS_SCHA63T)) || !_imu.register_gyro(gyro_instance, BACKEND_SAMPLE_RATE, dev_due->get_bus_id_devtype(DEVTYPE_INS_SCHA63T))) { return; } // set backend rate uint16_t backend_rate_hz = BACKEND_SAMPLE_RATE; if (enable_fast_sampling(accel_instance) && get_fast_sampling_rate() > 1) { bool fast_sampling = dev_uno->bus_type() == AP_HAL::Device::BUS_TYPE_SPI; if (fast_sampling) { // constrain the gyro rate to be a 2^N multiple uint8_t fast_sampling_rate = constrain_int16(get_fast_sampling_rate(), 1, 4); // calculate rate we will be giving samples to the backend backend_rate_hz = constrain_int16(backend_rate_hz * fast_sampling_rate, backend_rate_hz, BACKEND_SAMPLE_RATE_MAX); } } uint32_t backend_period_us = 1000000UL / backend_rate_hz; // setup sensor rotations from probe() set_gyro_orientation(gyro_instance, rotation); set_accel_orientation(accel_instance, rotation); // setup callbacks dev_uno->register_periodic_callback(backend_period_us, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_SCHA63T::read_accel, void)); dev_due->register_periodic_callback(backend_period_us, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_SCHA63T::read_gyro, void)); } /* probe and initialise accelerometer */ bool AP_InertialSensor_SCHA63T::init() { WITH_SEMAPHORE(dev_uno->get_semaphore()); WITH_SEMAPHORE(dev_due->get_semaphore()); // wait 25ms for non-volatile memory (NVM) read hal.scheduler->delay(25); // set DUE operation mode on (must be less than 1ms) write_register(SCHA63T_DUE, MODE, MODE_NORM); write_register(SCHA63T_DUE, MODE, MODE_NORM); // set UNO operation mode on write_register(SCHA63T_UNO, MODE, MODE_NORM); // wait 70ms initial startup hal.scheduler->delay(70); // set UNO configuration (data filter, flag filter) write_register(SCHA63T_UNO, G_FILT_DYN, G_FILT); write_register(SCHA63T_UNO, A_FILT_DYN, A_FILT); // reset DUE write (0001h) to register 18h write_register(SCHA63T_DUE, RESCTRL, HW_RES); // wait 25ms for non-volatile memory (NVM) read hal.scheduler->delay(25); // set DUE operation mode on (must be less than 1ms) write_register(SCHA63T_DUE, MODE, MODE_NORM); write_register(SCHA63T_DUE, MODE, MODE_NORM); // wait 1ms (50ms has already passed) hal.scheduler->delay(1); // set DUE configuration (data filter, flag filter) write_register(SCHA63T_DUE, G_FILT_DYN, G_FILT); // startup clear (startup_attempt = 0) if (!check_startup()) { // system in FAILURE mode (startup_attempt not equal 0 startup_attempt = 1) // reset UNO write (0001h) to register 18h write_register(SCHA63T_UNO, RESCTRL, HW_RES); // reset DUE write (0001h) to register 18h write_register(SCHA63T_DUE, RESCTRL, HW_RES); // wait 25ms for non-volatile memory (NVM) read hal.scheduler->delay(25); // set DUE operation mode on (must be less than 1ms) write_register(SCHA63T_DUE, MODE, MODE_NORM); write_register(SCHA63T_DUE, MODE, MODE_NORM); // set UNO operation mode on write_register(SCHA63T_UNO, MODE, MODE_NORM); // wait 70ms initial startup hal.scheduler->delay(50); // set UNO configuration (data filter, flag filter) write_register(SCHA63T_UNO, G_FILT_DYN, G_FILT); write_register(SCHA63T_UNO, A_FILT_DYN, A_FILT); // set DUE configuration (data filter, flag filter) write_register(SCHA63T_DUE, G_FILT_DYN, G_FILT); // wait 45ms (adjust restart