#include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include "RCOutput.h" #include #include #include #include #include #include #include #include #include #include #if HAL_WITH_UAVCAN #include #endif extern const AP_HAL::HAL& hal; using namespace PX4; /* enable RCOUT_DEBUG_LATENCY to measure output latency using a logic analyser. AUX6 will go high during the cork/push output. */ #define RCOUT_DEBUG_LATENCY 0 void PX4RCOutput::init() { _perf_rcout = perf_alloc(PC_ELAPSED, "APM_rcout"); _pwm_fd = open(PWM_OUTPUT0_DEVICE_PATH, O_RDWR); if (_pwm_fd == -1) { AP_HAL::panic("Unable to open " PWM_OUTPUT0_DEVICE_PATH); } if (ioctl(_pwm_fd, PWM_SERVO_ARM, 0) != 0) { hal.console->printf("RCOutput: Unable to setup IO arming\n"); } if (ioctl(_pwm_fd, PWM_SERVO_SET_ARM_OK, 0) != 0) { hal.console->printf("RCOutput: Unable to setup IO arming OK\n"); } _rate_mask_main = 0; _rate_mask_alt = 0; _alt_fd = -1; _servo_count = 0; _alt_servo_count = 0; if (ioctl(_pwm_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_servo_count) != 0) { hal.console->printf("RCOutput: Unable to get servo count\n"); return; } for (uint8_t i=0; iprintf("RCOutput: failed to open /dev/px4fmu"); } } #endif // ensure not to write zeros to disabled channels for (uint8_t i=0; i < PX4_NUM_OUTPUT_CHANNELS; i++) { _period[i] = PWM_IGNORE_THIS_CHANNEL; } // publish actuator vaules on demand _actuator_direct_pub = nullptr; } void PX4RCOutput::_init_alt_channels(void) { if (_alt_fd == -1) { return; } if (ioctl(_alt_fd, PWM_SERVO_ARM, 0) != 0) { hal.console->printf("RCOutput: Unable to setup alt IO arming\n"); return; } if (ioctl(_alt_fd, PWM_SERVO_SET_ARM_OK, 0) != 0) { hal.console->printf("RCOutput: Unable to setup alt IO arming OK\n"); return; } if (ioctl(_alt_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_alt_servo_count) != 0) { hal.console->printf("RCOutput: Unable to get servo count\n"); } } /* set output frequency on outputs associated with fd */ void PX4RCOutput::set_freq_fd(int fd, uint32_t chmask, uint16_t freq_hz, uint32_t &rate_mask) { if (_output_mode == MODE_PWM_BRUSHED16KHZ) { freq_hz = 2000; // this maps to 16kHz due to 8MHz clock } // we can't set this per channel if (freq_hz > 50 || freq_hz == 1) { // we're being asked to set the alt rate if (_output_mode == MODE_PWM_ONESHOT) { /* set a 1Hz update for oneshot. This periodic output will never actually trigger, instead we will directly trigger the pulse after each push() */ freq_hz = 1; } //::printf("SET_UPDATE_RATE %d %u\n", fd, (unsigned)freq_hz); if (ioctl(fd, PWM_SERVO_SET_UPDATE_RATE, (unsigned long)freq_hz) != 0) { hal.console->printf("RCOutput: Unable to set alt rate to %uHz\n", (unsigned)freq_hz); return; } _freq_hz = freq_hz; } /* work out the new rate mask. The outputs have 3 groups of servos. Group 0: channels 0 1 Group 1: channels 4 5 6 7 Group 2: channels 2 3 Channels within a group must be set to the same rate. For the moment we never set the channels above 8 to more than 50Hz */ if (freq_hz > 50 || freq_hz == 1) { // we are setting high rates on the given channels rate_mask |= chmask & 0xFF; if (rate_mask & 0x3) { rate_mask |= 0x3; } if (rate_mask & 0xc) { rate_mask |= 0xc; } if (rate_mask & 0xF0) { rate_mask |= 0xF0; } } else { // we are setting low rates on the given channels if (chmask & 0x3) { rate_mask &= ~0x3; } if (chmask & 0xc) { rate_mask &= ~0xc; } if (chmask & 0xf0) { rate_mask &= ~0xf0; } } if (ioctl(fd, PWM_SERVO_SET_SELECT_UPDATE_RATE, rate_mask) != 0) { hal.console->printf("RCOutput: Unable to set alt rate mask to 0x%x\n", (unsigned)rate_mask); } if (_output_mode == MODE_PWM_BRUSHED16KHZ) { ioctl(fd, PWM_SERVO_SET_UPDATE_CLOCK, 8); } } /* set output frequency */ void PX4RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz) { if (freq_hz > 50 && _output_mode == MODE_PWM_ONESHOT) { // rate is irrelevent in oneshot return; } // re-fetch servo count as it might have changed due to a change in BRD_PWM_COUNT if (_pwm_fd != -1 && ioctl(_pwm_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_servo_count) != 0) { hal.console->printf("RCOutput: Unable to get servo count\n"); return; } // greater than 400 doesn't give enough room at higher periods for // the down pulse if (freq_hz > 400 && _output_mode != MODE_PWM_BRUSHED16KHZ) { freq_hz = 400; } uint32_t primary_mask = chmask & ((1UL<<_servo_count)-1); uint32_t alt_mask = chmask >> _servo_count; if (primary_mask && _pwm_fd != -1) { set_freq_fd(_pwm_fd, primary_mask, freq_hz, _rate_mask_main); } if (alt_mask && _alt_fd != -1) { set_freq_fd(_alt_fd, alt_mask, freq_hz, _rate_mask_alt); } } uint16_t PX4RCOutput::get_freq(uint8_t ch) { if (ch < _servo_count) { if (_rate_mask_main & (1U<= PX4_NUM_OUTPUT_CHANNELS) { return; } if (ch >= 8 && !(_enabled_channels & (1U<= PX4_NUM_OUTPUT_CHANNELS) { return; } _enabled_channels &= ~(1U<printf("Failed to setup disarmed PWM for 0x%08x to %u\n", (unsigned)chmask, period_us); } } void PX4RCOutput::set_failsafe_pwm(uint32_t chmask, uint16_t period_us) { struct pwm_output_values pwm_values; memset(&pwm_values, 0, sizeof(pwm_values)); for (uint8_t i=0; i<_servo_count; i++) { if ((1UL<printf("Failed to setup failsafe PWM for 0x%08x to %u\n", (unsigned)chmask, period_us); } } bool PX4RCOutput::force_safety_on(void) { _safety_state_request = AP_HAL::Util::SAFETY_DISARMED; _safety_state_request_last_ms = 1; return true; } void PX4RCOutput::force_safety_off(void) { _safety_state_request = AP_HAL::Util::SAFETY_ARMED; _safety_state_request_last_ms = 1; } void PX4RCOutput::force_safety_pending_requests(void) { // check if there is a pending saftey_state change. If so (timer != 0) then set it. uint32_t now = AP_HAL::millis(); if (_safety_state_request_last_ms != 0 && now - _safety_state_request_last_ms >= 100) { if (hal.util->safety_switch_state() == _safety_state_request && _safety_state_request_last_ms != 1) { _safety_state_request_last_ms = 0; } else if (_safety_state_request == AP_HAL::Util::SAFETY_DISARMED) { // current != requested, set it ioctl(_pwm_fd, PWM_SERVO_SET_FORCE_SAFETY_ON, 0); _safety_state_request_last_ms = now; } else if (_safety_state_request == AP_HAL::Util::SAFETY_ARMED) { // current != requested, set it ioctl(_pwm_fd, PWM_SERVO_SET_FORCE_SAFETY_OFF, 0); _safety_state_request_last_ms = now; } } } void PX4RCOutput::force_safety_no_wait(void) { if (_safety_state_request_last_ms != 0) { _safety_state_request_last_ms = 1; force_safety_pending_requests(); } } void PX4RCOutput::write(uint8_t ch, uint16_t period_us) { if (ch >= PX4_NUM_OUTPUT_CHANNELS) { return; } if (!(_enabled_channels & (1U<= _max_channel) { _max_channel = ch + 1; } if (_output_mode == MODE_PWM_BRUSHED16KHZ) { // map from the PWM range to 0 t0 100% duty cycle. For 16kHz // this ends up being 0 to 500 pulse width in units of // 125usec. const uint32_t period_max = 1000000UL/(16000/8); if (period_us <= _esc_pwm_min) { period_us = 0; } else if (period_us >= _esc_pwm_max) { period_us = period_max; } else { uint32_t pdiff = period_us - _esc_pwm_min; period_us = pdiff*period_max/(_esc_pwm_max - _esc_pwm_min); } } /* only mark an update is needed if there has been a change, or we are in oneshot mode. In oneshot mode we always need to send the output */ if (period_us != _period[ch] || _output_mode == MODE_PWM_ONESHOT) { _period[ch] = period_us; _need_update = true; } } uint16_t PX4RCOutput::read(uint8_t ch) { if (ch >= PX4_NUM_OUTPUT_CHANNELS) { return 0; } // if px4io has given us a value for this channel use that, // otherwise use the value we last sent. This makes it easier to // observe the behaviour of failsafe in px4io for (uint8_t i=0; i= 0 && ch < _outputs[i].outputs.noutputs && _outputs[i].outputs.output[ch] > 0) { return _outputs[i].outputs.output[ch]; } } return _period[ch]; } void PX4RCOutput::read(uint16_t* period_us, uint8_t len) { for (uint8_t i=0; i= PX4_NUM_OUTPUT_CHANNELS) { return 0; } return _period[ch]; } void PX4RCOutput::read_last_sent(uint16_t* period_us, uint8_t len) { for (uint8_t i=0; i 50000) { _need_update = true; } // check for PWM count changing. This can happen then the user changes BRD_PWM_COUNT if (now - _last_config_us > 1000000) { if (_pwm_fd != -1) { ioctl(_pwm_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_servo_count); } if (_alt_fd != -1) { ioctl(_alt_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_alt_servo_count); } _last_config_us = now; } if (_need_update && _pwm_fd != -1) { _need_update = false; perf_begin(_perf_rcout); uint8_t to_send = _max_channel<_servo_count?