#pragma once #include #include #include // Attitude control library #include #include #include #include #include #include #include #include "qautotune.h" #include "defines.h" /* QuadPlane specific functionality */ class QuadPlane { public: friend class Plane; friend class AP_Tuning_Plane; friend class GCS_MAVLINK_Plane; friend class AP_AdvancedFailsafe_Plane; friend class QAutoTune; friend class AP_Arming_Plane; friend class RC_Channel_Plane; friend class RC_Channel; friend class Mode; friend class ModeAuto; friend class ModeRTL; friend class ModeAvoidADSB; friend class ModeGuided; friend class ModeQHover; friend class ModeQLand; friend class ModeQLoiter; friend class ModeQRTL; friend class ModeQStabilize; friend class ModeQAutotune; friend class ModeQAcro; QuadPlane(AP_AHRS_NavEKF &_ahrs); static QuadPlane *get_singleton() { return _singleton; } // var_info for holding Parameter information static const struct AP_Param::GroupInfo var_info[]; static const struct AP_Param::GroupInfo var_info2[]; void control_run(void); void control_auto(void); bool init_mode(void); bool setup(void); void vtol_position_controller(void); void setup_target_position(void); void takeoff_controller(void); void waypoint_controller(void); void update_land_positioning(void); void update_throttle_mix(void); // update transition handling void update(void); // set motor arming void set_armed(bool armed); // is VTOL available? bool available(void) const { return initialised; } // is quadplane assisting? bool in_assisted_flight(void) const { return available() && assisted_flight; } /* return true if we are in a transition to fwd flight from hover */ bool in_transition(void) const; /* return true if we are a tailsitter transitioning to VTOL flight */ bool in_tailsitter_vtol_transition(uint32_t now = 0) const; bool handle_do_vtol_transition(enum MAV_VTOL_STATE state) const; bool do_vtol_takeoff(const AP_Mission::Mission_Command& cmd); bool do_vtol_land(const AP_Mission::Mission_Command& cmd); bool verify_vtol_takeoff(const AP_Mission::Mission_Command &cmd); bool verify_vtol_land(void); bool in_vtol_auto(void) const; bool in_vtol_mode(void) const; bool in_vtol_posvel_mode(void) const; void update_throttle_hover(); bool show_vtol_view() const; // vtol help for is_flying() bool is_flying(void); // return current throttle as a percentate uint8_t throttle_percentage(void) const { return last_throttle * 100; } // return desired forward throttle percentage int8_t forward_throttle_pct(); float get_weathervane_yaw_rate_cds(void); // see if we are flying from vtol point of view bool is_flying_vtol(void) const; // return true when tailsitter frame configured bool is_tailsitter(void) const; // return true when flying a control surface only tailsitter bool is_control_surface_tailsitter(void) const; // true when flying a tilt-vectored tailsitter bool _is_vectored; // return true when flying a tailsitter in VTOL bool tailsitter_active(void); // create outputs for tailsitters void tailsitter_output(void); // handle different tailsitter input types void tailsitter_check_input(void); // check if we have completed transition to fixed wing bool tailsitter_transition_fw_complete(void); // return true if we are a tailsitter in FW flight bool is_tailsitter_in_fw_flight(void) const; // check if we have completed transition to vtol bool tailsitter_transition_vtol_complete(void) const; // account for control surface speed scaling in VTOL modes void tailsitter_speed_scaling(void); // user initiated takeoff for guided mode bool do_user_takeoff(float takeoff_altitude); // return true if the wp_nav controller is being updated