duration to 500ms) hal.scheduler->delay(45); if (!check_startup()) { // check FAILED return false; } } // check ok return true; } bool AP_InertialSensor_SCHA63T::check_startup() { uint8_t val[4] {}; // wait 405ms (300Hz filter) hal.scheduler->delay(405); // start EOI = 1 if (!write_register(SCHA63T_UNO, RESCTRL, RES_EOI)) { return false; } if (!write_register(SCHA63T_DUE, RESCTRL, RES_EOI)) { return false; } // ready summary status twice for (uint8_t i=0; i<2; i++) { if (!read_register(SCHA63T_UNO, S_SUM, val)) { return false; } if (!read_register(SCHA63T_DUE, S_SUM, val)) { return false; } // wait at least 2.5ms hal.scheduler->delay(3); } // read summary status if (!read_register(SCHA63T_UNO, S_SUM, val)) { return false; } // check UNO summary status if (!((val[1] & 0x9e) && (val[2] & 0xda))) { return false; } if (!read_register(SCHA63T_DUE, S_SUM, val)) { return false; } // check DUE summary status if (!((val[1] & 0xf8) && (val[2] & 0x03))) { return false; } // success if we got this far return true; } /* read accel fifo */ void AP_InertialSensor_SCHA63T::read_accel() { uint8_t rsp_accl_x[4] {}; uint8_t rsp_accl_y[4] {}; uint8_t rsp_accl_z[4] {}; uint8_t rsp_temper[4] {}; int16_t accel_x = 0; int16_t accel_y = 0; int16_t accel_z = 0; int16_t uno_temp = 0; // ACCL_X Cmd Send (first response is undefined data) if (!read_register(SCHA63T_UNO, ACC_X, rsp_accl_x)) { return; } // ACCL_Y Cmd Send + ACCL_X Response Receive if (!read_register(SCHA63T_UNO, ACC_Y, rsp_accl_x)) { return; } // ACCL_Z Cmd Send + ACCL_Y Response Receive if (!read_register(SCHA63T_UNO, ACC_Z, rsp_accl_y)) { return; } // TEMPER Cmd Send + RATE_X Response Receive if (!read_register(SCHA63T_UNO, TEMP, rsp_accl_z)) { return; } // TEMPER Cmd Send + TEMPRE Response Receive if (!read_register(SCHA63T_UNO, TEMP, rsp_temper)) { return; } // response data address check if (((rsp_accl_x[0] & 0x7C) >> 2) != ACC_X) { return; } accel_x = combine(rsp_accl_x[1], rsp_accl_x[2]); if (((rsp_accl_y[0] & 0x7C) >> 2) != ACC_Y) { return; } accel_y = combine(rsp_accl_y[1], rsp_accl_y[2]); if (((rsp_accl_z[0] & 0x7C) >> 2) != ACC_Z) { return; } accel_z = combine(rsp_accl_z[1], rsp_accl_z[2]); if (((rsp_temper[0] & 0x7C) >> 2) != TEMP) { return; } uno_temp = combine(rsp_temper[1], rsp_temper[2]); set_temperature(accel_instance, uno_temp); // change coordinate system from left hand too right hand accel_z = (accel_z == INT16_MIN) ? INT16_MAX : -accel_z; Vector3f accel(accel_x, accel_y, accel_z); accel *= (GRAVITY_MSS / 4905.f); // 4905 LSB/g, 0.20387 mg/LSB _rotate_and_correct_accel(accel_instance, accel); _notify_new_accel_raw_sample(accel_instance, accel); AP_HAL::Device::checkreg reg; if (!dev_uno->check_next_register(reg)) { log_register_change(dev_uno->get_bus_id(), reg); _inc_accel_error_count(accel_instance); } } /* read gyro fifo */ void AP_InertialSensor_SCHA63T::read_gyro() { uint8_t rsp_rate_x[4]; uint8_t rsp_rate_y[4]; uint8_t rsp_rate_z[4]; uint8_t rsp_uno_temper[4]; uint8_t rsp_due_temper[4]; int16_t gyro_x = 0; int16_t gyro_y = 0; int16_t gyro_z = 0; int16_t uno_temp = 0; int16_t due_temp = 0; // RATE_Y Cmd Send (first response is undefined data) if (!read_register(SCHA63T_DUE, RATE_Y, rsp_rate_y)) { return; } // RATE_Z Cmd Send + RATE_Y