// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); static int8_t test_radio(uint8_t argc, const Menu::arg *argv); static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv); static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv); static int8_t test_gps(uint8_t argc, const Menu::arg *argv); static int8_t test_adc(uint8_t argc, const Menu::arg *argv); static int8_t test_imu(uint8_t argc, const Menu::arg *argv); //static int8_t test_dcm(uint8_t argc, const Menu::arg *argv); //static int8_t test_omega(uint8_t argc, const Menu::arg *argv); static int8_t test_battery(uint8_t argc, const Menu::arg *argv); static int8_t test_tuning(uint8_t argc, const Menu::arg *argv); static int8_t test_current(uint8_t argc, const Menu::arg *argv); static int8_t test_relay(uint8_t argc, const Menu::arg *argv); static int8_t test_wp(uint8_t argc, const Menu::arg *argv); static int8_t test_altitude(uint8_t argc, const Menu::arg *argv); static int8_t test_mag(uint8_t argc, const Menu::arg *argv); //static int8_t test_sonar(uint8_t argc, const Menu::arg *argv); static int8_t test_xbee(uint8_t argc, const Menu::arg *argv); static int8_t test_eedump(uint8_t argc, const Menu::arg *argv); static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv); static int8_t test_mission(uint8_t argc, const Menu::arg *argv); // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of printf that reads from flash memory /*static int8_t help_test(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\n" "Commands:\n" " radio\n" " servos\n" " g_gps\n" " imu\n" " battery\n" "\n")); }*/ // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details const struct Menu::command test_menu_commands[] PROGMEM = { {"pwm", test_radio_pwm}, {"radio", test_radio}, {"failsafe", test_failsafe}, {"stabilize", test_stabilize}, {"gps", test_gps}, #if HIL_MODE != HIL_MODE_ATTITUDE {"adc", test_adc}, #endif {"imu", test_imu}, //{"dcm", test_dcm}, //{"omega", test_omega}, {"battery", test_battery}, {"tune", test_tuning}, {"current", test_current}, {"relay", test_relay}, {"waypoints", test_wp}, #if HIL_MODE != HIL_MODE_ATTITUDE {"altitude", test_altitude}, #endif //{"sonar", test_sonar}, {"compass", test_mag}, {"xbee", test_xbee}, {"eedump", test_eedump}, {"rawgps", test_rawgps}, {"mission", test_mission}, }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); int8_t test_mode(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("Test Mode\n\n")); test_menu.run(); } static int8_t test_eedump(uint8_t argc, const Menu::arg *argv) { int i, j; // hexdump the EEPROM for (i = 0; i < EEPROM_MAX_ADDR; i += 16) { Serial.printf_P(PSTR("%04x:"), i); for (j = 0; j < 16; j++) Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j))); Serial.println(); } return(0); } static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); Serial.printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), g.rc_1.radio_in, g.rc_2.radio_in, g.rc_3.radio_in, g.rc_4.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in); if(Serial.available() > 0){ return (0); } } } static int8_t test_radio(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(20); read_radio(); output_manual_throttle(); g.rc_1.calc_pwm(); g.rc_2.calc_pwm(); g.rc_3.calc_pwm(); g.rc_4.calc_pwm(); Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"), g.rc_1.control_in, g.rc_2.control_in, g.rc_3.control_in, g.rc_4.control_in, g.rc_5.control_in, g.rc_6.control_in, g.rc_7.control_in); //Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100)); /*Serial.printf_P(PSTR( "min: %d" "\t in: %d" "\t pwm_in: %d" "\t sout: %d" "\t pwm_out %d\n"), g.rc_3.radio_min, g.rc_3.control_in, g.rc_3.radio_in, g.rc_3.servo_out, g.rc_3.pwm_out ); */ if(Serial.available() > 