/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * APM_Baro.cpp - barometer driver * */ #include #include #include #include extern const AP_HAL::HAL& hal; // table of user settable parameters const AP_Param::GroupInfo AP_Baro::var_info[] PROGMEM = { // NOTE: Index numbers 0 and 1 were for the old integer // ground temperature and pressure // @Param: ABS_PRESS // @DisplayName: Absolute Pressure // @Description: calibrated ground pressure in Pascals // @Increment: 1 AP_GROUPINFO("ABS_PRESS", 2, AP_Baro, _ground_pressure, 0), // @Param: TEMP // @DisplayName: ground temperature // @Description: calibrated ground temperature in degrees Celsius // @Increment: 1 AP_GROUPINFO("TEMP", 3, AP_Baro, _ground_temperature, 0), // @Param: ALT_OFFSET // @DisplayName: altitude offset // @Description: altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed. // @Units: meters // @Range: -128 127 // @Increment: 1 AP_GROUPINFO("ALT_OFFSET", 4, AP_Baro, _alt_offset, 0), AP_GROUPEND }; // calibrate the barometer. This must be called at least once before // the altitude() or climb_rate() interfaces can be used void AP_Baro::calibrate() { float ground_pressure = 0; float ground_temperature = 0; // reset the altitude offset when we calibrate. The altitude // offset is supposed to be for within a flight _alt_offset.set_and_save(0); { uint32_t tstart = hal.scheduler->millis(); while (ground_pressure == 0 || !healthy) { read(); // Get initial data from absolute pressure sensor if (hal.scheduler->millis() - tstart > 500) { hal.scheduler->panic(PSTR("PANIC: AP_Baro::read unsuccessful " "for more than 500ms in AP_Baro::calibrate [1]\r\n")); } ground_pressure = get_pressure(); ground_temperature = get_temperature(); hal.scheduler->delay(20); } } // let the barometer settle for a full second after startup // the MS5611 reads quite a long way off for the first second, // leading to about 1m of error if we don't wait for (uint8_t i = 0; i < 10; i++) { uint32_t tstart = hal.scheduler->millis(); do { read(); if (hal.scheduler->millis() - tstart > 500) { hal.scheduler->panic(PSTR("PANIC: AP_Baro::read unsuccessful " "for more than 500ms in AP_Baro::calibrate [2]\r\n")); } } while (!healthy); ground_pressure = get_pressure(); ground_temperature = get_temperature(); hal.scheduler->delay(100); } // now average over 5 values for the ground pressure and // temperature settings for (uint16_t i = 0; i < 5; i++) { uint32_t tstart = hal.scheduler->millis(); do { read(); if (hal.scheduler->millis() - tstart > 500) { hal.scheduler->panic(PSTR("PANIC: AP_Baro::read unsuccessful " "for more than 500ms in AP_Baro::calibrate [3]\r\n")); } } while (!healthy); ground_pressure = (ground_pressure * 0.8f) + (get_pressure() * 0.2f); ground_temperature = (ground_temperature * 0.8f) + (get_temperature() * 0.2f); hal.scheduler->delay(100); } _ground_pressure.set_and_save(ground_pressure); _ground_temperature.set_and_save(ground_temperature); } /** update the barometer calibration this updates the baro ground calibration to the current values. It can be used before arming to keep the baro well calibrated */ void AP_Baro::update_calibration() { _ground_pressure.set(get_pressure()); _ground_temperature.set(get_temperature()); } // return current altitude estimate relative to time that calibrate() // was called. Returns altitude in meters // note that this relies on read() being called regularly to get new data float AP_Baro::get_altitude(void) { float scaling, temp; if (_ground_pressure == 0) { // called before initialisation return 0; } if (_last_altitude_t == _last_update) { // no new information return _altitude + _alt_offset; } #if HAL_CPU_CLASS <= HAL_CPU_CLASS_16 // on slower CPUs use a less exact, but faster, calculation scaling = (float)_ground_pressure / (float)get_pressure(); temp = ((float)_ground_temperature) + 273.15f; _altitude = logf(scaling) * temp * 29.271267f; #else // on faster CPUs use a more exact calculation scaling = (float)get_pressure() / (float)_ground_pressure; temp = ((float)_ground_temperature) + 273.15f; // This is an exact calculation that is within +-2.5m of the standard atmosphere tables // in the troposphere (up to 11,000 m amsl). _altitude = 153.8462f * temp * (1.0f - expf(0.190259f * logf(scaling))); #endif _last_altitude_t = _last_update; // ensure the climb rate filter is updated _climb_rate_filter.update(_altitude, _last_update); return _altitude + _alt_offset; } // return current scale factor that converts from equivalent to true airspeed // valid for altitudes up to 10km AMSL // assumes standard atmosphere lapse rate float AP_Baro::get_EAS2TAS(void) { if ((fabs(_altitude - _last_altitude_EAS2TAS) < 100.0f) && (_EAS2TAS != 0.0f)) { // not enough change to require re-calculating return _EAS2TAS; } float tempK = ((float)_ground_temperature) + 273.15f - 0.0065f * _altitude; _EAS2TAS = safe_sqrt(1.225f / ((float)get_pressure() / (287.26f * tempK))); _last_altitude_EAS2TAS = _altitude; return _EAS2TAS; } // return current climb_rate estimeate relative to time that calibrate() // was called. Returns climb rate in meters/s, positive means up // note that this relies on read() being called regularly to get new data float AP_Baro::get_climb_rate(void) { // we use a 7 point derivative filter on the climb rate. This seems // to produce somewhat reasonable results on real hardware return _climb_rate_filter.slope() * 1.0e3f; }