Response Receive if (!read_register(SCHA63T_DUE, RATE_XZ, rsp_rate_y)) { return; } // TEMPER Cmd Send + RATE_Z Response Receive if (!read_register(SCHA63T_DUE, TEMP, rsp_rate_z)) { return; } // TEMPER Cmd Send + TEMPRE Response Receive if (!read_register(SCHA63T_DUE, TEMP, rsp_due_temper)) { return; } // RATE_X Cmd Send + ACCL_Z Response Receive if (!read_register(SCHA63T_UNO, RATE_XZ, rsp_rate_x)) { return; } // TEMPER Cmd Send + TEMPRE Response Receive if (!read_register(SCHA63T_UNO, TEMP, rsp_rate_x)) { return; } // TEMPER Cmd Send + TEMPRE Response Receive if (!read_register(SCHA63T_UNO, TEMP, rsp_uno_temper)) { return; } // response data address check if (((rsp_rate_x[0] & 0x7C) >> 2) != RATE_XZ) { return; } gyro_x = combine(rsp_rate_x[1], rsp_rate_x[2]); if (((rsp_rate_y[0] & 0x7C) >> 2) != RATE_Y) { return; } gyro_y = combine(rsp_rate_y[1], rsp_rate_y[2]); if (((rsp_rate_z[0] & 0x7C) >> 2) != RATE_XZ) { return; } gyro_z = combine(rsp_rate_z[1], rsp_rate_z[2]); if (((rsp_uno_temper[0] & 0x7C) >> 2) != TEMP) { return; } uno_temp = combine(rsp_uno_temper[1], rsp_uno_temper[2]); if (((rsp_due_temper[0] & 0x7C) >> 2) != TEMP) { return; } due_temp = combine(rsp_due_temper[1], rsp_due_temper[2]); set_temperature(gyro_instance, (uno_temp + due_temp) * 0.5); // change coordinate system from left hand too right hand gyro_z = (gyro_z == INT16_MIN) ? INT16_MAX : -gyro_z; Vector3f gyro(gyro_x, gyro_y, gyro_z); gyro *= radians(1.f / 80.f); _rotate_and_correct_gyro(gyro_instance, gyro); _notify_new_gyro_raw_sample(gyro_instance, gyro); AP_HAL::Device::checkreg reg; if (!dev_due->check_next_register(reg)) { log_register_change(dev_due->get_bus_id(), reg); _inc_gyro_error_count(gyro_instance); } } void AP_InertialSensor_SCHA63T::set_temperature(uint8_t instance, uint16_t temper) { const float temperature = 25.0f + ( temper / 30 ); const float temp_degc = (0.5f * temperature) + 23.0f; _publish_temperature(instance, temp_degc); } bool AP_InertialSensor_SCHA63T::update() { update_accel(accel_instance); update_gyro(gyro_instance); return true; } bool AP_InertialSensor_SCHA63T::read_register(uint8_t uno_due, reg_scha63t reg_addr, uint8_t* val) { bool ret = false; uint8_t cmd[4]; uint8_t bCrc; cmd[1] = cmd[2] = 0; cmd[0] = reg_addr << 2; cmd[0] &= 0x7f; cmd[3] = crc8_sae(cmd, 3); uint8_t buf[4]; switch (uno_due) { case SCHA63T_UNO: memcpy(buf, cmd, 4); ret = dev_uno->transfer(buf, 4, buf, 4); memcpy(val, buf, 4); break; case SCHA63T_DUE: memcpy(buf, cmd, 4); ret = dev_due->transfer(buf, 4, buf, 4); memcpy(val, buf, 4); break; default: break; } if (ret) { bCrc = crc8_sae(val, 3); if (bCrc != val[3]) { ret = false; } } // true:OK. false:FAILED return ret; } bool AP_InertialSensor_SCHA63T::write_register(uint8_t uno_due, reg_scha63t reg_addr, uint16_t val) { bool ret = false; uint8_t res[4]; uint8_t cmd[4]; cmd[0] = reg_addr << 2; cmd[0] |= 0x80; cmd[1] = (val >> 8); cmd[2] = val; cmd[3] = crc8_sae(cmd, 3); uint8_t buf[4]; switch (uno_due) { case SCHA63T_UNO: memcpy(buf, cmd, 4); ret = dev_uno->transfer(buf, 4, buf, 4); memcpy(res, buf, 4); break; case SCHA63T_DUE: memcpy(buf, cmd, 4); ret = dev_due->transfer(buf, 4, buf, 4); memcpy(res, buf, 4); break; default: break; } // true:OK. false:FAILED return ret; }