/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- static int get_stabilize_roll(int32_t target_angle) { // angle error target_angle = wrap_180(target_angle - dcm.roll_sensor); #if FRAME_CONFIG == HELI_FRAME // limit the error we're feeding to the PID target_angle = constrain(target_angle, -4500, 4500); // convert to desired Rate: target_angle = g.pi_stabilize_roll.get_pi(target_angle, G_Dt); // output control: return constrain(target_angle, -4500, 4500); #else // limit the error we're feeding to the PID target_angle = constrain(target_angle, -2500, 2500); // conver to desired Rate: int32_t target_rate = g.pi_stabilize_roll.get_p(target_angle); int16_t iterm = g.pi_stabilize_roll.get_i(target_angle, G_Dt); return get_rate_roll(target_rate) + iterm; #endif } static int get_stabilize_pitch(int32_t target_angle) { // angle error target_angle = wrap_180(target_angle - dcm.pitch_sensor); #if FRAME_CONFIG == HELI_FRAME // limit the error we're feeding to the PID target_angle = constrain(target_angle, -4500, 4500); // convert to desired Rate: target_angle = g.pi_stabilize_pitch.get_pi(target_angle, G_Dt); // output control: return constrain(target_angle, -4500, 4500); #else // limit the error we're feeding to the PID target_angle = constrain(target_angle, -2500, 2500); // conver to desired Rate: int32_t target_rate = g.pi_stabilize_pitch.get_p(target_angle); int16_t iterm = g.pi_stabilize_pitch.get_i(target_angle, G_Dt); return get_rate_pitch(target_rate) + iterm; #endif } static int get_stabilize_yaw(int32_t target_angle) { // angle error target_angle = wrap_180(target_angle - dcm.yaw_sensor); // limit the error we're feeding to the PID target_angle = constrain(target_angle, -2000, 2000); // conver to desired Rate: int32_t target_rate = g.pi_stabilize_yaw.get_p(target_angle); int16_t iterm = g.pi_stabilize_yaw.get_i(target_angle, G_Dt); #if FRAME_CONFIG == HELI_FRAME // cannot use rate control for helicopters if(!g.heli_ext_gyro_enabled){ return get_rate_yaw(target_rate) + iterm; }else{ return constrain((target_rate + iterm), -4500, 4500); } #else return get_rate_yaw(target_rate) + iterm; #endif } static int get_acro_roll(int32_t target_rate) { target_rate = target_rate * g.acro_P; target_rate = constrain(target_rate, -10000, 10000); return get_rate_roll(target_rate); } static int get_acro_pitch(int32_t target_rate) { target_rate = target_rate * g.acro_P; target_rate = constrain(target_rate, -10000, 10000); return get_rate_pitch(target_rate); } static int get_acro_yaw(int32_t target_rate) { target_rate = g.pi_stabilize_yaw.get_p(target_rate); target_rate = constrain(target_rate, -15000, 15000); return get_rate_yaw(target_rate); } static int get_rate_roll(int32_t target_rate) { static int32_t last_rate = 0; int32_t current_rate = (omega.x * DEGX100); // rate control target_rate = target_rate - current_rate; target_rate = g.pid_rate_roll.get_pid(target_rate, G_Dt); // Dampening target_rate -= constrain((current_rate - last_rate) * g.stabilize_d, -500, 500); last_rate = current_rate; // output control: return constrain(target_rate, -2500, 2500); } static int get_rate_pitch(int32_t target_rate) { static int32_t last_rate = 0; int32_t current_rate = (omega.y * DEGX100); // rate control target_rate = target_rate - current_rate; target_rate = g.pid_rate_pitch.get_pid(target_rate, G_Dt); // Dampening target_rate -= constrain((current_rate - last_rate) * g.stabilize_d, -500, 500); last_rate = current_rate; // output control: return constrain(target_rate, -2500, 2500); } static int get_rate_yaw(int32_t target_rate) { // rate control target_rate = target_rate - (omega.z * DEGX100); target_rate = g.pid_rate_yaw.get_pid(target_rate, G_Dt); // output control: int16_t yaw_limit = 1400 + abs(g.rc_4.control_in); // smoother Yaw control: return constrain(target_rate, -yaw_limit, yaw_limit); } static int16_t get_nav_throttle(int32_t z_error) { static int16_t old_output = 0; int16_t rate_error = 0; int16_t output = 0; // convert