#include #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 #include "GPIO.h" #include "Util_RPI.h" #include #include #include #include #include #include #include #include #include using namespace Linux; static const AP_HAL::HAL& hal = AP_HAL::get_HAL(); GPIO_RPI::GPIO_RPI() {} void GPIO_RPI::init() { int rpi_version = UtilRPI::from(hal.util)->get_rpi_version(); uint32_t gpio_address = rpi_version == 1 ? GPIO_BASE(BCM2708_PERI_BASE) : GPIO_BASE(BCM2709_PERI_BASE); uint32_t pwm_address = rpi_version == 1 ? PWM_BASE(BCM2708_PERI_BASE) : PWM_BASE(BCM2709_PERI_BASE); uint32_t clk_address = rpi_version == 1 ? CLOCK_BASE(BCM2708_PERI_BASE) : CLOCK_BASE(BCM2709_PERI_BASE); // open /dev/mem if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) { AP_HAL::panic("Can't open /dev/mem"); } // mmap GPIO gpio_map = mmap( NULL, // Any adddress in our space will do BLOCK_SIZE, // Map length PROT_READ|PROT_WRITE, // Enable reading & writting to mapped memory MAP_SHARED, // Shared with other processes mem_fd, // File to map gpio_address // Offset to GPIO peripheral ); pwm_map = mmap( NULL, // Any adddress in our space will do BLOCK_SIZE, // Map length PROT_READ|PROT_WRITE, // Enable reading & writting to mapped memory MAP_SHARED, // Shared with other processes mem_fd, // File to map pwm_address // Offset to GPIO peripheral ); clk_map = mmap( NULL, // Any adddress in our space will do BLOCK_SIZE, // Map length PROT_READ|PROT_WRITE, // Enable reading & writting to mapped memory MAP_SHARED, // Shared with other processes mem_fd, // File to map clk_address // Offset to GPIO peripheral ); close(mem_fd); // No need to keep mem_fd open after mmap if (gpio_map == MAP_FAILED || pwm_map == MAP_FAILED || clk_map == MAP_FAILED) { AP_HAL::panic("Can't open /dev/mem"); } gpio = (volatile uint32_t *)gpio_map; // Always use volatile pointer! pwm = (volatile uint32_t *)pwm_map; clk = (volatile uint32_t *)clk_map; } void GPIO_RPI::pinMode(uint8_t pin, uint8_t output) { if (output == HAL_GPIO_INPUT) { GPIO_MODE_IN(pin); } else { GPIO_MODE_IN(pin); GPIO_MODE_OUT(pin); } } void GPIO_RPI::pinMode(uint8_t pin, uint8_t output, uint8_t alt) { if (output == HAL_GPIO_INPUT) { GPIO_MODE_IN(pin); } else if (output == HAL_GPIO_ALT) { GPIO_MODE_IN(pin); GPIO_MODE_ALT(pin, alt); } else { GPIO_MODE_IN(pin); GPIO_MODE_OUT(pin); } } int8_t GPIO_RPI::analogPinToDigitalPin(uint8_t pin) { return -1; } uint8_t GPIO_RPI::read(uint8_t pin) { uint32_t value = GPIO_GET(pin); return value ? 1: 0; } void GPIO_RPI::write(uint8_t pin, uint8_t value) { if (value == LOW) { GPIO_SET_LOW = 1 << pin; } else { GPIO_SET_HIGH = 1 << pin; } } void GPIO_RPI::toggle(uint8_t pin) { write(pin, !read(pin)); } void GPIO_RPI::setPWMPeriod(uint8_t pin, uint32_t time_us) { setPWM0Period(time_us); } void GPIO_RPI::setPWMDuty(uint8_t pin, uint8_t percent) { setPWM0Duty(percent); } void GPIO_RPI::setPWM0Period(uint32_t time_us) { // stop clock and waiting for busy flag doesn't work, so kill clock *(clk + PWMCLK_CNTL) = 0x5A000000 | (1 << 5); usleep(10); // set frequency // DIVI is the integer part of the divisor // the fractional part (DIVF) drops clock cycles to get the output frequency, bad for servo motors // 320 bits for one cycle of 20 milliseconds = 62.5 us per bit = 16 kHz int idiv = (int) (19200000.0f / (320000000.0f / time_us)); if (idiv < 1 || idiv > 0x1000) { return; } *(clk + PWMCLK_DIV) = 0x5A000000 | (idiv<<12); // source=osc and enable clock *(clk + PWMCLK_CNTL) = 0x5A000011; // disable PWM *(pwm + PWM_CTL) = 0; // needs some time until the PWM module gets disabled, without the delay the PWM module crashs usleep(10); // filled with 0 for 20 milliseconds = 320 bits *(pwm + PWM_RNG1) = 320; // init with 0% setPWM0Duty(0); // start PWM1 in serializer mode *(pwm + PWM_CTL) = 3; } void GPIO_RPI::setPWM0Duty(uint8_t percent) { int bitCount; unsigned int bits = 0; bitCount = 320 * percent / 100; if (bitCount > 320) bitCount = 320; if (bitCount < 0) bitCount = 0; bits = 0; while (bitCount) { bits <<= 1; bits |= 1; bitCount--; } *(pwm + PWM_DAT1) = bits; } /* Alternative interface: */ AP_HAL::DigitalSource* GPIO_RPI::channel(uint16_t n) { return new DigitalSource(n); } /* Interrupt interface: */ bool GPIO_RPI::attach_interrupt(uint8_t interrupt_num, AP_HAL::Proc p, uint8_t mode) { return true; } bool GPIO_RPI::usb_connected(void) { return false; } #endif // CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2