/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* suppport for LORD Microstrain CX5/GX5-45 serially connected AHRS Systems */ #define ALLOW_DOUBLE_MATH_FUNCTIONS #include "AP_ExternalAHRS_LORD.h" #if HAL_EXTERNAL_AHRS_LORD_ENABLED #include #include #include #include #include #include #include #include enum class DescriptorSet { BaseCommand = 0x01, DMCommand = 0x0C, SystemCommand = 0x7F, IMUData = 0x80, GNSSData = 0x81, EstimationData = 0x82 }; enum class INSPacketField { ACCEL = 0x04, GYRO = 0x05, QUAT = 0x0A, MAG = 0x06, PRESSURE = 0x17 }; enum class GNSSPacketField { LLH_POSITION = 0x03, NED_VELOCITY = 0x05, DOP_DATA = 0x07, GPS_TIME = 0x09, FIX_INFO = 0x0B }; enum class GNSSFixType { FIX_3D = 0x00, FIX_2D = 0x01, TIME_ONLY = 0x02, NONE = 0x03, INVALID = 0x04 }; enum class FilterPacketField { FILTER_STATUS = 0x10, GPS_TIME = 0x11, LLH_POSITION = 0x01, NED_VELOCITY = 0x02 }; extern const AP_HAL::HAL &hal; AP_ExternalAHRS_LORD::AP_ExternalAHRS_LORD(AP_ExternalAHRS *_frontend, AP_ExternalAHRS::state_t &_state): AP_ExternalAHRS_backend(_frontend, _state) { auto &sm = AP::serialmanager(); uart = sm.find_serial(AP_SerialManager::SerialProtocol_AHRS, 0); baudrate = sm.find_baudrate(AP_SerialManager::SerialProtocol_AHRS, 0); port_num = sm.find_portnum(AP_SerialManager::SerialProtocol_AHRS, 0); if (!uart) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "ExternalAHRS no UART"); return; } if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_ExternalAHRS_LORD::update_thread, void), "AHRS", 2048, AP_HAL::Scheduler::PRIORITY_SPI, 0)) { AP_BoardConfig::allocation_error("Failed to allocate ExternalAHRS update thread"); } hal.scheduler->delay(5000); GCS_SEND_TEXT(MAV_SEVERITY_INFO, "LORD ExternalAHRS initialised"); } void AP_ExternalAHRS_LORD::update_thread(void) { if (!port_open) { port_open = true; uart->begin(baudrate); } while (true) { build_packet(); hal.scheduler->delay_microseconds(100); } } // Builds packets by looking at each individual byte, once a full packet has been read in it checks the checksum then handles the packet. void AP_ExternalAHRS_LORD::build_packet() { WITH_SEMAPHORE(sem); uint32_t nbytes = MIN(uart->available(), 2048u); while (nbytes--> 0) { const int16_t b = uart->read(); if (b < 0) { break; } switch (message_in.state) { case ParseState::WaitingFor_SyncOne: if (b == SYNC_ONE) { message_in.packet.header[0] = b; message_in.state = ParseState::WaitingFor_SyncTwo; } break; case ParseState::WaitingFor_SyncTwo: if (b == SYNC_TWO) { message_in.packet.header[1] = b; message_in.state = ParseState::WaitingFor_Descriptor; } else { message_in.state = ParseState::WaitingFor_SyncOne; } break; case ParseState::WaitingFor_Descriptor: message_in.packet.header[2] = b; message_in.state = ParseState::WaitingFor_PayloadLength; break; case ParseState::WaitingFor_PayloadLength: message_in.packet.header[3] = b; message_in.state = ParseState::WaitingFor_Data; message_in.index = 0; break; case ParseState::WaitingFor_Data: message_in.packet.payload[message_in.index++] = b; if (message_in.index >= message_in.packet.header[3]) { message_in.state = ParseState::WaitingFor_Checksum; message_in.index = 0; } break; case ParseState::WaitingFor_Checksum: message_in.packet.checksum[message_in.index++] = b; if (message_in.index >= 2) { message_in.state = ParseState::WaitingFor_SyncOne; message_in.index = 0; if (valid_packet(message_in.packet)) { handle_packet(message_in.packet); } } break; } } } // returns true if the fletcher checksum for the packet is valid, else false. bool AP_ExternalAHRS_LORD::valid_packet(const LORD_Packet & packet) const { uint8_t checksum_one = 0; uint8_t checksum_two = 0; for (int