/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* CRSF protocol decoder based on betaflight implementation Code by Andy Piper */ #include "AP_RCProtocol.h" #include "AP_RCProtocol_SRXL.h" #include "AP_RCProtocol_CRSF.h" #include #include #include #include #include #include #define CRSF_SUBSET_RC_STARTING_CHANNEL_BITS 5 #define CRSF_SUBSET_RC_STARTING_CHANNEL_MASK 0x1F #define CRSF_SUBSET_RC_RES_CONFIGURATION_BITS 2 #define CRSF_SUBSET_RC_RES_CONFIGURATION_MASK 0x03 #define CRSF_SUBSET_RC_RESERVED_CONFIGURATION_BITS 1 #define CRSF_RC_CHANNEL_SCALE_LEGACY 0.62477120195241f #define CRSF_SUBSET_RC_RES_CONF_10B 0 #define CRSF_SUBSET_RC_RES_BITS_10B 10 #define CRSF_SUBSET_RC_RES_MASK_10B 0x03FF #define CRSF_SUBSET_RC_CHANNEL_SCALE_10B 1.0f #define CRSF_SUBSET_RC_RES_CONF_11B 1 #define CRSF_SUBSET_RC_RES_BITS_11B 11 #define CRSF_SUBSET_RC_RES_MASK_11B 0x07FF #define CRSF_SUBSET_RC_CHANNEL_SCALE_11B 0.5f #define CRSF_SUBSET_RC_RES_CONF_12B 2 #define CRSF_SUBSET_RC_RES_BITS_12B 12 #define CRSF_SUBSET_RC_RES_MASK_12B 0x0FFF #define CRSF_SUBSET_RC_CHANNEL_SCALE_12B 0.25f #define CRSF_SUBSET_RC_RES_CONF_13B 3 #define CRSF_SUBSET_RC_RES_BITS_13B 13 #define CRSF_SUBSET_RC_RES_MASK_13B 0x1FFF #define CRSF_SUBSET_RC_CHANNEL_SCALE_13B 0.125f /* * CRSF protocol * * CRSF protocol uses a single wire half duplex uart connection. * The master sends one frame every 4ms and the slave replies between two frames from the master. * * 420000 baud * not inverted * 8 Bit * 1 Stop bit * Big endian * 416666 bit/s = 46667 byte/s (including stop bit) = 21.43us per byte * Max frame size is 64 bytes * A 64 byte frame plus 1 sync byte can be transmitted in 1393 microseconds. * * CRSF_TIME_NEEDED_PER_FRAME_US is set conservatively at 1500 microseconds * * Every frame has the structure: * * * Device address: (uint8_t) * Frame length: length in bytes including Type (uint8_t) * Type: (uint8_t) * CRC: (uint8_t) * */ extern const AP_HAL::HAL& hal; // #define CRSF_DEBUG #ifdef CRSF_DEBUG # define debug(fmt, args...) hal.console->printf("CRSF: " fmt "\n", ##args) static const char* get_frame_type(uint8_t byte) { switch(byte) { case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_GPS: return "GPS"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_BATTERY_SENSOR: return "BATTERY"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_HEARTBEAT: return "HEARTBEAT"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_VTX: return "VTX"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_VTX_TELEM: return "VTX_TELEM"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_PARAM_DEVICE_PING: return "PING"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_COMMAND: return "COMMAND"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_ATTITUDE: return "ATTITUDE"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_FLIGHT_MODE: return "FLIGHT_MODE"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_PARAM_DEVICE_INFO: return "DEVICE_INFO"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_PARAMETER_READ: return "PARAM_READ"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_PARAMETER_SETTINGS_ENTRY: return "SETTINGS_ENTRY"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_LINK_STATISTICS: return "LINK_STATS"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_RC_CHANNELS_PACKED: return "RC"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_SUBSET_RC_CHANNELS_PACKED: return "RCv3"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_RC_CHANNELS_PACKED_11BIT: return "RCv3_11BIT"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_LINK_STATISTICS_RX: return "LINK_STATSv3_RX"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_LINK_STATISTICS_TX: return "LINK_STATSv3_TX"; case AP_RCProtocol_CRSF::CRSF_FRAMETYPE_PARAMETER_WRITE: return "UNKNOWN"; } return "UNKNOWN"; } #else # define debug(fmt, args...) do {} while(0) #endif #define CRSF_FRAME_TIMEOUT_US 10000U // 10ms to account for scheduling delays #define CRSF_INTER_FRAME_TIME_US_250HZ 4000U // At fastest, frames are sent by the transmitter every 4 ms, 250 Hz #define CRSF_INTER_FRAME_TIME_US_150HZ 6667U // At medium, frames are sent by the transmitter every 6.667 ms, 150 Hz #define CRSF_INTER_FRAME_TIME_US_50HZ 20000U // At slowest, frames are sent by the transmitter every 20ms, 50 Hz #define CSRF_HEADER_LEN 2 #define CRSF_DIGITAL_CHANNEL_MIN 172 #define CRSF_DIGITAL_CHANNEL_MAX 1811 AP_RCProtocol_CRSF* AP_RCProtocol_CRSF::_singleton; AP_RCProtocol_CRSF::AP_RCProtocol_CRSF(AP_RCProtocol &_frontend) : AP_RCProtocol_Backend(_frontend) { #if !APM_BUILD_TYPE(APM_BUILD_UNKNOWN) if (_singleton != nullptr) { AP_HAL::panic("Duplicate CRSF handler"); } _singleton = this; #else if (_singleton == nullptr) { _singleton = this; } #endif #if HAL_CRSF_TELEM_ENABLED && !APM_BUILD_TYPE(APM_BUILD_iofirmware) && !APM_BUILD_TYPE(APM_BUILD_UNKNOWN) _uart = AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_CRSF, 0); if (_uart) { start_uart(); } #endif } AP_RCProtocol_CRSF::~AP_RCProtocol_CRSF() { _singleton = nullptr; } void AP_RCProtocol_CRSF::process_pulse(uint32_t width_s0, uint32_t width_s1) { uint8_t b; if (ss.process_pulse(width_s0, width_s1, b)) { _process_byte(ss.get_byte_timestamp_us(), b); } } void AP_RCProtocol_CRSF::_process_byte(uint32_t timestamp_us, uint8_t byte) { //debug("process_byte(0x%x)", byte); // we took too long decoding, start again - the RX will only send complete frames so this is unlikely to fail, // however thread scheduling can introduce longer delays even when the data has been received if (_frame_ofs > 0 && (timestamp_us - _start_frame_time_us) > CRSF_FRAME_TIMEOUT_US) { _frame_ofs = 0; } _last_rx_time_us = timestamp_us; // overflow check if (_frame_ofs >= CRSF_FRAMELEN_MAX) { _frame_ofs = 0; } // start of a new frame if (_frame_ofs == 0) { _start_frame_time_us = timestamp_us; } add_to_buffer(_frame_ofs++, byte); // need a header to get the length if (_frame_ofs < CSRF_HEADER_LEN) { return; } // parse the length if (_frame_ofs == CSRF_HEADER_LEN) { // check for garbage frame if (_frame.length > CRSF_FRAMELEN_MAX) { _frame_ofs = 0; } return; } // overflow check if (_frame_ofs > _frame.length + CSRF_HEADER_LEN) { _frame_ofs = 0; return; } // decode whatever we got and expect if (_frame_ofs == _frame.length + CSRF_HEADER_LEN) { log_data(AP_RCProtocol::CRSF, timestamp_us, (const uint8_t*)&_frame, _frame_ofs - CSRF_HEADER_LEN); // we consumed the partial frame, reset _frame_ofs = 0; uint8_t crc = crc8_dvb_s2(0, _frame.type); for (uint8_t i = 0; i < _frame.length - 2; i++) { crc = crc8_dvb_s2(crc, _frame.payload[i]); } // bad CRC if (crc != _frame.payload[_frame.length - CSRF_HEADER_LEN]) { return; } _last_frame_time_us = timestamp_us; // decode here if (decode_crsf_packet()) { add_input(MAX_CHANNELS, _channels, false, _link_status.rssi, _link_status.link_quality); } } } void AP_RCProtocol_CRSF::update(void) { // if we are in standalone mode, process data from the uart if (_uart) { uint32_t now = AP_HAL::millis(); // for some reason it's necessary to keep trying to start the uart until we get data if (now - _last_uart_start_time_ms > 1000U && _last_frame_time_us == 0) { start_uart(); _last_uart_start_time_ms = now; } uint32_t n = _uart->available(); n = MIN(n, 255U); for (uint8_t i = 0; i < n; i++) { int16_t b = _uart->read(); if (b >= 0) { _process_byte(now, uint8_t(b)); } } } // never received RC frames, but have received CRSF frames so make sure we give the telemetry opportunity to run uint32_t now = AP_HAL::micros(); if (_last_frame_time_us > 0 && !get_rc_frame_count() && now - _last_frame_time_us > CRSF_INTER_FRAME_TIME_US_250HZ) { process_telemetry(false); _last_frame_time_us = now; } } // write out a frame of any type void AP_RCProtocol_CRSF::write_frame(Frame* frame) { AP_HAL::UARTDriver *uart = get_current_UART(); if (!uart) { return; } // calculate crc uint8_t crc = crc8_dvb_s2(0, frame->type); for (uint8_t i = 0; i < frame->length - 2; i++) { crc = crc8_dvb_s2(crc, frame->payload[i]); } frame->payload[frame->length - 2] = crc; uart->write((uint8_t*)frame, frame->length + 2); #ifdef CRSF_DEBUG hal.console->printf("CRSF: writing %s:", get_frame_type(frame->type)); for (uint8_t i = 0; i < frame->length + 2; i++) { uint8_t val = ((uint8_t*)frame)[i]; if (val >= 32 && val <= 126) { hal.console->printf(" 0x%x '%c'", val, (char)val); } else { hal.console->printf(" 0x%x", val); } } hal.console->printf("\n"); #endif } bool AP_RCProtocol_CRSF::decode_crsf_packet() { #ifdef CRSF_DEBUG hal.console->printf("CRSF: received %s:", get_frame_type(_frame.type)); uint8_t* fptr = (uint8_t*)&_frame; for (uint8_t i = 0; i < _frame.length + 2; i++) { hal.console->printf(" 0x%x", fptr[i]); } hal.console->printf("\n"); #endif bool rc_active = false; switch (_frame.type) { case CRSF_FRAMETYPE_RC_CHANNELS_PACKED: // scale factors defined by TBS - TICKS_TO_US(x) ((x - 992) * 5 / 8 + 1500) decode_11bit_channels((const uint8_t*)(&_frame.payload), CRSF_MAX_CHANNELS, _channels, 5U, 8U, 880U); _crsf_v3_active = false; rc_active = !_uart; // only accept RC data if we are not in standalone mode break; case CRSF_FRAMETYPE_LINK_STATISTICS: process_link_stats_frame((uint8_t*)&_frame.payload); break; case CRSF_FRAMETYPE_SUBSET_RC_CHANNELS_PACKED: decode_variable_bit_channels((const uint8_t*)(&_frame.payload), _frame.length, CRSF_MAX_CHANNELS, _channels); _crsf_v3_active = true; rc_active = !_uart; // only accept RC data if we are not in standalone mode break; case CRSF_FRAMETYPE_LINK_STATISTICS_RX: process_link_stats_rx_frame((uint8_t*)&_frame.payload); break; case CRSF_FRAMETYPE_LINK_STATISTICS_TX: process_link_stats_tx_frame((uint8_t*)&_frame.payload); break; default: break; } #if HAL_CRSF_TELEM_ENABLED && !APM_BUILD_TYPE(APM_BUILD_iofirmware) if (AP_CRSF_Telem::process_frame(FrameType(_frame.type), (uint8_t*)&_frame.payload)) { process_telemetry(); } // process any pending baudrate changes before reading another frame if (_new_baud_rate > 0) { AP_HAL::UARTDriver *uart = get_current_UART(); if (uart) { // wait for all the pending data to be sent while (uart->tx_pending()) { hal.scheduler->delay_microseconds(10); } // now wait for 4ms to account for RX transmission and processing hal.scheduler->delay(4); // change the baud rate uart->begin(_new_baud_rate, 128, 128); } _new_baud_rate = 0; } #endif return rc_active; } /* decode channels from the standard 11bit format (used by CRSF, SBUS, FPort and FPort2) must be used on multiples of 8 channels */ void AP_RCProtocol_CRSF::decode_variable_bit_channels(const uint8_t* payload, uint8_t frame_length, uint8_t nchannels, uint16_t *values) { const SubsetChannelsFrame* channel_data = (const SubsetChannelsFrame*)payload; // get the channel resolution settings uint8_t channelBits; uint16_t channelMask; float channelScale; switch (channel_data->res_configuration) { case CRSF_SUBSET_RC_RES_CONF_10B: channelBits = CRSF_SUBSET_RC_RES_BITS_10B; channelMask = CRSF_SUBSET_RC_RES_MASK_10B; channelScale = CRSF_SUBSET_RC_CHANNEL_SCALE_10B; break; default: case CRSF_SUBSET_RC_RES_CONF_11B: channelBits = CRSF_SUBSET_RC_RES_BITS_11B; channelMask = CRSF_SUBSET_RC_RES_MASK_11B; channelScale = CRSF_SUBSET_RC_CHANNEL_SCALE_11B; break; case CRSF_SUBSET_RC_RES_CONF_12B: channelBits = CRSF_SUBSET_RC_RES_BITS_12B; channelMask = CRSF_SUBSET_RC_RES_MASK_12B; channelScale = CRSF_SUBSET_RC_CHANNEL_SCALE_12B; break; case CRSF_SUBSET_RC_RES_CONF_13B: channelBits = CRSF_SUBSET_RC_RES_BITS_13B; channelMask = CRSF_SUBSET_RC_RES_MASK_13B; channelScale = CRSF_SUBSET_RC_CHANNEL_SCALE_13B; break; } // calculate the number of channels packed uint8_t numOfChannels = ((frame_length - 2) * 8 - CRSF_SUBSET_RC_STARTING_CHANNEL_BITS) / channelBits; // unpack the channel data uint8_t bitsMerged = 0; uint32_t readValue = 0; uint8_t readByteIndex = 1; for (uint8_t n = 0; n < numOfChannels; n++) { while (bitsMerged < channelBits) { uint8_t readByte = payload[readByteIndex++]; readValue |= ((uint32_t) readByte) << bitsMerged; bitsMerged += 8; } _channels[channel_data->starting_channel + n] = uint16_t(channelScale * float(uint16_t(readValue & channelMask)) + 988); readValue >>= channelBits; bitsMerged -= channelBits; } } // send out telemetry bool AP_RCProtocol_CRSF::process_telemetry(bool check_constraint) { AP_HAL::UARTDriver *uart = get_current_UART(); if (!uart) { return false; } if (!telem_available) { #if HAL_CRSF_TELEM_ENABLED && !APM_BUILD_TYPE(APM_BUILD_iofirmware) if (AP_CRSF_Telem::get_telem_data(&_telemetry_frame)) { telem_available = true; } else { return false; } #else return false; #endif } write_frame(&_telemetry_frame); // get fresh telem_data in the next call telem_available = false; return true; } // process link statistics to get RSSI void AP_RCProtocol_CRSF::process_link_stats_frame(const void* data) { const LinkStatisticsFrame* link = (const LinkStatisticsFrame*)data; uint8_t rssi_dbm; if (link->active_antenna == 0) { rssi_dbm = link->uplink_rssi_ant1; } else { rssi_dbm = link->uplink_rssi_ant2; } _link_status.link_quality = link->uplink_status; // AP rssi: -1 for unknown, 0 for no link, 255 for maximum link if (rssi_dbm < 50) { _link_status.rssi = 255; } else if (rssi_dbm > 120) { _link_status.rssi = 0; } else { // this is an approximation recommended by Remo from TBS _link_status.rssi = int16_t(roundf((1.0f - (rssi_dbm - 50.0f) / 70.0f) * 255.0f)); } _link_status.rf_mode = static_cast(MIN(link->rf_mode, 3U)); } // process link statistics to get RX RSSI void AP_RCProtocol_CRSF::process_link_stats_rx_frame(const void* data) { const LinkStatisticsRXFrame* link = (const LinkStatisticsRXFrame*)data; _link_status.rssi = link->rssi_percent * 255.0f * 0.01f; } // process link statistics to get TX RSSI void AP_RCProtocol_CRSF::process_link_stats_tx_frame(const void* data) { const LinkStatisticsTXFrame* link = (const LinkStatisticsTXFrame*)data; _link_status.rssi = link->rssi_percent * 255.0f * 0.01f; } // process a byte provided by a uart void AP_RCProtocol_CRSF::process_byte(uint8_t byte, uint32_t baudrate) { // reject RC data if we have been configured for standalone mode if (baudrate != CRSF_BAUDRATE || _uart) { return; } _process_byte(AP_HAL::micros(), byte); } // start the uart if we have one void AP_RCProtocol_CRSF::start_uart() { _uart->configure_parity(0); _uart->set_stop_bits(1); _uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE); _uart->set_blocking_writes(false); _uart->set_options(_uart->get_options() & ~AP_HAL::UARTDriver::OPTION_RXINV); _uart->begin(CRSF_BAUDRATE, 128, 128); } // change the baudrate of the protocol if we are able bool AP_RCProtocol_CRSF::change_baud_rate(uint32_t baudrate) { AP_HAL::UARTDriver* uart = get_available_UART(); if (uart == nullptr) { return false; } #if !defined(STM32H7) if (baudrate > CRSF_BAUDRATE && !uart->is_dma_enabled()) { return false; } #endif if (baudrate > 2000000) { return false; } _new_baud_rate = baudrate; return true; } namespace AP { AP_RCProtocol_CRSF* crsf() { return AP_RCProtocol_CRSF::get_singleton(); } };