bool using_wp_nav(void) const; // return true if the user has set ENABLE bool enabled(void) const { return enable != 0; } uint16_t get_pilot_velocity_z_max_dn() const; struct PACKED log_QControl_Tuning { LOG_PACKET_HEADER; uint64_t time_us; float throttle_in; float angle_boost; float throttle_out; float throttle_hover; float desired_alt; float inav_alt; int32_t baro_alt; int16_t target_climb_rate; int16_t climb_rate; float throttle_mix; float speed_scaler; uint8_t transition_state; uint8_t assist; }; MAV_TYPE get_mav_type(void) const; enum Q_ASSIST_STATE_ENUM { Q_ASSIST_DISABLED, Q_ASSIST_ENABLED, Q_ASSIST_FORCE, }; void set_q_assist_state(Q_ASSIST_STATE_ENUM state) {q_assist_state = state;}; private: AP_AHRS_NavEKF &ahrs; AP_Vehicle::MultiCopter aparm; AP_InertialNav_NavEKF inertial_nav{ahrs}; AP_Enum frame_class; AP_Enum frame_type; AP_MotorsMulticopter *motors; const struct AP_Param::GroupInfo *motors_var_info; AC_AttitudeControl_Multi *attitude_control; AC_PosControl *pos_control; AC_WPNav *wp_nav; AC_Loiter *loiter_nav; // maximum vertical velocity the pilot may request AP_Int16 pilot_velocity_z_max_up; AP_Int16 pilot_velocity_z_max_dn; // vertical acceleration the pilot may request AP_Int16 pilot_accel_z; // air mode state: OFF, ON AirMode air_mode; // check for quadplane assistance needed bool assistance_needed(float aspeed, bool have_airspeed); // check if it is safe to provide assistance bool assistance_safe(); // update transition handling void update_transition(void); // check for an EKF yaw reset void check_yaw_reset(void); // hold hover (for transition) void hold_hover(float target_climb_rate_cms); // hold stabilize (for transition) void hold_stabilize(float throttle_in); // set climb rate in position controller void set_climb_rate_cms(float target_climb_rate_cms, bool force_descend); // get pilot desired yaw rate in cd/s float get_pilot_input_yaw_rate_cds(void) const; // get overall desired yaw rate in cd/s float get_desired_yaw_rate_cds(void); // get desired climb rate in cm/s float get_pilot_desired_climb_rate_cms(void) const; // get pilot lean angle void get_pilot_desired_lean_angles(float &roll_out_cd, float &pitch_out_cd, float angle_max_cd, float angle_limit_cd) const; // get pilot throttle in for landing code. Return value on scale of 0 to 1 float get_pilot_land_throttle(void) const; // initialise throttle_wait when entering mode void init_throttle_wait(); // use multicopter rate controller void multicopter_attitude_rate_update(float yaw_rate_cds); // update yaw target for tiltrotor transition void update_yaw_target(); // main entry points for VTOL flight modes void init_stabilize(void); void control_stabilize(void); void check_attitude_relax(void); void init_qacro(void); float get_pilot_throttle(void); void control_qacro(void); void init_hover(void); void control_hover(void); void relax_attitude_control(); void init_loiter(void); void init_qland(void); void control_loiter(void); bool check_land_complete(void); bool land_detector(uint32_t timeout_ms); bool check_land_final(void); void init_qrtl(void); void control_qrtl(void); float assist_climb_rate_cms(void) const; // calculate desired yaw rate for assistance float desired_auto_yaw_rate_cds(void) const; bool should_relax(void); void motors_output(bool run_rate_controller = true); void Log_Write_QControl_Tuning(); float landing_descent_rate_cms(float height_above_ground) const; // setup correct aux channels for frame class void setup_default_channels(uint8_t num_motors); void guided_start(void); void guided_update(void); void update_throttle_suppression(void); void run_z_controller(void); void