0){ return (0); } } } static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv) { byte fail_test; print_hit_enter(); for(int i = 0; i < 50; i++){ delay(20); read_radio(); } oldSwitchPosition = readSwitch(); Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n")); while(g.rc_3.control_in > 0){ delay(20); read_radio(); } while(1){ delay(20); read_radio(); if(g.rc_3.control_in > 0){ Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.rc_3.control_in); fail_test++; } if(oldSwitchPosition != readSwitch()){ Serial.printf_P(PSTR("CONTROL MODE CHANGED: ")); Serial.println(flight_mode_strings[readSwitch()]); fail_test++; } if(g.throttle_fs_enabled && g.rc_3.get_failsafe()){ Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.rc_3.radio_in); Serial.println(flight_mode_strings[readSwitch()]); fail_test++; } if(fail_test > 0){ return (0); } if(Serial.available() > 0){ Serial.printf_P(PSTR("LOS caused no change in ACM.\n")); return (0); } } } static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv) { static byte ts_num; print_hit_enter(); delay(1000); // setup the radio // --------------- init_rc_in(); control_mode = STABILIZE; Serial.printf_P(PSTR("g.pid_stabilize_roll.kP: %4.4f\n"), g.pid_stabilize_roll.kP()); Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener); motor_auto_safe = false; motor_armed = true; while(1){ // 50 hz if (millis() - fast_loopTimer > 19) { delta_ms_fast_loop = millis() - fast_loopTimer; fast_loopTimer = millis(); G_Dt = (float)delta_ms_fast_loop / 1000.f; if(g.compass_enabled){ medium_loopCounter++; if(medium_loopCounter == 5){ compass.read(); // Read magnetometer compass.calculate(dcm.roll, dcm.pitch); // Calculate heading compass.null_offsets(dcm.get_dcm_matrix()); medium_loopCounter = 0; } } // for trim features read_trim_switch(); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); // IMU // --- read_AHRS(); // allow us to zero out sensors with control switches if(g.rc_5.control_in < 600){ dcm.roll_sensor = dcm.pitch_sensor = 0; } // custom code/exceptions for flight modes // --------------------------------------- update_current_flight_mode(); // write out the servo PWM values // ------------------------------ set_servos_4(); ts_num++; if (ts_num > 10){ ts_num = 0; Serial.printf_P(PSTR("r: %d, p:%d, rc1:%d, "), (int)(dcm.roll_sensor/100), (int)(dcm.pitch_sensor/100), g.rc_1.pwm_out); print_motor_out(); } // R: 1417, L: 1453 F: 1453 B: 1417 //Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100)); //Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100)); if(Serial.available() > 0){ if(g.compass_enabled){ compass.save_offsets(); report_compass(); } return (0); } } } } #if HIL_MODE != HIL_MODE_ATTITUDE static int8_t test_adc(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); adc.Init(); delay(1000); Serial.printf_P(PSTR("ADC\n")); delay(1000); while(1){ for(int i = 0; i < 9; i++){ Serial.printf_P(PSTR("i:%d\t"),adc.Ch(i)); } Serial.println(); delay(20); if(Serial.available() > 0){ return (0); } } } #endif static int8_t test_imu(uint8_t argc, const Menu::arg *argv) { //Serial.printf_P(PSTR("Calibrating.")); report_imu(); imu.init_gyro(); report_imu(); print_hit_enter(); delay(1000); //float cos_roll, sin_roll, cos_pitch, sin_pitch, cos_yaw, sin_yaw; while(1){ delay(20); if (millis() - fast_loopTimer > 19) { delta_ms_fast_loop = millis() - fast_loopTimer; G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator fast_loopTimer = millis(); /* Matrix3f temp = dcm.get_dcm_matrix(); sin_pitch = -temp.c.x; cos_pitch = sqrt(1 - (temp.c.x * temp.c.x)); cos_roll = temp.c.z / cos_pitch; sin_roll = temp.c.y / cos_pitch; yawvector.x = temp.a.x; // sin yawvector.y = temp.b.x; // cos yawvector.normalize(); cos_yaw = yawvector.y; // 0 x = north sin_yaw = yawvector.x; // 1 y */ // IMU // --- read_AHRS(); Vector3f accels = imu.get_accel(); Vector3f gyros = imu.get_gyro(); if(g.compass_enabled){ medium_loopCounter++; if(medium_loopCounter == 5){ compass.read(); // Read magnetometer compass.calculate(dcm.roll, dcm.pitch); // Calculate heading medium_loopCounter = 0; } } // We are using the IMU // --------------------- /* Serial.printf_P(PSTR("A: %4.4f, %4.4f, %4.4f\t" "G: %4.4f, %4.4f, %4.4f\t"), accels.x, accels.y, accels.z, gyros.x, gyros.y, gyros.z); */ Serial.printf_P(PSTR("r: %ld\tp: %ld\t y: %ld\n"), dcm.roll_sensor, dcm.pitch_sensor, dcm.yaw_sensor); /* update_trig(); Serial.printf_P(PSTR("cp: %1.2f, sp: %1.2f, cr: %1.2f, sr: %1.2f, cy: %1.2f, sy: %1.2f,\n"), cos_pitch_x, sin_pitch_y, cos_roll_x, sin_roll_y, cos_yaw_x, // x sin_yaw_y); // y //*/ } if(Serial.available() > 0){ return (0); } } } static int8_t test_gps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(333); // Blink GPS LED if we don't have a fix // ------------------------------------ update_GPS_light(); g_gps->update(); if (g_gps->new_data){ Serial.printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"), g_gps->latitude, g_gps->longitude, g_gps->altitude/100, g_gps->num_sats); }else{ Serial.print("."); } if(Serial.available() > 0){ return (0); } } } /* static int8_t test_dcm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); Serial.printf_P(PSTR("Gyro | Accel\n")); Vector3f _cam_vector; Vector3f _out_vector; G_Dt = .02; while(1){ for(byte i = 0; i <= 50; i++){ delay(20); // IMU // --- read_AHRS(); } Matrix3f temp = dcm.get_dcm_matrix(); Matrix3f temp_t = dcm.get_dcm_transposed(); Serial.printf_P(PSTR("dcm\n" "%4.4f \t %4.4f \t %4.4f \n" "%4.4f \t %4.4f \t %4.4f \n" "%4.4f \t %4.4f \t %4.4f \n\n"), temp.a.x, temp.a.y, temp.a.z, temp.b.x, temp.b.y, temp.b.z, temp.c.x, temp.c.y, temp.c.z); int _pitch = degrees(-asin(temp.c.x)); int _roll = degrees(atan2(temp.c.y, temp.c.z)); int _yaw = degrees(atan2(temp.b.x, temp.a.x)); Serial.printf_P(PSTR( "angles\n" "%d \t %d \t %d\n\n"), _pitch, _roll, _yaw); //_out_vector = _cam_vector * temp; //Serial.printf_P(PSTR( "cam\n" // "%d \t %d \t %d\n\n"), // (int)temp.a.x * 100, (int)temp.a.y * 100, (int)temp.a.x * 100); if(Serial.available() > 0){ return (0); } } } */ /* static int8_t test_dcm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); Serial.printf_P(PSTR("Gyro | Accel\n")); delay(1000); while(1){ Vector3f accels = dcm.get_accel(); Serial.print("accels.z:"); Serial.print(accels.z); Serial.print("omega.z:"); Serial.print(omega.z); delay(100); if(Serial.available() > 0){ return (0); } } } */ /*static int8_t test_omega(uint8_t argc, const Menu::arg *argv) { static byte ts_num; float old_yaw; print_hit_enter(); delay(1000); Serial.printf_P(PSTR("Omega")); delay(1000); G_Dt = .02; while(1){ delay(20); // IMU // --- read_AHRS(); float my_oz = (dcm.yaw - old_yaw) * 50; old_yaw = dcm.yaw; ts_num++; if (ts_num > 2){ ts_num = 0; //Serial.printf_P(PSTR("R: %4.4f\tP: %4.4f\tY: %4.4f\tY: %4.4f\n"), omega.x, omega.y, omega.z, my_oz); Serial.printf_P(PSTR(" Yaw: %ld\tY: %4.4f\tY: %4.4f\n"), dcm.yaw_sensor, omega.z, my_oz); } if(Serial.available() > 0){ return (0); } } return (0); } //*/ static int8_t test_battery(uint8_t argc, const Menu::arg *argv) { #if BATTERY_EVENT == 1 for (int i = 0; i < 20; i++){ delay(20); read_battery(); } Serial.printf_P(PSTR("Volts: 1:%2.2f, 2:%2.2f, 3:%2.2f, 4:%2.2f\n") battery_voltage1, battery_voltage2, battery_voltage3, battery_voltage4); #else Serial.printf_P(PSTR("Not enabled\n")); #endif return (0); } static int8_t test_tuning(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); while(1){ delay(200); read_radio(); #if CHANNEL_6_TUNING == CH6_NONE Serial.printf_P(PSTR("disabled\n")); #elif CHANNEL_6_TUNING == CH6_STABLIZE_KP Serial.printf_P(PSTR("stab kP: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0)); #elif CHANNEL_6_TUNING == CH6_STABLIZE_KD Serial.printf_P(PSTR("stab kD: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0)); #elif CHANNEL_6_TUNING == CH6_BARO_KP Serial.printf_P(PSTR("baro kP: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0)); #elif CHANNEL_6_TUNING == CH6_BARO_KD Serial.printf_P(PSTR("baro kD: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0)); #elif CHANNEL_6_TUNING == CH6_SONAR_KP Serial.printf_P(PSTR("sonar kP: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0)); #elif CHANNEL_6_TUNING == CH6_SONAR_KD Serial.printf_P(PSTR("sonar kD: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0)); #elif CHANNEL_6_TUNING == CH6_Y6_SCALING Serial.printf_P(PSTR("Y6: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0)); #endif if(Serial.available() > 0){ return (0); } } } static int8_t test_current(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delta_ms_medium_loop = 100; while(1){ delay(100); read_radio(); read_current(); Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"), current_voltage, current_amps, current_total); //if(g.rc_3.control_in > 0){ APM_RC.OutputCh(CH_1, g.rc_3.radio_in); APM_RC.OutputCh(CH_2, g.rc_3.radio_in); APM_RC.OutputCh(CH_3, g.rc_3.radio_in); APM_RC.OutputCh(CH_4, g.rc_3.radio_in); //} if(Serial.available() > 0){ return (0); } } } static int8_t test_relay(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ Serial.printf_P(PSTR("Relay on\n")); relay_on(); delay(3000); if(Serial.available() > 0){ return (0); } Serial.printf_P(PSTR("Relay off\n")); relay_off(); delay(3000); if(Serial.available() > 0){ return (0); } } } static int8_t test_wp(uint8_t argc, const Menu::arg *argv) { delay(1000); //read_EEPROM_waypoint_info(); // save the alitude above home option Serial.printf_P(PSTR("Hold altitude ")); if(g.RTL_altitude < 0){ Serial.printf_P(PSTR("\n")); }else{ Serial.printf_P(PSTR("of %dm\n"), (int)g.RTL_altitude / 100); } Serial.printf_P(PSTR("%d waypoints\n"), (int)g.waypoint_total); Serial.printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius); //Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius); report_wp(); return (0); } static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ if (Serial3.available()){ digitalWrite(B_LED_PIN, HIGH); // Blink Yellow LED if we are sending data to GPS Serial1.write(Serial3.read()); digitalWrite(B_LED_PIN, LOW); } if (Serial1.available()){ digitalWrite(C_LED_PIN, HIGH); // Blink Red LED if we are receiving data from GPS Serial3.write(Serial1.read()); digitalWrite(C_LED_PIN, LOW); } if(Serial.available() > 0){ return (0); } } } static int8_t test_xbee(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n")); while(1){ if (Serial3.available()) Serial3.write(Serial3.read()); if(Serial.available() > 0){ return (0); } } } #if HIL_MODE != HIL_MODE_ATTITUDE static int8_t test_altitude(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("Uncalibrated relative airpressure\n")); print_hit_enter(); home.alt = 0; wp_distance = 0; init_barometer(); reset_I(); // to prevent boost from skewing results cos_pitch_x = cos_roll_x = 1; while(1){ if (millis() - fast_loopTimer > 100) { delta_ms_fast_loop = millis() - fast_loopTimer; G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator fast_loopTimer = millis(); } if (millis() - medium_loopTimer > 100) { medium_loopTimer = millis(); read_radio(); // read the radio first next_WP.alt = home.alt + g.rc_6.control_in; // 0 - 2000 (20 meters) next_WP.alt = max(next_WP.alt, 