i = 0; i < 4; i++) { checksum_one += packet.header[i]; checksum_two += checksum_one; } for (int i = 0; i < packet.header[3]; i++) { checksum_one += packet.payload[i]; checksum_two += checksum_one; } return packet.checksum[0] == checksum_one && packet.checksum[1] == checksum_two; } // Calls the correct functions based on the packet descriptor of the packet void AP_ExternalAHRS_LORD::handle_packet(const LORD_Packet& packet) { switch ((DescriptorSet) packet.header[2]) { case DescriptorSet::IMUData: handle_imu(packet); post_imu(); break; case DescriptorSet::GNSSData: handle_gnss(packet); break; case DescriptorSet::EstimationData: handle_filter(packet); post_filter(); break; case DescriptorSet::BaseCommand: case DescriptorSet::DMCommand: case DescriptorSet::SystemCommand: break; } } // Collects data from an imu packet into `imu_data` void AP_ExternalAHRS_LORD::handle_imu(const LORD_Packet& packet) { last_ins_pkt = AP_HAL::millis(); // Iterate through fields of varying lengths in INS packet for (uint8_t i = 0; i < packet.header[3]; i += packet.payload[i]) { switch ((INSPacketField) packet.payload[i+1]) { // Scaled Ambient Pressure case INSPacketField::PRESSURE: { imu_data.pressure = extract_float(packet.payload, i+2) * 100; // Convert millibar to pascals break; } // Scaled Magnetometer Vector case INSPacketField::MAG: { imu_data.mag = populate_vector3f(packet.payload, i+2) * 1000; // Convert gauss to milligauss break; } // Scaled Accelerometer Vector case INSPacketField::ACCEL: { imu_data.accel = populate_vector3f(packet.payload, i+2) * GRAVITY_MSS; // Convert g's to m/s^2 break; } // Scaled Gyro Vector case INSPacketField::GYRO: { imu_data.gyro = populate_vector3f(packet.payload, i+2); break; } // Quaternion case INSPacketField::QUAT: { imu_data.quat = populate_quaternion(packet.payload, i+2); break; } } } } // Posts data from an imu packet to `state` and `handle_external` methods void AP_ExternalAHRS_LORD::post_imu() const { { WITH_SEMAPHORE(state.sem); state.accel = imu_data.accel; state.gyro = imu_data.gyro; state.quat = imu_data.quat; state.have_quaternion = true; } { AP_ExternalAHRS::ins_data_message_t ins { accel: imu_data.accel, gyro: imu_data.gyro, temperature: -300 }; AP::ins().handle_external(ins); } { AP_ExternalAHRS::mag_data_message_t mag { field: imu_data.mag }; AP::compass().handle_external(mag); } #if AP_BARO_EXTERNALAHRS_ENABLED { const AP_ExternalAHRS::baro_data_message_t baro { instance: 0, pressure_pa: imu_data.pressure, // setting temp to 25 effectively disables barometer temperature calibrations - these are already performed by lord temperature: 25, }; AP::baro().handle_external(baro); } #endif } // Collects data from a gnss packet into `gnss_data` void AP_ExternalAHRS_LORD::handle_gnss(const LORD_Packet &packet) { last_gps_pkt = AP_HAL::millis(); // Iterate through fields of varying lengths in GNSS packet for (uint8_t i = 0; i < packet.header[3]; i += packet.payload[i]) { switch ((GNSSPacketField) packet.payload[i+1]) { // GPS Time case GNSSPacketField::GPS_TIME: { gnss_data.tow_ms = extract_double(packet.payload, i+2) * 1000; // Convert seconds to ms gnss_data.week = be16toh_ptr(&packet.payload[i+10]); break; } // GNSS Fix Information case GNSSPacketField::FIX_INFO: { switch ((GNSSFixType) packet.payload[i+2]) { case (GNSSFixType::FIX_3D): { gnss_data.fix_type = GPS_FIX_TYPE_3D_FIX; break; } case (GNSSFixType::FIX_2D): { gnss_data.fix_type = GPS_FIX_TYPE_2D_FIX; break; } case (GNSSFixType::TIME_ONLY): case (GNSSFixType::NONE): { gnss_data.fix_type = GPS_FIX_TYPE_NO_FIX; break; } default: case (GNSSFixType::INVALID): { gnss_data.fix_type = GPS_FIX_TYPE_NO_GPS; break; } } gnss_data.satellites = packet.payload[i+3]; break; } // LLH Position case GNSSPacketField::LLH_POSITION: { gnss_data.lat = extract_double(packet.payload, i+2) * 1.0e7; // Decimal degrees to degrees gnss_data.lon = extract_double(packet.payload, i+10) * 1.0e7; gnss_data.msl_altitude = extract_double(packet.payload, i+26) * 1.0e2; // Meters to cm gnss_data.horizontal_position_accuracy = extract_float(packet.payload, i+34); gnss_data.vertical_position_accuracy = extract_float(packet.payload, i+38); break; } // DOP Data case GNSSPacketField::DOP_DATA: { gnss_data.hdop = extract_float(packet.payload, i+10); gnss_data.vdop = extract_float(packet.payload, i+14); break; } // NED Velocity case GNSSPacketField::NED_VELOCITY: { gnss_data.ned_velocity_north = extract_float(packet.payload, i+2); gnss_data.ned_velocity_east = extract_float(packet.payload, i+6); gnss_data.ned_velocity_down = extract_float(packet.payload, i+10); gnss_data.speed_accuracy = extract_float(packet.payload, i+26); break; } } } } void AP_ExternalAHRS_LORD::handle_filter(const LORD_Packet &packet) { last_filter_pkt = AP_HAL::millis(); // Iterate through fields of varying lengths in filter packet for (uint8_t i = 0; i < packet.header[3]; i += packet.payload[i]) { switch ((FilterPacketField) packet.payload[i+1]) { // GPS Timestamp case FilterPacketField::GPS_TIME: { filter_data.tow_ms = extract_double(packet.payload, i+2) * 1000; // Convert seconds to ms filter_data.week = be16toh_ptr(&packet.payload[i+10]); break; } // LLH Position case FilterPacketField::LLH_POSITION: { filter_data.lat = extract_double(packet.payload, i+2) * 1.0e7; // Decimal degrees to degrees filter_data.lon = extract_double(packet.payload, i+10) * 1.0e7; filter_data.hae_altitude = extract_double(packet.payload, i+26) * 1.0e2; // Meters to cm break; } // NED Velocity case FilterPacketField::NED_VELOCITY: { filter_data.ned_velocity_north = extract_float(packet.payload, i+2); filter_data.ned_velocity_east = extract_float(packet.payload, i+6); filter_data.ned_velocity_down = extract_float(packet.payload, i+10); break; } // Filter Status case FilterPacketField::FILTER_STATUS: { filter_status.state = be16toh_ptr(&packet.payload[i+2]); filter_status.mode = be16toh_ptr(&packet.payload[i+4]); filter_status.flags = be16toh_ptr(&packet.payload[i+6]); break; } } } } void AP_ExternalAHRS_LORD::post_filter() const { { WITH_SEMAPHORE(state.sem); state.velocity = Vector3f{filter_data.ned_velocity_north, filter_data.ned_velocity_east, filter_data.ned_velocity_down}; state.have_velocity = true; state.location = Location{filter_data.lat, filter_data.lon, gnss_data.msl_altitude, Location::AltFrame::ABSOLUTE}; state.have_location = true; } AP_ExternalAHRS::gps_data_message_t gps { gps_week: filter_data.week, ms_tow: filter_data.tow_ms, fix_type: (uint8_t) gnss_data.fix_type, satellites_in_view: gnss_data.satellites, horizontal_pos_accuracy: gnss_data.horizontal_position_accuracy, vertical_pos_accuracy: gnss_data.vertical_position_accuracy, horizontal_vel_accuracy: gnss_data.speed_accuracy, hdop: gnss_data.hdop, vdop: gnss_data.vdop, longitude: filter_data.lon, latitude: filter_data.lat, msl_altitude: gnss_data.msl_altitude, ned_vel_north: filter_data.ned_velocity_north, ned_vel_east: filter_data.ned_velocity_east, ned_vel_down: filter_data.ned_velocity_down, }; if (gps.fix_type >= 3 && !state.have_origin) { WITH_SEMAPHORE(state.sem); state.origin = Location{int32_t(filter_data.lat), int32_t(filter_data.lon), int32_t(gnss_data.msl_altitude), Location::AltFrame::ABSOLUTE}; state.have_origin = true; } AP::gps().handle_external(gps); } int8_t AP_ExternalAHRS_LORD::get_port(void) const { if (!uart) { return -1; } return port_num; }; bool AP_ExternalAHRS_LORD::healthy(void) const { uint32_t now = AP_HAL::millis(); return (now - last_ins_pkt < 40 && now - last_gps_pkt < 500 && now - last_filter_pkt < 500); } bool AP_ExternalAHRS_LORD::initialised(void) const { return last_ins_pkt != 0 && last_gps_pkt != 0 && last_filter_pkt != 0; } bool AP_ExternalAHRS_LORD::pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const { if (!healthy()) { hal.util->snprintf(failure_msg, failure_msg_len, "LORD unhealthy"); return false; } if (gnss_data.fix_type < 3) { hal.util->snprintf(failure_msg, failure_msg_len, "LORD no GPS lock"); return false; } if (filter_status.state != 0x02) { hal.util->snprintf(failure_msg, failure_msg_len, "LORD filter not running"); return false; } return true; } void AP_ExternalAHRS_LORD::get_filter_status(nav_filter_status &status) const { memset(&status, 0, sizeof(status)); if (last_ins_pkt != 0 && last_gps_pkt != 0) { status.flags.initalized = 1; } if (healthy() && last_ins_pkt != 0) { status.flags.attitude = 1; status.flags.vert_vel = 1; status.flags.vert_pos = 1; if (gnss_data.fix_type >= 3) { status.flags.horiz_vel = 1; status.flags.horiz_pos_rel = 1; status.flags.horiz_pos_abs = 1; status.flags.pred_horiz_pos_rel = 1; status.flags.pred_horiz_pos_abs = 1; status.flags.using_gps = 1; } } } void AP_ExternalAHRS_LORD::send_status_report(mavlink_channel_t chan) const { // prepare flags uint16_t flags = 0; nav_filter_status filterStatus; get_filter_status(filterStatus); if (filterStatus.flags.attitude) { flags |= EKF_ATTITUDE; } if (filterStatus.flags.horiz_vel) { flags |= EKF_VELOCITY_HORIZ; } if (filterStatus.flags.vert_vel) { flags |= EKF_VELOCITY_VERT; } if (filterStatus.flags.horiz_pos_rel) { flags |= EKF_POS_HORIZ_REL; } if (filterStatus.flags.horiz_pos_abs) { flags |= EKF_POS_HORIZ_ABS; } if (filterStatus.flags.vert_pos) { flags |= EKF_POS_VERT_ABS; } if (filterStatus.flags.terrain_alt) { flags |= EKF_POS_VERT_AGL; } if (filterStatus.flags.const_pos_mode) { flags |= EKF_CONST_POS_MODE; } if (filterStatus.flags.pred_horiz_pos_rel) { flags |= EKF_PRED_POS_HORIZ_REL; } if (filterStatus.flags.pred_horiz_pos_abs) { flags |= EKF_PRED_POS_HORIZ_ABS; } if (!filterStatus.flags.initalized) { flags |= EKF_UNINITIALIZED; } // send message const float vel_gate = 4; // represents hz value data is posted at const float pos_gate = 4; // represents hz value data is posted at const float hgt_gate = 4; // represents hz value data is posted at const float mag_var = 0; //we may need to change this to be like the other gates, set to 0 because mag is ignored by the ins filter in vectornav mavlink_msg_ekf_status_report_send(chan, flags, gnss_data.speed_accuracy/vel_gate, gnss_data.horizontal_position_accuracy/pos_gate, gnss_data.vertical_position_accuracy/hgt_gate, mag_var, 0, 0); } Vector3f AP_ExternalAHRS_LORD::populate_vector3f(const uint8_t *data, uint8_t offset) const { return Vector3f { extract_float(data, offset), extract_float(data, offset+4), extract_float(data, offset+8) }; } Quaternion AP_ExternalAHRS_LORD::populate_quaternion(const uint8_t *data, uint8_t offset) const { return Quaternion { extract_float(data, offset), extract_float(data, offset+4), extract_float(data, offset+8), extract_float(data, offset+12) }; } float AP_ExternalAHRS_LORD::extract_float(const uint8_t *data, uint8_t offset) const { uint32_t tmp = be32toh_ptr(&data[offset]); return *reinterpret_cast(&tmp); } double AP_ExternalAHRS_LORD::extract_double(const uint8_t *data, uint8_t offset) const { uint64_t tmp = be64toh_ptr(&data[offset]); return *reinterpret_cast(&tmp); } #endif // HAL_EXTERNAL_AHRS_ENABLED