run_xy_controller(void); void setup_defaults(void); // calculate a stopping distance for fixed-wing to vtol transitions float stopping_distance(void); AP_Int16 transition_time_ms; // transition deceleration, m/s/s AP_Float transition_decel; // transition failure milliseconds AP_Int16 transition_failure; // Quadplane trim, degrees AP_Float ahrs_trim_pitch; float _last_ahrs_trim_pitch; // fw landing approach radius AP_Float fw_land_approach_radius; AP_Int16 rc_speed; // min and max PWM for throttle AP_Int16 thr_min_pwm; AP_Int16 thr_max_pwm; // speed below which quad assistance is given AP_Float assist_speed; // angular error at which quad assistance is given AP_Int8 assist_angle; uint32_t angle_error_start_ms; AP_Float assist_delay; // altitude to trigger assistance AP_Int16 assist_alt; uint32_t alt_error_start_ms; bool in_alt_assist; // maximum yaw rate in degrees/second AP_Float yaw_rate_max; // landing speed in cm/s AP_Int16 land_speed_cms; // QRTL start altitude, meters AP_Int16 qrtl_alt; // alt to switch to QLAND_FINAL AP_Float land_final_alt; AP_Float vel_forward_alt_cutoff; AP_Int8 enable; AP_Int8 transition_pitch_max; // control if a VTOL RTL will be used AP_Int8 rtl_mode; enum RTL_MODE{ NONE, SWITCH_QRTL, VTOL_APPROACH_QRTL, }; // control if a VTOL GUIDED will be used AP_Int8 guided_mode; // control ESC throttle calibration AP_Int8 esc_calibration; void run_esc_calibration(void); // ICEngine control on landing AP_Int8 land_icengine_cut; // HEARTBEAT mav_type override AP_Int8 mav_type; // manual throttle curve expo strength AP_Float throttle_expo; // manual forward throttle input AP_Float fwd_thr_max; RC_Channel *rc_fwd_thr_ch; // QACRO mode max roll/pitch/yaw rates AP_Float acro_roll_rate; AP_Float acro_pitch_rate; AP_Float acro_yaw_rate; // time we last got an EKF yaw reset uint32_t ekfYawReset_ms; struct { AP_Float gain; float integrator; uint32_t last_ms; int8_t last_pct; } vel_forward; struct { AP_Float gain; AP_Float min_roll; uint32_t last_pilot_input_ms; float last_output; } weathervane; bool initialised; // timer start for transition uint32_t transition_start_ms; float transition_initial_pitch; uint32_t transition_low_airspeed_ms; Location last_auto_target; // last throttle value when active float last_throttle; // pitch when we enter loiter mode int32_t loiter_initial_pitch_cd; // when did we last run the attitude controller? uint32_t last_att_control_ms; // true if we have reached the airspeed threshold for transition enum { TRANSITION_AIRSPEED_WAIT, TRANSITION_TIMER, TRANSITION_ANGLE_WAIT_FW, TRANSITION_ANGLE_WAIT_VTOL, TRANSITION_DONE } transition_state; // true when waiting for pilot throttle bool throttle_wait:1; // true when quad is assisting a fixed wing mode bool assisted_flight:1; // true when in angle assist bool in_angle_assist:1; // are we in a guided takeoff? bool guided_takeoff:1; struct { // time when motors reached lower limit uint32_t lower_limit_start_ms; uint32_t land_start_ms; float vpos_start_m; } landing_detect; // throttle mix acceleration filter LowPassFilterVector3f throttle_mix_accel_ef_filter{1.0}; // time we last set the loiter target uint32_t last_loiter_ms; enum position_control_state { QPOS_APPROACH, QPOS_AIRBRAKE, QPOS_POSITION1, QPOS_POSITION2, QPOS_LAND_DESCEND, QPOS_LAND_FINAL, QPOS_LAND_COMPLETE }; class PosControlState { public: enum position_control_state get_state() const { return state; } void set_state(enum position_control_state s); uint32_t time_since_state_start_ms() const { return AP_HAL::millis() - last_state_change_ms; } float speed_scale; Vector2f target_velocity; float max_speed; Vector3f