_max_channel:_servo_count; if (_sbus_enabled) { to_send = _max_channel; } if (to_send > 0) { for (int i=to_send-1; i >= 0; i--) { if (_period[i] == PWM_IGNORE_THIS_CHANNEL) { to_send = i; } else { break; } } } if (to_send > 0) { ::write(_pwm_fd, _period, to_send*sizeof(_period[0])); } if (_max_channel > _servo_count) { // maybe send updates to alt_fd if (_alt_fd != -1 && _alt_servo_count > 0) { uint8_t n = _max_channel - _servo_count; if (n > _alt_servo_count) { n = _alt_servo_count; } if (n > 0) { ::write(_alt_fd, &_period[_servo_count], n*sizeof(_period[0])); } } } if(AP_BoardConfig::get_can_enable() >= 1) { #if HAL_WITH_UAVCAN if(hal.can_mgr != nullptr) { AP_UAVCAN *ap_uc = hal.can_mgr->get_UAVCAN(); if(ap_uc != nullptr) { if(ap_uc->rc_out_sem_take()) { for(uint8_t i = 0; i < _max_channel; i++) { ap_uc->rco_write(_period[i], i); } bool armed = hal.util->get_soft_armed(); if (armed) { ap_uc->rco_arm_actuators(true); } else { ap_uc->rco_arm_actuators(false); } ap_uc->rc_out_sem_give(); } } } #endif // HAL_WITH_UAVCAN } perf_end(_perf_rcout); _last_output = now; } update_pwm: for (uint8_t i=0; i= 0 && orb_check(_outputs[i].pwm_sub, &rc_updated) == 0 && rc_updated) { orb_copy(ORB_ID(actuator_outputs), _outputs[i].pwm_sub, &_outputs[i].outputs); } } } void PX4RCOutput::cork() { #if RCOUT_DEBUG_LATENCY hal.gpio->pinMode(55, HAL_GPIO_OUTPUT); hal.gpio->write(55, 1); #endif _corking = true; } void PX4RCOutput::push() { #if RCOUT_DEBUG_LATENCY hal.gpio->pinMode(55, HAL_GPIO_OUTPUT); hal.gpio->write(55, 0); #endif _corking = false; if (_output_mode == MODE_PWM_ONESHOT) { // run timer immediately in oneshot mode _send_outputs(); } } void PX4RCOutput::timer_tick(void) { if (_output_mode != MODE_PWM_ONESHOT && !_corking) { /* in oneshot mode the timer does nothing as the outputs are * sent from push() */ _send_outputs(); } force_safety_pending_requests(); } /* enable sbus output */ bool PX4RCOutput::enable_sbus_out(uint16_t rate_hz) { int fd = open("/dev/px4io", 0); if (fd == -1) { return false; } for (uint8_t tries=0; tries<10; tries++) { if (ioctl(fd, SBUS_SET_PROTO_VERSION, 1) != 0) { continue; } if (ioctl(fd, PWM_SERVO_SET_SBUS_RATE, rate_hz) != 0) { continue; } close(fd); _sbus_enabled = true; return true; } close(fd); return false; } /* setup output mode */ void PX4RCOutput::set_output_mode(enum output_mode mode) { if (_output_mode == mode) { // no change return; } if (mode == MODE_PWM_ONESHOT) { // when using oneshot we don't want the regular pulses. The // best we can do with the current PX4Firmware code is ask for // 1Hz. This does still produce pulses, but the trigger calls // mean the timer is constantly reset, so no pulses are // produced except when triggered by push() when the main loop // is running set_freq_fd(_pwm_fd, _rate_mask_main, 1, _rate_mask_main); if (_alt_fd != -1) { set_freq_fd(_alt_fd, _rate_mask_alt, 1, _rate_mask_alt); } } _output_mode = mode; switch (_output_mode) { case MODE_PWM_ONESHOT: ioctl(_pwm_fd, PWM_SERVO_SET_ONESHOT, 1); if (_alt_fd != -1) { ioctl(_alt_fd, PWM_SERVO_SET_ONESHOT, 1); } break; case MODE_PWM_NORMAL: ioctl(_pwm_fd, PWM_SERVO_SET_ONESHOT, 0); if (_alt_fd != -1) { ioctl(_alt_fd, PWM_SERVO_SET_ONESHOT, 0); } break; case MODE_PWM_BRUSHED16KHZ: // setup an 8MHz clock. This has the effect of scaling all outputs by 8x ioctl(_pwm_fd, PWM_SERVO_SET_UPDATE_CLOCK, 8); if (_alt_fd != -1) { ioctl(_alt_fd, PWM_SERVO_SET_UPDATE_CLOCK, 8); } break; } } #endif // CONFIG_HAL_BOARD