to desired Rate: rate_error = g.pi_alt_hold.get_p(z_error); rate_error = constrain(rate_error, -100, 100); // limit error to prevent I term wind up z_error = constrain(z_error, -400, 400); // compensates throttle setpoint error for hovering int16_t iterm = g.pi_alt_hold.get_i(z_error, .1); // calculate rate error rate_error = rate_error - climb_rate; // limit the rate output = constrain(g.pid_throttle.get_pid(rate_error, .1), -160, 180); // light filter of output output = (old_output + output) / 2; // save our output old_output = output; // output control: return output + iterm; } // Keeps old data out of our calculation / logs static void reset_nav_params(void) { // forces us to update nav throttle invalid_throttle = true; nav_throttle = 0; // always start Circle mode at same angle circle_angle = 0; // We must be heading to a new WP, so XTrack must be 0 crosstrack_error = 0; // Will be set by new command target_bearing = 0; // Will be set by new command wp_distance = 0; // Will be set by new command, used by loiter long_error = 0; lat_error = 0; // Will be set by new command, used by loiter next_WP.alt = 0; } /* reset all I integrators */ static void reset_I_all(void) { reset_rate_I(); reset_stability_I(); reset_nav_I(); reset_wind_I(); reset_throttle_I(); reset_optflow_I(); // This is the only place we reset Yaw g.pi_stabilize_yaw.reset_I(); } static void reset_rate_I() { g.pid_rate_roll.reset_I(); g.pid_rate_pitch.reset_I(); g.pid_rate_yaw.reset_I(); } static void reset_optflow_I(void) { g.pid_optflow_roll.reset_I(); g.pid_optflow_pitch.reset_I(); of_roll = 0; of_pitch = 0; } static void reset_wind_I(void) { // Wind Compensation g.pi_loiter_lat.reset_I(); g.pi_loiter_lon.reset_I(); } static void reset_nav_I(void) { // Rate control for WP navigation g.pid_nav_lat.reset_I(); g.pid_nav_lon.reset_I(); } static void reset_throttle_I(void) { // For Altitude Hold g.pi_alt_hold.reset_I(); g.pid_throttle.reset_I(); } static void reset_stability_I(void) { // Used to balance a quad // This only needs to be reset during Auto-leveling in flight g.pi_stabilize_roll.reset_I(); g.pi_stabilize_pitch.reset_I(); } /************************************************************* throttle control ****************************************************************/ static long get_nav_yaw_offset(int yaw_input, int reset) { int32_t _yaw; if(reset == 0){ // we are on the ground return dcm.yaw_sensor; }else{ // re-define nav_yaw if we have stick input if(yaw_input != 0){ // set nav_yaw + or - the current location _yaw = yaw_input + dcm.yaw_sensor; // we need to wrap our value so we can be 0 to 360 (*100) return wrap_360(_yaw); }else{ // no stick input, lets not change nav_yaw return nav_yaw; } } } static int get_angle_boost(int value) { float temp = cos_pitch_x * cos_roll_x; temp = 1.0 - constrain(temp, .5, 1.0); int16_t output = temp * value; return constrain(output, 0, 200); // return (int)(temp * value); } #define NUM_G_SAMPLES 40 #if ACCEL_ALT_HOLD == 2 // z -14.4306 = going up // z -6.4306 = going down static int get_z_damping() { int output; Z_integrator += get_world_Z_accel() - Z_offset; output = Z_integrator * 3; Z_integrator = Z_integrator * .8; output = constrain(output, -100, 100); return output; } float get_world_Z_accel() { accels_rot = dcm.get_dcm_matrix() * imu.get_accel(); //Serial.printf("z %1.4f\n", accels_rot.z); return accels_rot.z; } static void init_z_damper() { Z_offset = 0; for (int i = 0; i < NUM_G_SAMPLES; i++){ delay(5); read_AHRS(); Z_offset += get_world_Z_accel(); } Z_offset /= (float)NUM_G_SAMPLES; } // Accelerometer Z dampening by Aurelio R. Ramos // --------------------------------------------- #elif ACCEL_ALT_HOLD == 1 // contains G and any other DC offset static float estimatedAccelOffset = 0; // state static float synVelo = 0; static float synPos = 0; static float synPosFiltered = 0; static float posError = 0; static float prevSensedPos = 0; // tuning for dead reckoning static const float