target_cm; Vector3f target_vel_cms; bool slow_descent:1; bool pilot_correction_active; bool pilot_correction_done; uint32_t thrust_loss_start_ms; uint32_t last_log_ms; private: uint32_t last_state_change_ms; enum position_control_state state; } poscontrol; struct { bool running; uint32_t start_ms; // system time the motor test began uint32_t timeout_ms = 0; // test will timeout this many milliseconds after the motor_test_start_ms uint8_t seq = 0; // motor sequence number of motor being tested uint8_t throttle_type = 0; // motor throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through) uint16_t throttle_value = 0; // throttle to be sent to motor, value depends upon it's type uint8_t motor_count; // number of motors to cycle } motor_test; // time of last control log message uint32_t last_ctrl_log_ms; // time of last QTUN log message uint32_t last_qtun_log_ms; // types of tilt mechanisms enum {TILT_TYPE_CONTINUOUS =0, TILT_TYPE_BINARY =1, TILT_TYPE_VECTORED_YAW =2, TILT_TYPE_BICOPTER =3 }; // tiltrotor control variables struct { AP_Int16 tilt_mask; AP_Int16 max_rate_up_dps; AP_Int16 max_rate_down_dps; AP_Int8 max_angle_deg; AP_Int8 tilt_type; AP_Float tilt_yaw_angle; AP_Float fixed_angle; AP_Float fixed_gain; float current_tilt; float current_throttle; bool motors_active:1; float transition_yaw_cd; uint32_t transition_yaw_set_ms; bool is_vectored; } tilt; // bit 0 enables plane mode and bit 1 enables body-frame roll mode enum tailsitter_input { TAILSITTER_INPUT_PLANE = (1U<<0), TAILSITTER_INPUT_BF_ROLL = (1U<<1) }; enum tailsitter_mask { TAILSITTER_MASK_AILERON = (1U<<0), TAILSITTER_MASK_ELEVATOR = (1U<<1), TAILSITTER_MASK_THROTTLE = (1U<<2), TAILSITTER_MASK_RUDDER = (1U<<3), }; enum tailsitter_gscl_mask { TAILSITTER_GSCL_THROTTLE = (1U<<0), TAILSITTER_GSCL_ATT_THR = (1U<<1), TAILSITTER_GSCL_DISK_THEORY = (1U<<2), TAILSITTER_GSCL_ALTITUDE = (1U<<3), }; // tailsitter control variables struct { // transition from VTOL to forward AP_Int8 transition_angle_fw; AP_Float transition_rate_fw; // transition from forward to VTOL AP_Int8 transition_angle_vtol; AP_Float transition_rate_vtol; AP_Int8 input_type; AP_Int8 input_mask; AP_Int8 input_mask_chan; AP_Float vectored_forward_gain; AP_Float vectored_hover_gain; AP_Float vectored_hover_power; AP_Float throttle_scale_max; AP_Float gain_scaling_min; AP_Float max_roll_angle; AP_Int16 motor_mask; AP_Float scaling_speed_min; AP_Float scaling_speed_max; AP_Int16 gain_scaling_mask; AP_Float disk_loading; } tailsitter; // return the transition_angle_vtol value int8_t get_tailsitter_transition_angle_vtol(void) const; // tailsitter speed scaler float last_spd_scaler = 1.0f; // used to slew rate limiting with TAILSITTER_GSCL_ATT_THR option float log_spd_scaler; // for QTUN log // the attitude view of the VTOL attitude controller AP_AHRS_View *ahrs_view; // time when motors were last active uint32_t last_motors_active_ms; // time when we last ran the vertical accel controller uint32_t last_pidz_active_ms; uint32_t last_pidz_init_ms; // time when we were last in a vtol control mode uint32_t last_vtol_mode_ms; void tiltrotor_slew(float tilt); void tiltrotor_binary_slew(bool forward); void tiltrotor_update(void); void tiltrotor_continuous_update(void); void tiltrotor_binary_update(void); void tiltrotor_vectoring(void); void tiltrotor_bicopter(void); float tilt_throttle_scaling(void); void tilt_compensate_angle(float *thrust, uint8_t num_motors, float non_tilted_mul, float tilted_mul); void tilt_compensate(float *thrust, uint8_t num_motors); bool is_motor_tilting(uint8_t motor) const { return (((uint8_t)tilt.tilt_mask.get()) & (1U<