30); read_trim_switch(); update_alt(); output_auto_throttle(); Serial.printf_P(PSTR("B_alt: %ld, S_alt: %ld, \tnext_alt: %ld \terror: %ld, \tcruise: %d, \tint: %6.2f \tout:%d\n"), baro_alt, sonar_alt, next_WP.alt, altitude_error, (int)g.throttle_cruise, g.pid_baro_throttle.get_integrator(), g.rc_3.servo_out); /* Serial.print("Altitude: "); Serial.print((int)current_loc.alt,DEC); Serial.print("\tnext_alt: "); Serial.print((int)next_WP.alt,DEC); Serial.print("\talt_err: "); Serial.print((int)altitude_error,DEC); Serial.print("\ttNom: "); Serial.print(g.,DEC); Serial.print("\ttOut: "); Serial.println(g.rc_3.servo_out,DEC); */ //Serial.print(" Raw pressure value: "); //Serial.println(abs_pressure); } if(Serial.available() > 0){ return (0); } } } #endif static int8_t test_mag(uint8_t argc, const Menu::arg *argv) { if(g.compass_enabled) { //Serial.printf_P(PSTR("MAG_ORIENTATION: %d\n"), MAG_ORIENTATION); print_hit_enter(); while(1){ delay(250); compass.read(); compass.calculate(0,0); Vector3f maggy = compass.get_offsets(); Serial.printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"), (wrap_360(ToDeg(compass.heading) * 100)) /100, compass.mag_x, compass.mag_y, compass.mag_z, maggy.x, maggy.y, maggy.z); if(Serial.available() > 0){ return (0); } } } else { Serial.printf_P(PSTR("Compass: ")); print_enabled(false); return (0); } } /* test the sonar */ /*static int8_t test_sonar(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { Serial.printf_P(PSTR("%d cm\n"), sonar.read()); delay(100); if(Serial.available() > 0){ return (0); } } return (0); } */ static int8_t test_mission(uint8_t argc, const Menu::arg *argv) { //print_hit_enter(); //delay(1000); //write out a basic mission to the EEPROM Location t; /*{ uint8_t id; ///< command id uint8_t options; ///< options bitmask (1<<0 = relative altitude) uint8_t p1; ///< param 1 int32_t alt; ///< param 2 - Altitude in centimeters (meters * 100) int32_t lat; ///< param 3 - Lattitude * 10**7 int32_t lng; ///< param 4 - Longitude * 10**7 }*/ // clear home {Location t = {0, 0, 0, 0, 0, 0}; set_wp_with_index(t,0);} // CMD opt pitch alt/cm {Location t = {MAV_CMD_NAV_TAKEOFF, 0, 0, 100, 0, 0}; set_wp_with_index(t,1);} if (!strcmp_P(argv[1].str, PSTR("wp"))) { // CMD opt {Location t = {MAV_CMD_NAV_WAYPOINT, WP_OPTION_RELATIVE, 15, 0, 0, 0}; set_wp_with_index(t,2);} // CMD opt {Location t = {MAV_CMD_NAV_RETURN_TO_LAUNCH, WP_OPTION_YAW, 0, 0, 0, 0}; set_wp_with_index(t,3);} // CMD opt {Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0}; set_wp_with_index(t,4);} } else { //2250 = 25 meteres // CMD opt p1 //alt //NS //WE {Location t = {MAV_CMD_NAV_LOITER_TIME, 0, 0, 100, 1100, 0}; set_wp_with_index(t,2);} // CMD opt dir angle/deg deg/s relative {Location t = {MAV_CMD_CONDITION_YAW, 0, 1, 360, 60, 1}; set_wp_with_index(t,3);} // CMD opt {Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0}; set_wp_with_index(t,4);} } g.RTL_altitude.set_and_save(300); g.waypoint_total.set_and_save(4); g.waypoint_radius.set_and_save(3); test_wp(NULL, NULL); } void print_hit_enter() { Serial.printf_P(PSTR("Hit Enter to exit.\n\n")); } void fake_out_gps() { static float rads; g_gps->new_data = true; g_gps->fix = true; int length = g.rc_6.control_in; rads += .05; if (rads > 6.28){ rads = 0; } g_gps->latitude = 377696000; // Y g_gps->longitude = -1224319000; // X g_gps->altitude = 9000; // meters * 100 //next_WP.lng = home.lng - length * sin(rads); // X //next_WP.lat = home.lat + length * cos(rads); // Y } void print_motor_out(){ Serial.printf("out: R: %d, L: %d F: %d B: %d\n", (motor_out[RIGHT] - g.rc_3.radio_min), (motor_out[LEFT] - g.rc_3.radio_min), (motor_out[FRONT] - g.rc_3.radio_min), (motor_out[BACK] - g.rc_3.radio_min)); }