dt_50hz = 0.02; static float synPosP = 10 * dt_50hz; static float synPosI = 15 * dt_50hz; static float synVeloP = 1.5 * dt_50hz; static float maxVeloCorrection = 5 * dt_50hz; static float maxSensedVelo = 1; static float synPosFilter = 0.5; // Z damping term. static float fullDampP = 0.100; float get_world_Z_accel() { accels_rot = dcm.get_dcm_matrix() * imu.get_accel(); return accels_rot.z; } static void init_z_damper() { estimatedAccelOffset = 0; for (int i = 0; i < NUM_G_SAMPLES; i++){ delay(5); read_AHRS(); estimatedAccelOffset += get_world_Z_accel(); } estimatedAccelOffset /= (float)NUM_G_SAMPLES; } float dead_reckon_Z(float sensedPos, float sensedAccel) { // the following algorithm synthesizes position and velocity from // a noisy altitude and accelerometer data. // synthesize uncorrected velocity by integrating acceleration synVelo += (sensedAccel - estimatedAccelOffset) * dt_50hz; // synthesize uncorrected position by integrating uncorrected velocity synPos += synVelo * dt_50hz; // filter synPos, the better this filter matches the filtering and dead time // of the sensed position, the less the position estimate will lag. synPosFiltered = synPosFiltered * (1 - synPosFilter) + synPos * synPosFilter; // calculate error against sensor position posError = sensedPos - synPosFiltered; // correct altitude synPos += synPosP * posError; // correct integrated velocity by posError synVelo = synVelo + constrain(posError, -maxVeloCorrection, maxVeloCorrection) * synPosI; // correct integrated velocity by the sensed position delta in a small proportion // (i.e., the low frequency of the delta) float sensedVelo = (sensedPos - prevSensedPos) / dt_50hz; synVelo += constrain(sensedVelo - synVelo, -maxSensedVelo, maxSensedVelo) * synVeloP; prevSensedPos = sensedPos; return synVelo; } static int get_z_damping() { float sensedAccel = get_world_Z_accel(); float sensedPos = current_loc.alt / 100.0; float synVelo = dead_reckon_Z(sensedPos, sensedAccel); return constrain(fullDampP * synVelo * (-1), -300, 300); } #else static int get_z_damping() { return 0; } static void init_z_damper() { } #endif // calculate modified roll/pitch depending upon optical flow calculated position static int32_t get_of_roll(int32_t control_roll) { #ifdef OPTFLOW_ENABLED static float tot_x_cm = 0; // total distance from target static unsigned long last_of_roll_update = 0; int32_t new_roll = 0; // check if new optflow data available if( optflow.last_update != last_of_roll_update) { last_of_roll_update = optflow.last_update; // add new distance moved tot_x_cm += optflow.x_cm; // only stop roll if caller isn't modifying roll if( control_roll == 0 && current_loc.alt < 1500) { new_roll = g.pid_optflow_roll.get_pid(-tot_x_cm, 1.0); // we could use the last update time to calculate the time change }else{ g.pid_optflow_roll.reset_I(); tot_x_cm = 0; } // limit amount of change and maximum angle of_roll = constrain(new_roll, (of_roll-20), (of_roll+20)); } // limit max angle of_roll = constrain(of_roll, -1000, 1000); return control_roll+of_roll; #else return control_roll; #endif } static int32_t get_of_pitch(int32_t control_pitch) { #ifdef OPTFLOW_ENABLED static float tot_y_cm = 0; // total distance from target static unsigned long last_of_pitch_update = 0; int32_t new_pitch = 0; // check if new optflow data available if( optflow.last_update != last_of_pitch_update ) { last_of_pitch_update = optflow.last_update; // add new distance moved tot_y_cm += optflow.y_cm; // only stop roll if caller isn't modifying pitch if( control_pitch == 0 && current_loc.alt < 1500 ) { new_pitch = g.pid_optflow_pitch.get_pid(tot_y_cm, 1.0); // we could use the last update time to calculate the time change }else{ tot_y_cm = 0; g.pid_optflow_pitch.reset_I(); } // limit amount of change of_pitch = constrain(new_pitch, (of_pitch-20), (of_pitch+20)); } // limit max angle of_pitch = constrain(of_pitch, -1000, 1000); return control_pitch+of_pitch; #else return control_pitch; #endif }