// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsSingle.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include #include #include "AP_MotorsCoax.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsCoax::var_info[] PROGMEM = { // 0 was used by TB_RATIO // @Param: TCRV_ENABLE // @DisplayName: Thrust Curve Enable // @Description: Controls whether a curve is used to linearize the thrust produced by the motors // @User: Advanced // @Values: 0:Disabled,1:Enable AP_GROUPINFO("TCRV_ENABLE", 1, AP_MotorsCoax, _throttle_curve_enabled, THROTTLE_CURVE_ENABLED), // @Param: TCRV_MIDPCT // @DisplayName: Thrust Curve mid-point percentage // @Description: Set the pwm position that produces half the maximum thrust of the motors // @User: Advanced // @Range: 20 80 // @Increment: 1 AP_GROUPINFO("TCRV_MIDPCT", 2, AP_MotorsCoax, _throttle_curve_mid, THROTTLE_CURVE_MID_THRUST), // @Param: TCRV_MAXPCT // @DisplayName: Thrust Curve max thrust percentage // @Description: Set to the lowest pwm position that produces the maximum thrust of the motors. Most motors produce maximum thrust below the maximum pwm value that they accept. // @User: Advanced // @Range: 20 80 // @Increment: 1 AP_GROUPINFO("TCRV_MAXPCT", 3, AP_MotorsCoax, _throttle_curve_max, THROTTLE_CURVE_MAX_THRUST), // @Param: SPIN_ARMED // @DisplayName: Motors always spin when armed // @Description: Controls whether motors always spin when armed (must be below THR_MIN) // @Values: 0:Do Not Spin,70:VerySlow,100:Slow,130:Medium,150:Fast // @User: Standard AP_GROUPINFO("SPIN_ARMED", 5, AP_MotorsCoax, _spin_when_armed, AP_MOTORS_SPIN_WHEN_ARMED), // @Param: REV_ROLL // @DisplayName: Reverse roll feedback // @Description: Ensure the feedback is negative // @Values: -1:Opposite direction,1:Same direction AP_GROUPINFO("REV_ROLL", 6, AP_MotorsCoax, _rev_roll, AP_MOTORS_COAX_POSITIVE), // @Param: REV_PITCH // @DisplayName: Reverse roll feedback // @Description: Ensure the feedback is negative // @Values: -1:Opposite direction,1:Same direction AP_GROUPINFO("REV_PITCH", 7, AP_MotorsCoax, _rev_pitch, AP_MOTORS_COAX_POSITIVE), // @Param: REV_ROLL // @DisplayName: Reverse roll feedback // @Description: Ensure the feedback is negative // @Values: -1:Opposite direction,1:Same direction AP_GROUPINFO("REV_YAW", 8, AP_MotorsCoax, _rev_yaw, AP_MOTORS_COAX_POSITIVE), // @Param: SV_SPEED // @DisplayName: Servo speed // @Description: Servo update speed // @Values: -1:Opposite direction,1:Same direction AP_GROUPINFO("SV_SPEED", 9, AP_MotorsCoax, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS), AP_GROUPEND }; // init void AP_MotorsCoax::Init() { // call parent Init function to set-up throttle curve AP_Motors::Init(); // set update rate for the 2 motors (but not the 2 flaps (i.e. servos) on channels 3 and 4) set_update_rate(_speed_hz); // set the motor_enabled flag so that the ESCs can be calibrated like other frame types motor_enabled[AP_MOTORS_MOT_1] = true; motor_enabled[AP_MOTORS_MOT_2] = true; // set ranges for fin servos _servo1->set_type(RC_CHANNEL_TYPE_ANGLE); _servo2->set_type(RC_CHANNEL_TYPE_ANGLE); _servo1->set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); _servo2->set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); } // set update rate to motors - a value in hertz void AP_MotorsCoax::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // set update rate for the two motors uint32_t mask2 = 1U << _motor_to_channel_map[AP_MOTORS_MOT_1] | 1U << _motor_to_channel_map[AP_MOTORS_MOT_2] ; hal.rcout->set_freq(mask2, _speed_hz); // set update rate for the two servos uint32_t mask = 1U << _motor_to_channel_map[AP_MOTORS_MOT_3] | 1U << _motor_to_channel_map[AP_MOTORS_MOT_4] ; hal.rcout->set_freq(mask, _servo_speed); } // enable - starts allowing signals to be sent to motors void AP_MotorsCoax::enable() { // enable output channels hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_1]); hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_2]); hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_3]); hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_4]); } // output_min - sends minimum values out to the motor and trim values to the servos void AP_MotorsCoax::output_min() { // fill the motor_out[] array for HIL use motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_min; motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_min; motor_out[AP_MOTORS_MOT_3] = _servo1->radio_trim; motor_out[AP_MOTORS_MOT_4] = _servo2->radio_trim; // send minimum value to each motor hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo1->radio_trim); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo2->radio_trim); } // output_armed - sends commands to the motors void AP_MotorsCoax::output_armed() { int16_t out_min = _rc_throttle->radio_min + _min_throttle; // Throttle is 0 to 1000 only _rc_throttle->servo_out = constrain_int16(_rc_throttle->servo_out, 0, _max_throttle); // capture desired throttle from receiver _rc_throttle->calc_pwm(); // if we are not sending a throttle output, we cut the motors if(_rc_throttle->servo_out == 0) { // range check spin_when_armed if (_spin_when_armed < 0) { _spin_when_armed = 0; } if (_spin_when_armed > _min_throttle) { _spin_when_armed = _min_throttle; } motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_min + _spin_when_armed; motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_min + _spin_when_armed; }else{ // motors motor_out[AP_MOTORS_MOT_1] = _rev_yaw*_rc_yaw->servo_out + _rc_throttle->radio_out; motor_out[AP_MOTORS_MOT_2] = -_rev_yaw*_rc_yaw->servo_out +_rc_throttle->radio_out; // front _servo1->servo_out = _rev_roll*_rc_roll->servo_out; // right _servo2->servo_out = _rev_pitch*_rc_pitch->servo_out; _servo1->calc_pwm(); _servo2->calc_pwm(); motor_out[AP_MOTORS_MOT_3] = _servo1->radio_out; motor_out[AP_MOTORS_MOT_4] = _servo2->radio_out; // adjust for throttle curve if( _throttle_curve_enabled ) { motor_out[AP_MOTORS_MOT_1] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_1]); motor_out[AP_MOTORS_MOT_2] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_2]); } // ensure motors don't drop below a minimum value and stop motor_out[AP_MOTORS_MOT_1] = max(motor_out[AP_MOTORS_MOT_1], out_min); motor_out[AP_MOTORS_MOT_2] = max(motor_out[AP_MOTORS_MOT_2], out_min); } // send output to each motor hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], motor_out[AP_MOTORS_MOT_1]); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], motor_out[AP_MOTORS_MOT_2]); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], motor_out[AP_MOTORS_MOT_3]); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], motor_out[AP_MOTORS_MOT_4]); } // output_disarmed - sends commands to the motors void AP_MotorsCoax::output_disarmed() { // Send minimum values to all motors output_min(); } // output_test - spin each motor for a moment to allow the user to confirm the motor order and spin direction void AP_MotorsCoax::output_test() { // Send minimum values to all motors output_min(); // spin motor 1 hal.scheduler->delay(1000); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min + _min_throttle); hal.scheduler->delay(1000); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min); hal.scheduler->delay(2000); // spin motor 2 hal.scheduler->delay(1000); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min + _min_throttle); hal.scheduler->delay(1000); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min); hal.scheduler->delay(2000); // flap servo 1 hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo1->radio_min); hal.scheduler->delay(1000); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo1->radio_max); hal.scheduler->delay(1000); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo1->radio_trim); hal.scheduler->delay(2000); // flap servo 2 hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo2->radio_min); hal.scheduler->delay(1000); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo2->radio_max); hal.scheduler->delay(1000); hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo2->radio_trim); // Send minimum values to all motors output_min(); }